
356 IEEE TRANSACTIONS ON EDUCATION, VOL. 51, NO. 3, AUGUST 2008

Using a Low-Cost SoC Computer and a Commercial
RTOS in an Embedded Systems Design Course

James O. Hamblen, Senior Member, IEEE

Abstract—This paper describes the author’s experiences using a
low-cost system-on-a-chip (SoC) embedded computer system and
a commercial real-time operating system (RTOS) in the laboratory
component of an undergraduate embedded system design class.
The target hardware is a small low-cost X86 SoC computer system
that has a wide range of I/O features. For software development, a
popular commercial hard RTOS is used that has been designed for
use in embedded devices. This course covers both hardware and
software topics in embedded systems, and the course culminates in
a final team-based design project. A full set of course materials in-
cluding a textbook with laboratory tutorials, instructor slides, and
code examples has been developed and is available online in elec-
tronic form.

Index Terms—Computer, embedded devices, embedded sys-
tems, operating systems, real-time operating system (RTOS),
system-on-a-chip (SoC).

I. INTRODUCTION

E MBEDDED systems design courses can be found in
undergraduate degree programs in electrical engineering

[1]–[5], computer engineering, and computer science [6]–[11].
Among these courses, the emphasis and focus may vary some-
what on hardware versus software topics, but overall they share
much in common.

According to a number of recent market surveys, most new
embedded system design work in industry has moved from 8-b
to 32-b processors. The majority of new embedded designs
now utilize an operating system (OS) to support their appli-
cation software which is typically written using the C family
of languages [12]. Many embedded devices provide a rich
GUI-based user experience, use file systems, multiprocessing,
and multithreading, and include networking. An OS can provide
these features to support the rapid development of application
programs. Competitive market forces are constantly reducing
product life cycles. In such cases, using an existing operating
system to develop new products makes economic sense since it
saves substantial development time and costs.

The trends seen in industry suggest that an undergraduate em-
bedded systems design course should use 32-b processors and
include some coverage of embedded OS topics, so that students

Manuscript received June 27, 2007; revised January 7, 2008. Published Au-
gust 6, 2008 (projected). This work was supported by the Georgia Institute of
Technology and the Microsoft Corporation.

The author is with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA 30332-0250 USA (e-mail:
hamblen@ece.gatech.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TE.2008.919662

have a course and laboratory experience that more accurately
reflects current design practices in industry.

To minimize the funds needed to equip laboratories, a sec-
ondary objective in the design of this course was to select a
full-featured 32-b embedded computer, capable of supporting
an embedded OS at a price comparable to that of an academic
textbook. In addition, schools and students should be provided
with the curriculum materials, the OS software, a full set of de-
vice drivers, and all of the required software development tools
at low or no cost.

By adopting the same approach as is being used in industry,
students should become more productive and be able to produce
prototypes of complex embedded devices in less time. Students
have an opportunity to demonstrate such skills in the course’s
final design project.

II. EMBEDDED SYSTEMS DESIGN COURSES

Embedded systems design courses are typically three-to-four
credit hour courses taken at the junior or senior level. Typically,
students have had prior coursework in programming using C,
C++, or Java, and have taken a digital hardware and an introduc-
tory computer architecture class. In many cases, they have also
taken an introductory operating systems class. In the electrical
and computer engineering (ECE) curriculum at the Georgia
Institute of Technology (Georgia Tech), Atlanta, earlier courses
and laboratories include coverage of the technology found in
low-end embedded devices including microcontrollers [13],
and field-programmable gate arrays (FPGAs) with processor
cores [14]. The senior-level embedded systems design course
was therefore designed to focus more on complex embedded
devices that utilize an OS.

In the School of Electrical and Computer Engineering at
Georgia Tech, ECE 4180 Embedded Systems Design is a
four-hour senior-level elective course that includes a final
team-based design project [15]. Typical enrollment is approx-
imately 35 students per semester and the class is taught each
semester. The class also includes required laboratory assign-
ments, two major tests, and spends almost an equal amount
of time on hardware and software design issues in regularly
scheduled class lectures.

