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Abstract— This paper describes our experiences using a
system-on-a-programmable-chip (SOPC) approach to support
the development of design projects for undergraduate students
in our electrical and computer engineering curriculum. A com-
mercial field–programmable gate array (FPGA)–based SOPC
development board with a reduced instruction set computer
(RISC) processor core is used to support a wide variety of
student design projects. A top–down rapid prototyping approach
with commercial FPGA computer–aided design (CAD) tools, a C
compiler targeted for the RISC soft processor core, and a large
FPGA with memory is used and reused to support a wide variety
of student projects.

Index Terms— system-on-a-chip, SOC, system-on-a-
programmable-chip, SOPC, Field–Programmable Gate Array,
FPGA, processor core, Nios, MicroBlaze, Altera, Xilinx

I. INTRODUCTION

A new technology has emerged that enables designers to
utilize a large FPGA that contains both memory and logic
elements along with a intellectual property (IP) processor core
to implement a computer along with custom hardware for
system-on-a-chip (SOC) applications. This new approach has
been termed system–on–a–programmable–chip (SOPC). In the
past two years, several commercial RISC processor cores have
been introduced [1]. In this paper, we will overview several
commercial processor cores that can be used in the classroom,
explore the computer–aided design (CAD) tool flow involved
with this process, and highlight some example student projects
that have used this technology.

II. TECHNOLOGY OVERVIEW

A. SOPC Processor Cores

Hard processor cores use an embedded–processor core (in
dedicated silicon) in addition to the FPGA’s normal logic
elements. Hard processor cores added to an FPGA are a
hybrid approach offering performance tradeoffs that fall some-
where between a traditional ASIC and an FPGA, and they
are available from several manufacturers with a number of
different processor flavors. For example, Altera offers an ARM
processor core embedded in its APEX 20KE family of FPGAs
that is marketed as an ExcaliburTMdevice. Xilinx’s Virtex-
II Pro family of FPGAs include up to four PowerPC processor
cores on–chip. Cyress Semiconductors also offers a variation
of the SOPC system. Cypress’s Programmable-System-on-a-
Chip (PSoCTM) is formed on an M8C processor core with
configurable logic blocks designed to implement the peripheral
interfaces, which include analog-to-digital converters, digital-
to-analog converters, timers, counters, and UARTs [2], [3].

TABLE I

FEATURES OF COMMERCIAL SOFT PROCESSOR CORES

Feature Nios 3.0 MicroBlaze 3.2

Datapath 16 or 32 bits 32 bits

Frequency up to 150 MHz1 up to 150 MHz1

Gate Count 26,000–40,000 30,000–40,000

Register File up to 512 32 general purpose

(window size: 32) and 32 special purpose

Instruction Word 16 bits 32 bits

Instruction Cache Optional Optional

Hardware Multiplier Optional Optional

1This speed is not achievable on all devices. Some devices limit the
maximum frequency to as low as 50 MHz.

Soft cores such as Altera’s Nios and Xilinx’s MicroBlaze
processors use existing programmable logic elements from the
FPGA to implement the processor logic. As seen in Table I,
soft core processors can be very feature–rich and flexibile,
often allowing the designer to specify the datapath width,
the ALU functionality, number and types of peripherals, and
memory address space parameters at compile time. However,
such flexibility comes at a cost. Soft cores have slower clock
rates and use more power than an equivalent hard processor
core.

With current pricing on large FPGAs, the addition of a
soft processor core only costs a few dollars based on the
logic elements it requires. The remainder of the FPGA’s logic
elements can be used to build application specific system
hardware. ASICs and custom VLSI devices still offer higher
performance, but they also have large development costs
and longer turnaround times. For student projects requiring
an actual hardware implementation, the FPGA–based SOPC
approach is easier, faster, smaller, and more economical.

