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A parallel computer specifically designed for the solution or 
ordinary differential equations is described. The first version of the 

machine contains thirty-two processors, running in an asynchronous 

Multiple instruction multiple data (MIMD) mode, communicating 

with high speed parallel busses. Synchronization is accomplished by 

a microprogrammable communication controller. A number of 

processors have been designed and built for the machine. The 

processor types offer a wide variation in solution speed and 

accuracy. To permit easy comparisons with analog and hybrid 

systems, performance is measured by finding the highest frequency 

since wave which can be integrated in real-time with an accuracy of 

0.1 percent or  higher. Using this performance measure the 

performance limit of the current machine is 2000 Hz. The structure 

is capable of solving systems described by differential equations up 

to order sixty-four a t  these performance limits. 
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The simulation of continuous dynamic systems 
requires the solution of ordinary differential equations 
with initial value conditions. Such systems occur in 
aerospace, mechanical, biological, electrical, and 
chemical systems. In the past, there have been four 
distinct approaches to computational machines for 
continuous system simulation; analog computers, hybrid 
computers, digital differential analyzers, and digital 
computers. A recent approach is to design a parallel 
digital structure which unites ideas from all four of these 
approaches. Such a system takes full advantage of recent 
developments in very large scale integration (VLSI) 
technology. This fifth approach is special purpose in the 
same sense that an analog computer is special purpose. 
The resulting computer is intended to solve those 
problems described by ordinary differential equations at 
an accuracy level comparable with reliable physical 
measurements. 

11.  PARALLEL COMPUTER ARCHITECTURES 

A medium size analog computer is capable of 
performing the integration of 40 state variables and the 
associated function generation. Using fourth-order Runge- 
Kutta integration, a digital computer requires 20,000 
integration time steps per second to achieve the 
equivalent accuracy and speed. A typical state equation 
requires 250 operations per state variable per integration 
step. Thus a digital computer requires a sustained 
throughput in excess of 200 MFLOPS (millions of 
floating point operations per second) to match the 
performance of a typical analog computer [ I ] .  

general purpose vector supercomputers, such as the 
CRAY X-MP, begin to approach this level of sustained 
performance on real simulation problems [2]. Thus 
economics provides the major impetus for a special 
purpose machine. 

A number of commercially available parallel 
computers have appeared recently. Many of these general 
purpose computers are being used for simulation 
applications [3- 1 I] .  Special purpose commercial 
simulation machines are also available [ 121. The floating 
point performance of these machines is not yet in the 
supercomputer class [ 2 ] .  Utilizing VLSI components, 
many of these parallel computers offer price/performance 
advantages over vector supercomputers. The 
commercially available general purpose parallel 
computers typically have a small number of processors 
built using a general purpose microprocessor with a math 
coprocessor and a limited bandwidth interconnection 
network. The performance of these parallel machines 
cannot be improved by orders of magnitude without 
major modifications to their current architecture or 
technology. 

Only the most recent models of multimillion dollar 
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I I I. NUM ER I CAL CONS I D ERATlO NS 

The classical solution method for ordinary differential 
equations with initial value conditions is shown in Fig. 1. 
For each integration time step it is necessary to perform 
function or derivative evaluations and numerical 
integration sequentially for all of the state variables [ 13- 
201. The major differences are in the numerical 
integration methods used. Multiple function evaluations 
per time step are required by many integration methods. 
Many software packages allow the user to choose one of 
several common integration routines to obtain the best 
performance. 

connection paths required. This implies that the 
interconnection network must be reconfigurable for high 
performance. 

initial value conditions is ideally suited for parallel 
processing. This class of problems exhibits an extremely 
high degree of parallelism. Many computations can be 
performed in a processor before it is necessary to 
exchange global data. The amount of global data or state 
variables that must be shared among processors is small 
in relation to local data and program size. These are the 
characteristics that must be present for efficient parallel 
processing utilizing a large number of processors. 

The solution of ordinary differential equations with 

FOR i = l  TO n 

FOR !=Tint TO Tfin STEP h 

I FOR i= l  TO n I 

Function 
Evaluation dXi(t)/dt 

FOR i = l  TO n 

Numerical 
Xi(t+h) lntegratlon 

Fig. 1 .  Sequential solution of system equations. 

An equivalent parallel digital solution method 
analogous to the operation of an analog computer, or a 
digital differential anayzer, is shown in Fig. 2 [21-261. A 
theoretical linea speedup by a factor of n,  the order of the 
system, is possible if n processors are used. Additional 

I FOR !=Tint TO T f i n  STEP h I 
Function 
Evaluation 

Numerical 
Integration 

Fig. 2. Parallel solution of system equations. 

parallelism can be found in the numerical integration 
methods; however, this parallelism, a factor of two to 
four, is small compared with n [22, 27, 281. New parallel 
solution methods have also been suggested [29-331. 
Using classical methods, coupling in the system of 
equations means that data must be exchanged among 
processors every time a function evaluation is performed. 
This requires that an interprocessor connection network 
be provided. The time required for the transfer of data 
will reduce the speedup to a value less than n. For 
maximum speedup the processors must be connected by a 
high bandwidth interconnection network. The functional 
dependence of the differential equations determines the 

IV. SYSTEM ARCHITECTURE 

Based on an analysis of these numerical 
considerations, the architecture shown in Fig. 3 was 
developed (231. A number of asynchronous processors, 
each with local program and data memory, are connected 

I 
I 

Fig. 3. Parallel computer architecture 

to a high speed interconnection network controlled by a 
microprogrammable communication controller. The 
communication controller is responsible for synchronizing 
the system and controlling the switch points in the 
interconnection network. 