Hardware related topics are covered first, and include:
1) introduction to embedded devices and the embedded de-

velopment cycle;
2) processors and memory commonly used in embedded de-

vices;
3) busses, common bus standards, I/O ports, and I/O hardware

design;
4) I/O transfer techniques (polling, interrupts, DMA);

0018-9359/$25.00 © 2008 IEEE

HAMBLEN: USING A LOW-COST SOC COMPUTER 357

5) I/O devices and interface standards widely used in em-
bedded devices [serial, parallel, serial peripheral interface
(SPI), , controller area network (CAN), local intercon-
nect network (LIN), analog-to-digital converters (ADCs),
digital-to-analog converters (DACs), and universal serial
bus (USB)];

6) networking and wireless standards and hardware.
Emphasis is placed on understanding the overall design and

operation of I/O hardware, and the standard I/O interfaces com-
monly found in embedded devices. Compared to previous ver-
sions of this course in the Georgia Tech curriculum, less time
is spent now on lower-level design issues such as assembly lan-
guage, and the detailed gate-level and chip-level hardware de-
sign of an embedded device.

A few lines of assembly language are used to explain the first
low-level bus and I/O port example. All subsequent work is done
in C/C++/C#. Application programs use this I/O hardware in
laboratory projects utilizing C-based OS application program-
ming interface (API) calls. The system-on-a-chip (SoC) target
computer used in the laboratory serves as the case study when-
ever possible.

Software related topics covered in the course include:
1) operating systems available for embedded devices;
2) features and API support provided by an embedded oper-

ating system;
3) application code development in C/C++/C# using OS

APIs;
4) programming I/O devices using OS APIs;
5) the OS configuration and build process;
6) writing an OS device driver;
7) porting the OS to a new target board design.
In such a course, emphasizing the general principles is al-

ways desirable, but for the laboratory component of the course
at some point a specific target computer board and OS must
be selected. One initial choice to consider is to use an open
source OS such as embedded Linux, a commercial distribution
of an open source OS [16], or a commercial real-time oper-
ating system (RTOS) for laboratory projects. Many commercial
embedded devices that use an open source OS still require ad-
ditional software license fees from third parties for enhanced
real-time kernel features and various utilities not included with
the OS [12].

In industry, market surveys show that a plurality of new em-
bedded designs now use a commercial OS [12]. In our ver-
sion of the course, a popular commercial RTOS, Windows Em-
bedded CE 6.0, was selected for laboratory projects. Like an
open source OS, this RTOS is also available at little or no cost
to schools and students, along with the majority of the OS source
code.

Windows Embedded CE is also the core OS technology used
in the popular Windows Mobile SmartPhone, PocketPC devices,
and in Windows Automotive devices. Like most current oper-
ating systems, a processor that supports virtual memory using a
memory management unit (MMU) is required. OS kernel size
ranges from 200 KB to 40 MB depending on the features and
debug options selected in the OS build process. ARM, X86,
MIPS, and SHx family processors are supported by the OS and
the associated software development tools.

Fig. 1. The 4.5 by 4.5 inch fan less low-cost eBox 2300 X86 SoC computer
system has 128 M RAM, 256 M Flash, and all of the I/O features typically found
on a desktop PC. Academic pricing is comparable to that of current textbooks
(http://www.embeddedpc.net/academic).

Target devices used in the laboratory include an ARM em-
ulator, and a low-cost X86 SoC computer, the eBox 2300. For
expansion I/O, both RS232 serial devices and Phidgets are sup-
ported. Phidgets are a family of low-cost USB-based I/O de-
vices and sensor modules that can be used for projects needing
additional I/O such as analog inputs, digital inputs, and digital
outputs [17].

The curriculum materials developed for this course are avail-
able online in electronic form [15], [17]. Several hardcopies of
additional reference textbooks [18], [19] are also available for
use by students in the laboratory. The online help system avail-
able in the software development tools also contains significant
reference materials on many software related items such as OS
API calls and parameters.

III. EMBEDDED DEVICE HARDWARE

As a hardware target platform for laboratory and project
work, a low-cost embedded computer board that could support
an embedded OS along with a wide range of I/O devices
and interfaces was needed. A number of options were evalu-
ated, including boards with X86 or ARM processors. Current
ARM-based embedded computer boards are significantly more
expensive than X86 boards with the same feature set, and only
a select few have the required OS device drivers available at
low or no cost. Only an X86-based board could meet the initial
goal of using a device with a price level close to the cost of an
academic textbook, so that students could have the option of
purchasing their own board.