Typically, additional software tools are provided along with
each processor core to support SOPC development. A special
CAD tool specific to each soft processor core is used to con-
figure processor options, which can include register file size,
hardware multiply and divide, interrupts, and I/O hardware.
This tool outputs an HDL synthesis model of the processor
core in VHDL or Verilog. In addition to the processor, other
system logic is added and the resulting design is synthesized
using a standard FPGA synthesis CAD tool. The embedded
application program for the processor is typically written in
C or C++ and compiled using a customized GNU compiler
provided with the processor core tools.
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Fig. 1. Altera’s Nios board contains a 200,000 gate FPGA, Flash, SRAM,
several I/O options, and a RISC soft processor core for the FPGA.

B. SOPC Development Hardware

Fig. 2. Digilent’s Digilab 2E low–cost FPGA board contains a 200,000 gate
Xilinx FPGA that can support Xilinx’s Microblaze soft core.

SOPC boards along with the required CAD tools are
available from both Altera and Xilinx [4], [5]. The Altera
NIOS development board shown in Figure 1 was one of
the earliest SOPC boards available. It contains a 200K–gate
FPGA, Flash, and SRAM memory on–board, as well as several
I/O options and connectors for attaching external devices. The
development kit includes a complete set of tools for SOPC
design.

A number of daughter cards are available for this board to
extend its functionality. For projects that require networking,
a custom Ethernet daughter board kit is available. A custom
CompactFlash board can also be added if additional and/or
removeable storage is needed. In addition, third–party vendors
make a number of add–on boards that can be interfaced
directly to the Nios board via its standard PCI Mezzanine

Connector (PMC).
Several third–party vendors also provide software to aid in

the development of systems on the Nios processor. Everything
from real–time operating systems to advanced debugging tools
are available. Of particular interest, there is a � ClinuxTMkernel
that runs on the board, but licensing fees still make this add–on
kit somewhat expensive for student projects.

Figure 2 shows a low–cost Digilent 2E FPGA board that
contains a 200,000 gate Xilinx Spartan–IIE FPGA [6]. This
board can be used for SOPC development with Xilinx’s Mi-
croblaze processor core. This particular board has very limited
functionality outside of the FPGA (no external memory, high–
speed conntectors, etc.); however, it is very economically
priced (about 1/5th the cost of a Nios board) and can be an
attractive option for student projects. To support our SOPC
projects, an additional memory module was designed as a
student project and attached to the board’s header connectors.
The additional memory is needed to support the development
of larger programs.

Several daughter cards are available from Digilent to ex-
tend the functionality of this board including Ethernet, USB,
parallel port, serial port, analog I/O, and digital I/O boards.
Additionally, with three 40-pin, general–purpose I/O headers,
this board is designed to act as a system board with project–
specific functionality added via custom peripheral boards.

III. SOC DESIGN USING CAD TOOLS AND FPGAS

A. Traditional Tool Flow

The traditional flow of commercial CAD tools typically
follows a path from HDL or schematic design entry through
synthesis and place and route tools to the programming of
the FPGA. FPGA manufacturers provide CAD tools such as
Altera’s Quartus II and Xilinx’s ISE software, which step
the designer through this process. As shown in Figure 3, the
addition of a processor core and the tools associated with it
are a superset of the traditional tools. The standard synthesis,
place and route, and programming functionality is still needed
and in the case of both Altera and Xilinx, the same CAD tools
(Quartus II or ISE) are used to implement these blocks.

B. Processor Core Configuration Tools

Today, there are a number of pre-defined processors cores
available from various sources. GPL–licensed public processor
cores can be found on the web (i.e., www.opencores.org),
while companies such as Altera (Nios processor), Xilinx (Mi-
croBlaze processor), and Tensilica (Xtensa processor) provide
their processors for a fee. This paper will focus on the
processors provided by the FPGA manufacturers although
cores from third–party sources are similar in nature.