To demonstrate the utility of this architecture, an 
experimental prototype capable of supporting 32 
processors was designed and built. The experimental 
prototype is intended to be used as a research tool. The 
prototype was used to obtain accurate performance data 
and to gain additional insight into implementation 
problems and limitations. 

Each processor performs function evaluation and 
numerical integration on a subset, typically one or two, 
of the system state variables. Programs and data are 
maintained in the local processor memory. Every time a 
function evaluation is performed the new values of the 
state variables are transferred on the interconnection 
network. This is the minimum amount of information that 
must be exchanged among processors. Decomposition of 
the problem in this manner maintains fast interprocessor 
communication times. Further decomposition increases 
the parallelism at the expense of increased communication 
with a resulting decrease in performance. Processors with 
high speed analog-to-digital (AID) and digital-to-analog 
(DIA) channels are used for analog inputs and outputs. 
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V. NETWORK ARCHITECTURE 

The interconnection network must be capable of 
parallel high speed data transfers among arbitrary 
processors. Clearly, a network which allows all 
processors to communicate directly to any other 
processors in parallel is desirable if it is economically 
viable. Networks, such as hypercubes, which require 
processor forwarding of data to support an arbitrary 
transfer are too slow to meet performance goals. Crossbar 
and Banyan networks are possible candidates for the 
interconnection network. These networks grow in 
complexity by an O ( n 2 )  when switch points, 
interconnection wiring, and control circuitry are taken 
into account [34]. Crossbar switching networks are 
nonblocking, require only one level of switching, and 
have a higher degree of symmetry making fabrication less 
difficult. A crossbar switching network was selected for 
use in the experimental prototype. 

is prohibitive. Tri-state bidirectional data busses are used 
to reduce the size of the network by a factor of four. 
Thus a combination of space and time switching is 
required to transfer data. High speed microcode memory 
is used to enable and control the direction of each switch 
point in the network. This allows multiple destinations for 
a single packet of input data and use of different routing 
strategies. Typically, simulation problems require four or 
more time slots on the network for a complete data 
transfer. 

experimental prototype. Each switch point uses two 
74LS245 octal bus transceivers. A four by four switch 
matrix is implemented on a circuit board. Sixteen boards 
are required for the thirty-two processor prototype. Daisy 
chained ribbon cables run horizontally and vertically 
through the network to provide the large number of 
interconnections required. 

The communication controller contains a high speed 
microprogrammable state machine as shown in Fig. 4. 
Each microinstruction controls a time slot on the network. 
Fields in the microcode specify the processors requiring 
input, the processors providing output data, and the 
switch configurations required in the network. The 
processor microcode fields control maskable comparators 
that signal when the selected processors are ready to 
transfer data. The controller hardware tests and sets four 
handshake lines on all processors in parallel. Pipelining is 
used to configure the switch points prior to the transfer of 
data. The data path through the network contains a single 
gate delay of 8 ns. The major communication path delay 
is a 100 ns signal rise time in the ribbon cable 
connections. The rise time results from the capacitance 
between signal and ground wires in the data cable. 
Custom VLSI circuits could be used to reduce the 
physical size of the network and increase the 
performance. 

The physical size of a fully parallel switching network 

Data is transferred on 16-bit busses in the 

Communication Sequencer ‘d 
Microprogram Memory 

High Speed Siatic RAM 

~~ 

Microinstruciion Pipeline Register 

I Network 

Compare Compare 

Processor Handshake Lines 

Fig. 4. Microprogrammable communication controller 

Processor programs must output and input data in an 
ordered sequence that coincides with the communication 
controller microprogram. The arrival of data via the 
network is used to synchronize the processors. The 
number and order of input and output variables is 
problem dependent and will vary from processor to 
processor. The network interface is buffered to allow 
processors to perform other operations while transfers are 
occurring. 

VI. PROCESSOR ARCHITECTURE 

The system architecture is capable of supporting many 
types of processor modules. All that is required is a 
compatible interface to the switching network and an 
IEEE Standard 796 card format [35, 361. The standard 
interface to the network is a 16-bit parallel transistor- 
transistor logic (TTL) bidirectional port with four 
handshake lines. Five processor modules have been 
developed for the prototype computer. They include a 
general purpose microprocessor with a numeric 
coprocessor, a processor with high speed AID and D/A 
converters, a high speed microprogrammed fixed point 
processor, and two high speed microprogrammed floating 
point processors. 