The small low-cost eBox 2300 MSJK embedded
computer [20] that was selected is seen in Fig. 1, and uses
an X86 SoC processor with 128 M of RAM and 256 M of
Flash. A board view inside the case is seen in Fig. 2. Like
most embedded devices, the board uses Flash memory instead
of a hard disk drive for nonvolatile storage. Since the eBox
hardware is X86-based and PC compatible, the eBox is also
capable of supporting most of the popular embedded operating
systems.

358 IEEE TRANSACTIONS ON EDUCATION, VOL. 51, NO. 3, AUGUST 2008

Fig. 2. View inside the eBox 2300 embedded computer with the top cover/heatsink removed.

The eBox requires a single 5 V supply at 1.5–3A so it can
easily be used in larger battery operated devices. No cooling fan
is required, since the entire case also serves as a heat sink.

The eBox has all of the basic I/O devices typically found on
a desktop PC. The Vortex86 SoC (SiS-55x) [21] contains the
processor and both of the bridge chips typically found on a PC
motherboard [18], and it has a PS/2 keyboard and mouse input,
and a standard video graphics array (VGA) output. Additional
features include an Ethernet network interface, two serial ports,
3 USB 1.1 ports, a CompactFlash card slot, and AC97 audio.
An optional internal mini-PCI 802.11b/g wireless card is also
available along with the required OS driver.

The standard academic hardware configuration developed for
the course, an eBox 2300 MJSK, includes a full set of cables to
connect to the PC development system, a 5-V, 3-A ac power
adapter, and the RTOS preinstalled on an internal Flash drive. A
free OS board support package (BSP) provided with the eBox
includes all of the required OS device drivers [20]. This config-
uration provides students with a quick and easy out-of-the-box
experience.

IV. EMBEDDED DEVICE SOFTWARE

Many of today’s embedded devices are actually hard real-
time systems that must respond to a new input in a bounded
amount of time or the system fails. Such devices require a hard
RTOS. In a hard real-time OS, there is an upper bound on the
worst case interrupt response time. The worst case interrupt
response time of a hard real-time OS is currently around one
or two orders of magnitude faster than a typical desktop oper-
ating system. The open, modular architecture control (OMAC)
user study group concluded that 95% of hard real-time appli-
cations currently require response cycle times in the 0.5–10 ms
range and require less than a 10% variation in the response cycle
time [17].

A typical general purpose or desktop OS can be considered
soft real-time at best. “Soft real-time” means that while the
system typically meets a response time bound, occasionally it
does not. Many basic OS design and implementation issues such
as scheduling, kernel preemption, garbage collection routines,

and virtual memory page swapping to disk have a major impact
on response time. Hard real-time versions of several OS kernels
including Linux have been developed by third parties, but addi-
tional license fees are required.

Windows CE was designed from scratch to be a hard RTOS
for use in embedded devices, and also requires less processor
power and memory than a traditional desktop OS. Windows CE
is not a port of the desktop Windows OS, but the OS API calls
are a small but sufficient subset of the widely-used desktop Win-
dows OS. The standard GUI user interface also has a look and
feel similar to the desktop Windows OS. Any experience stu-
dents might already have from prior coursework or work expe-
rience using Visual Studio development tools for desktop Win-
dows OS application programming is beneficial in CE applica-
tion programming and vice versa [19]. For students, this is one
major advantage of this OS selection. OS and software develop-
ment in Visual Studio is only supported by the newest CE 6.0
release.

As seen in Fig. 3, the development tools include a GUI-based
OS build system, C/C++/C# compilers, download utilities, and
high-level debuggers. A command line build system interface is
also available, but students can initially learn the build process
faster using the GUI-based build system interface.

One of the major tasks in bringing up an OS on a new board
is developing the device drivers and a bootloader. This task is
well beyond the capabilities of most undergraduate students and
exceeds the time available in a single course given the other
topics that must also be covered. A free BSP that contains a
full set of I/O device drivers was developed for the eBox [20].
The BSP feature makes configuring and generating a custom OS
much easier for students since all of the required device drivers
are available in an easy-to-use package.

Sample source code for a simple OS stream interface device
driver for the eBox’s serial port is provided in the instructional
materials to introduce and help illustrate the basic concepts of
I/O device driver development. Source code is also provided for
many of the device drivers that are included with the OS.