Processor cores provided by FPGA manufacturers are typi-
cally manually optimized for the specific FPGA family being
used and as such are more efficiently implemented on the
FPGA than a student–designed core (especially given the time
and resource constraints of most class projects). Additionally,
these companies provide extensive support tools to ease the
customization and use of their cores including high–level
compilers targeted at the custom cores (see Section III-C).
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Fig. 3. The CAD tool flow for SOPC design is comprised of the traditional design process for FPGA–based systems with the addition of the Processor Core
Configuration Tool and software design tools. In this figure, the program and data memory is assumed to be on–chip for simplicity. Figure 4 shows a more
realistic memory configuration with external memory.

In the case of Altera and Xilinx, the Processor Core Con-
figuration Tool block shown in Fig. 3 is realized in a user–
friendly GUI interface that allows the designer to customize
the processor for a particular project. The configurable param-
eters include the datapath width, memory, address space, and
peripherals (including arbitrarily defined general–purpose I/O,
UARTs, Ethernet controllers, memory controllers, etc.). Once
the processor parameters are specified in the GUI interface,
the processor core is generated in the form of an obfuscated
HDL file (in Altera) or a netlist file (in Xilinx). This file can
then be included within a traditional HDL design using the
standard CAD tools. Specific pin assignments and additional
user logic can be included at this point like any other FPGA
design. Next, the full hardware design (processor core and any
additional user logic) is compiled (synthesis, place and route,
etc.), and the FPGA can be programmed with the resulting file
using the standard tools. At this point, the hardware design is
complete and the FPGA logic has been determined. The next
step is to write and compile the software that will be executed
on the soft processor core.

C. High–level Compiler for Processor Core

When the Procesoor Core Configuration Tool generates
the HDL or netlist files, it also creates a number of library
files and their associated C header files that are customized
for the specific processor core generated. A C/C++ compiler
targeted at this processor is also provided. The designer can

then program standalone programs to run on the processor.
Optionally, the designer can compile code for an operating
system targeted for the processor core. Altera sells an add–on
kit that includes a version of � ClinuxTMthat has been ported
to the Nios processor, and several other operating systems are
available from third–party vendors.

D. Initializing Memory

Once a program/data binary file has been generated, it must
be loaded into the processor’s program and/or data memories.
This can be done several ways depending on the memory
configuration of the processor at hand.

a) On–chip Memory: If the application program is small
and can fit into the memory blocks available on the FPGA,
then the program can be initialized in the memory when the
hardware configuration is programmed (see Sect. III-A). This
is done through the standard FPGA tools such as Altera’s
Quartus II software or Xilinx’s ISE software. However, on–
chip memory is typically very limited, and this is not an option.

b) Bootloader: In a prototyping environment, the ap-
plication program will most likely be modified a number of
times before the final program is complete. In this case, one
can load a “bootloader” program into the on–chip memory
that starts running on boot–up. This program is small enough
to fit in most on–chip memories, and its primary function
is to receive a program binary file over the serial port (or
other interface), load it into external memory, and then start
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the new code executing. In this way, a new program can be
stored into external memory (SRAM, SDRAM, Flash, etc.)
by downloading it over the serial port (or other interface)
on the fly without having to reload the FPGA’s hardware
configuration.

Altera includes a bootloader with their Nios processor called
GERMS. GERMS provides a shell interface with limited
debugging capabilities (view memory contents, erase memory
locations, write to memory locations, etc.) in addition to the
basic bootloader functionality. Xilinx provides a debugger
called XMDstub that includes the ability to download a pro-
gram binary over the serial port (or other interface), store it in
memory, and start the code executing. However, depending on
the type of external memory being used, the XMDstub source
code may have to be modified to properly interface to the
memory. In addition, the debugging functionality implemented
in XMDstub can be removed to provide a simple bootloader
that only provides the program download capabilities.