The microprocessor based design,uses an Intel SBC 
86/12 processor with an 8087 numeric coprocessor. When 
this processor was selected it was anticipated that the next 
generation of VLSI floating point units would approach 
the performance goals for the machine. These processors 
served to provide floating point capability in the interim. 

processor architecture is shown in Fig. 5. With current 
VLSI technology it is necessary to use several speedup 
techniques to attain the data rates required. These include 
microcoding of programs, separate program and data 
memories, and pipelining of both instructions and data. 

The high speed microprogrammed fixed point 
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Fig. 5. '+ Microprogrammable processor architecture 

Only microprogramming allows efficient control of all 
parallel operations supported by the hardware. Pipelining 
allows the overlapping of fetch and execute cycles. 
Separate program and data memories allow instruction 
and operand fetch operations to occur simultaneously. For 
high performnce, a high speed adder and hardware 
multiplier are required. 

The fixed point processor performs two operand 
fetches, a multiply, a double precision addition, and a 
store in 250 ns. Implementation of the module requires 
1 13 integrated circuits. Programmable logic arrays were 
used where appropriate. A TRW lOlOJ provides the 
multiply and accumulate operation and an AMD 2910 
was used for the microprogram sequencer. Processor 
memory uses 50 ns static RAMS. 

Two microprogrammed floating point processors have 
recently been designed and built. These processors use an 
architecture that is virtually identical to the fixed point 
unit. Data is maintained in IEEE Standard 754 32-bit 
floating point format [37]. Both processors use an AMD 
29 10 microprogram sequencer and have separate data and 
microprogram memories. The first design uses the Weitek 
1032 floating point multiplier and 1033 floating point 
adder [38, 391. The Weitek floating point ALU contains a 
six stage data pipeline. Filling and flushing of the internal 
pipeline slows down the processor and this demands 
special care when programming. 

floating point ALU and the AMD 29334 register file. 
After evaluating a prototype of both units, the AMD 
29325 processor design has been selected for 
incorporation in the next version of the machine. The 
peak performance of a single AMD 29325 based 
processor is 10 MFLOPS [38]. New processor designs 
containing four to eight T800 floating point transputers 

The second processor design uses the AMD 29325 

[40] or the bipolar integrated technology 2 1 1012 I20 
floating point ALUs [38] are being investigated. 

VI I. BENCHMARKS 

As part of the experimental program several simple 
continuous system simulation benchmarks have been 
implemented on the prototype machine described in this 
paper. Results obtained using the prototype were 
compared with traditional serial results to verify correct 
operation and to validate the parallel solution method. 

To program these benchmarks on the prototype a 
number of software tools were developed. In the 
prototype all processor and control memories can be 
downloaded by a general purpose host computer. The 
host can also start, stop, reset, single step, and examine 
memory contents in all processors and the communication 
controller. These features are useful in multirun 
simulations. A compiler was written to generate the 
microcode for the communication sequencer. The input to 
this compiler is a simple language which describes the 
data transfers required between processors. 

Additionally, the program in local memory of each 
processor must be developed. For the microprocessor 
based processor a compiler was used. High speed 
processor benchmark programs were written in 
microcode. Ultimately, a compiler for a continuous 
system simulation language could be developed for the 
machine which would generate all of the required code 
modules [23, 4 I ,  421. 

The benchmarks selected were a second-order linear 
system, the pilot ejection problem, PHYSBE, and a linear 
single axis autopilot [ 16, 231. Speedups demonstrated on 
the prototype using the 8086/8087 microprocessor are 
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shown in Fig. 6. On any parallel computer, linear 
speedup cannot be obtained unless processor 
communication time is zero. Based on program execution 
times, a more realistic model for the machine assumes a 
ten percent overhead from processor communication. This 
speedup, 0.9N can be obtained on systems of ODES that 
produce equal processor computational loads. 

:: f 
10  

Lineor Speeup 

Speedup wiih 10% 
Communicaiion 
Overhead 

Benchrnork Problems 

’ 0 4  1 .  Second Order Lineor 
2. Pilot Ejeciion 
3. PHYSBE 
4. Single Axis Autopilot U 5  

P 4  // 
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Number of Processors 

Fig. 6 .  Speedup obtained on benchmarks. 

Performance below this level is due to unequal processor 
computational loads. Unbalanced processor execution 
times will arise in nonlinear ODE systems because of 
different function or derivative evaluation times. 

evaluated by finding the highest frequency sine wave 
which can be integrated in real-time with an accuracy of 
0.1 percent. Using this benchmark the performance limit 
of the prototype machine is in excess of 2000 Hz. 

High speed microprogrammed processors were also 

VIII. CONCLUSIONS 

Using current technology, the prototype machine is 
capable of solving 64th-order ordinary differential 
equations at a solution bandwidth in excess of 1000 Hz. 
A special purpose machine built using parallel VLSI 
circuits offers the potential of mainframe performance 
levels at a hardware cost reduction of an order of 
magnitude or more. The architecture presented is capable 
of solving ordinary differential equations at speeds 
comparable with modem analog computers. Such a 
machine can serve as a replacement for hybrid systems 
and supercomputers in large real-time simulations. 

Additional work is needed in the development of 
VLSI chips designed to support parallel architectures, the 
development of parallel compilers for continuous system 
simulation languages, and new integration methods 
designed for parallel computers. 
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