Using the tutorials developed in the instructional materials
and the GUI-based tools in Visual Studio, students can select

HAMBLEN: USING A LOW-COST SOC COMPUTER 359

Fig. 3. The OS build system, compiler, download, and debug tools for Windows Embedded CE 6.0 run as an add-on to the familiar Visual Studio 2005 GUI
environment on a desktop PC.

the OS features they need, custom build a new OS, and have
it running a “hello world” application on the eBox in under an
hour [17]. Tools are provided to download and debug the new
OS and code using network, serial, or USB connections. To help
debug headless (i.e., no display) devices, the OS software tools
can also export display information to a PC-based development
system. Windows Embedded CE 6.0 and Visual Studio 2005 are
available to faculty and students under Microsoft’s MSDN Aca-
demic Alliance program and also in a 180-day free trial version
that can be downloaded on the Web [22]–[24].

V. LABORATORY ASSIGNMENTS

Over a two semester period in 2007, a wide variety of lab-
oratory and design projects were developed that used the new
SoC computer hardware and the commercial RTOS software.
The laboratory exercises reinforce the material covered in lec-
tures including computer bus and I/O interface standards, under-
standing and monitoring bus signals, debugging hardware using
logic analyzers and oscilloscopes, designing and implementing
a simple parallel I/O port, a PCI VHDL-based bus timing sim-
ulation of an I/O port, tutorials on the OS build and software
development tools, and C/C++/C# embedded application devel-
opment that requires I/O programming of various peripheral de-
vices using both low-level and high-level OS API calls.

A series of six laboratory tutorials introduces students to the
OS build process, developing C/C++/C# applications for the
target device and using debug tools. Application examples in the
tutorials include file system I/O, in-line assembly language, se-
rial port I/O, threads, synchronization, and USB I/O. C# syntax
is similar to Java and any students who have used Java in prior
coursework can quickly learn C#. In the laboratory tutorials, the

OS and application programs are tested and debugged using the
eBox hardware [17], [20].

For projects needing additional external devices and sensors,
low-cost USB-based Phidgets modules are used [17], [25], [26].
Phidgets support both analog and digital I/O and also provide
a wide array of preassembled sensor modules. The widespread
use of advanced surface mount packaging found in modern ICs
makes it difficult for students to use the traditional tenth inch
laboratory protoboards to build such circuits. Phidgets are ide-
ally suited for these student laboratory projects since any needed
combination of sensors and I/O devices can be quickly setup by
just plugging together the required modules.

After using Phidgets in laboratory experiments, many stu-
dents have also used Phidget LCD displays and sensors in their
final design project. Complete source code for the Phidgets de-
vice drivers is available at no cost and several application exam-
ples are also provided to students.

The Phidgets shown in Fig. 4 were assembled on a plastic
mini-box for use in student laboratory assignments. All of the
Phidget interconnect wires are neatly hidden away inside the
mini box. With this wide range of sensors, different laboratory
projects can be easily developed and new ones assigned each
time the course is taught. Assignments have included a clock/
calendar, a thermostat, a humidistat, and an IR scanner.

Along with Phidgets USB devices, OS device drivers are also
available for several low-cost USB Web cameras [17]. These
drivers enable still and video capture from cameras which
comply with the USB Video Class version 1.1 standard.

Small low-cost Cypress Programmable SoC (PSoC) boards as
seen in Fig. 5 are used to design smart peripherals for the eBox.
The small very low-cost PSoC microcontroller chip contains

360 IEEE TRANSACTIONS ON EDUCATION, VOL. 51, NO. 3, AUGUST 2008

Fig. 4. Several Phidgets mounted on a plastic case for student laboratory
projects. Devices include an LCD, eight LEDs, eight switches, ADC with eight
different analog sensors, and two R/C servos on a pan and tilt camera mount
with an IR distance sensor. Wires are hidden inside the case.

Fig. 5. The low-cost Cypress PSoC CY3210 Evaluation Kit has an LCD, a
serial interface, and a small protoboard area. The prototyping area can be used
to interface analog or digital sensors.

memory, configurable logic blocks, and A/D hardware. With
the PSoC boards and their software development tools (assem-
bler, C compiler, or labview style design tools), it is relatively
easy to implement serial and USB-based I/O devices along with
the custom PSoC device firmware needed. By running custom
firmware, PSoC boards can also provide faster sample rates than
Phidgets when required in a system. The PSoC development
tools are also available free to schools, and academic discounts
are available for development boards [27]. Using PSoC boards
also provides students with experience in designing low-end 8-b
microcontroller-based embedded devices without an OS.