FPGA

Processor
Core

Non−volatile Memory
(for Application

Program Storage)

Volatile Memory
(for Application

Program Execution) On−chip
Memory

(initialized with
bootloader)

via Serial Interface
To PC

Fig. 4. This arrangement of on–chip and external memories provides
flexiblity and performance to an SOPC system. The internal memory stores
a bootloader program that can retrieve an application program from the non-
volatile memory or the PC via the serial interface and store it in volatile
memory for execution. Additionally,the non-volatile memory can be initialized
by the bootloader by storing an application program downloaded from the
PC via the serial interface. Thus, fast execution times can be achieved
by executing the program from high–speed SDRAM (volatile memory);
permanent storage is afforded through the use of Flash (non-volatile memory);
and flexibility in programming is achieved through the bootloader and serial
interface.

c) External Nonvolatile Storage: The application pro-
gram code can be stored on an external EEPROM, Flash, or
other form of non-volatile memory. The application program
can either be pre-programmed in the external memory module
(for a production run) or a bootloader program could be used to
store the application program in nonvolatile storage. For low–
speed applications, the code can be executed directly from
the external memory. However, if high–speed functionality
is required, then a designer could use three memories as
shown in Fig. 4. In this scheme, the on–chip memory is
initialized with a bootloader, which handles the movement
of the application program between the memories. The fast,
volatile memory (i.e., SDRAM) is used to store the application
program during execution. Finally, the slower, non-volatile
memory (i.e., Flash or EEPROM) is used for the permanent
storage of the application program. The bootloader program
can be modified to, on power–up, retreive a program from

non-volatile storage, store it in the faster, volatile memory,
and then start it executing from the faster memory. This
scheme provides the advantages of permanent storage, fast
execution, and the ability to modify the application program
when needed. Of course, it comes at the expense of having
additional memory.

IV. USING SOPC IN THE UNDERGRADUATE CIRRICULUM

For the past four semesters, we have used FPGA–based
SOPC development boards to construct prototype systems
for undergraduate student projects. SOPC boards present an
interesting alternative to the more traditional commercial off-
the-shelf microcontroller or basic FPGA board approach used
to build student projects that require hardware and software,
and their use has lead to a wide variety of successful student
projects.

Based on our experience with the existing SOPC tools,
students need to have taken previous coursework in digital
logic design, computer architecture, and C progrmming [7],
[8], [9]. Some prior experience in VHDL or Verilog and
exposure to FPGAs and their associated CAD tools is also
useful. In most undergraduate curricula, this will limit the
application of SOPC designs to courses in the senior year.

There is still a significant learning curve to overcome, when
using these complex commercial CAD tools. Each new version
of the SOPC CAD tools becomes easier to use, but it is
still more complex than the basic FPGA CAD tools since
more steps are required. Students still need some level of
maturity and patience to make it through the complicated CAD
tool flow for SOPC design. To help resolve this issue, we
now require students to successfully complete a system–level
tutorial and demo using a SOPC reference design during the
first few weeks of any project course. This forces them to start
work earlier and to already be familiar with the SOPC boards
hardware and the complex CAD tool flow before the project
specific work starts.

We have found that it is still necessary to have an experi-
enced user such as a course instructor or teaching assistant to
install and maintain all of the CAD tools and to be available
to help students when they occasionally encounter hardware
and tool–related problems that they cannot resolve.

A. Using SOPC in Senior Design

ECE 4006, Major Design Project, is our undergraduate
team–oriented design experience. It is a required three–hour
semester course for both electrical and computer engineering
students normally taken by seniors. Students work together in
teams of three or four on a semester–long design project. For
computer engineering students, the design project must have
both hardware and software elements and include engineering
trade–offs. A number of the student teams have used the SOPC
approach to construct a prototype of their design. Projects have
included web servers, email servers, vision systems, Internet
appliances, and numerous robots. In all of these projects,
students have used the SOPC development tools to specify
a soft processor core and compile their embedded application
program. They then use the traditional CAD tools to add any
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required custom hardware logic, compile the full system, and
configure the FPGA.

Fig. 5. A student project using a small hobbyist R/C Hummer Vehicle with
the color tracking CMUCAM all controlled by the Altera NIOS SOC board.

Figure 5 shows a student robotics project. An off-the-shelf
hobbyist radio–controlled vehicle was modified so that it is
controlled by the SOPC board. A low–cost CMUCAM color
vision system is used to guide the vehicle down hallways [10].
The path to follow in the hallway of the ECE building was
marked with colored poster board signs. The CMUCAM
camera and processor detects and tracks color blobs. Tracking
data is sent to the FPGA–based processor over a serial port.

A C program running on the processor reads the tracking
data and determines how to control the speed and steer the
vehicle. Like most R/C models, several pulse-width modulated
(PWM) servo signals control the speed and steering.

After examining the hardware/software tradeoffs, students
on this team decided to build PWM controllers in hardware
with additional FPGA logic rather than having several complex
software interrupt driven timer routines running on the proces-
sor to generate the needed PWM signals. The processor simply
writes the pulse width value to an I/O register. VHDL–based
PWM state machine controllers constantly read the I/O register
and generate the appropriate PWM timing signals for each of
the servos. Such hardware/software tradeoffs would have been
more difficult when using a traditional microcontroller–based
approach.

Figure 6 shows another interesting student design based
on a small commercial robot, Amigobot [11]. This remote
controlled robot has been used in the well–known robot soccer
contests. It has eight SONAR sensors, an audio system with
pre-recorded sounds, and two drive motors with positional
feedback. A complex serial communications protocol is used
to send motor commands and transmit sensor information from
a microcontroller inside the robot to a remote PC via a serial
port.

The Amigobot was given autonomy by replacing the PC–
based remote control function with an FPGA–based SOPC
board that was mounted on top of the robot. Additional logic
in the FPGA was used to add a serial port to communicate
with the robot’s microcontroller. A C program on the SOPC

Fig. 6. A student project using the small Amigobot commercial robot
controlled by the Altera Nios SOPC board.

board inputs sensor data, makes high–level decisions, and
sends motor commands using the existing serial link to the
robot’s internal microcontroller.

B. Using SOPC for Special Projects

Fig. 7. A group of students designed an add–on memory board to expand
the memory available to the MicroBlaze soft processor core. In this project,
two memory boards are used in parallel to provide 512 KB of memory via a
32–bit wide data bus.

We have also made the SOPC boards available for students
working in other senior–level project courses. One student
group designed an add–on memory board for the Digilent
Digilab 2E board. The Xilinx Spartan–IIE FPGA on this
board has a very limited amount of on–board memory. Most
projects utilizing the MicroBlaze soft processor core required
the additional memory for instruction and data storage. The
memory add–on boards contain 256 KB of memory with a
16–bit wide output instruction/data bus. As shown in Fig. 7,
the students use two memory boards in parallel to provide
512 KB of memory with a 32–bit wide instruction/data bus to
the MicroBlaze soft processor core.
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V. CONCLUSIONS

Overall, using FPGA–based SOPC boards for student design
projects has been a very positive development for our student
design projects. The complexity of the design projects has
increased since introduction of the boards. Having a general–
purpose SOPC board saves both time and money, because
students don’t have to order and wait on as many parts for
design projects. The amount of additional hardware needed
for construction of the prototype is greatly reduced, and our
boards have been successfully reused for several semesters on
vastly different projects.

Special educational pricing for schools is available through
the major FPGA vendors university programs on the processor
cores, boards, and CAD tools. This helps make SOPC an
extremely attractive alternative for schools. With the educa-
tional discounts, pricing is comparable to an off–the–shelf
microcontroller board.

The additional tools involved in the CAD tool flow for
SOPC designs do present a significant learning curve for the
sutdents to overcome. However, difficulties working with the
development software and SOPC boards can be mitigated
through the use of tutorials, the enforcement of relevant
prequisities (previous experience with VHDL, exposure to FP-
GAs, etc.), and the availability of an experienced professor or
teaching assistant. It has been our experience that the projects
and learning that result from SOPC design experiences are
well worth the time and effort spent overcoming any obstacles.
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