VI. FINAL DESIGN PROJECTS

After completing a series of introductory laboratory assign-
ments and tutorials, students work on a team-based design
project using the eBox and OS during the last five weeks of the
embedded system design course. Design projects have included
robots, a VoIP phone, a flight data recorder using a global posi-
tioning system (GPS) receiver, a remote weather station using
a cell phone modem, and several Internet appliances. Some
projects are headless devices (i.e., no display or keyboard).
Phidgets LCD modules and sensors, Web cameras, and Cypress
PSoC boards are present in many of the student’s final design
projects.

Students are allowed to form their own teams of two to four
students and select a project idea. Several weeks prior to starting
development work, each team is required submit a short project
proposal for instructor approval. This process forces the stu-
dents to start project planning work earlier than they might have
done, and allows potentially problematic issues, such as ob-
taining any special parts needed, to be addressed in time for the
project.

Based on the proposal, the teaching assistant and instructor
make recommendations to the students to adjust their project
complexity to fit the time available and the number of people
involved. Feedback given to students on the project proposals
seems to have roughly an equal number of recommendations to
simplify the project, to keep it as is, or to include more work.

The features and flexibility of the eBox hardware along with
the RTOS makes it an excellent platform for a wide range of stu-
dent design projects. For use in final design projects that have
critical size or power limitations, several other target boards
that support the OS are also available for students including the
small ARM-based Gumstix [28] using the Drumstix [29] com-
munity BSP project OS device drivers and a new lower power
X86 board [30] without floating point hardware.

VII. PEDAGOGICAL RESULTS

To assess the success of the new curriculum and updated
technology for the course several techniques were used. First,
the traditional campus-wide course assessment tool was used
in two sections of the course. In all categories, substantial im-
provements in the Web-based anonymous student survey ratings
were demonstrated when compared to the previous version of
the course taught in prior years. The overall course rating in-
creased from 3.8 to 4.8 and 4.9 out of 5.0. Based on campus
statistics for other comparable elective courses, this rating in-
creased from close to the median to near the 90th percentile.

In addition to the campus-wide assessment tool, another
anonymous student survey was given in class, with detailed
questions tailored to the course materials, tests, laboratory
assignments, design project, and overall approach used in
the course. Of the students, 83% “strongly agreed” that they
would recommend the course to others and the remaining 17%
“agreed” that they would recommend the course to others.
Feedback from this survey indicated that 76% of the students
“agreed” or “strongly agreed” that the five laboratory assign-
ments and four tutorials on tools were worthwhile. A slight
majority of 58% actually wanted the laboratory assignments to
move at a faster pace.

HAMBLEN: USING A LOW-COST SOC COMPUTER 361

Fig. 6. This project displays scrolling RSS Web news feeds on the Phidget LCD
display.

A. Improvement in Final Design Projects

The addition of the OS has allowed students to develop more
complex design projects than were produced in the previous
version of the course. Virtually every student project has in-
cluded several features that would be difficult to develop without
OS support given the short time constraints present in a single
course. Design projects with the RTOS now routinely utilize
file systems, multiple I/O devices, a complex graphical user in-
terface (GUI), multithreading, synchronization, and networking
features. Thus far, every student team has successfully demon-
strated a functional design project at the end of the course.

The design project has proven to be one of the more popular
elements of the course. Of the students, 65% responded that they
wanted more than five weeks of time allocated to the project de-
velopment work, and 59% of the students wanted less emphasis
placed on the two written tests, and more emphasis placed on
the team-based design project.

Some representative student design projects from the course
will now be briefly examined, to illustrate the typical level of
hardware and software complexity present in the projects. Stu-
dent design projects include a Phidget LCD that displays news
from live Internet really simple syndication (RSS) feeds as seen
in Fig. 6. Channels can be selected using a standard TV IR re-
mote. The TV IR remote signal is decoded by a Cypress PSoC
board (on the left side of Fig. 6) that communicates over a serial
port to the eBox (upper right corner of Fig. 6).

Students designed the VoIP phone system using two eBoxes
seen in Fig. 7. The OS includes networking APIs to support
VoIP. A low-cost USB HID numeric keypad is used to dial the
number (IP address). A Phidget LCD module displays the call
status. The PC style AC97 audio interface on the eBox is used
for voice input and output.

Another design project used a Webpage-based interface to a
temperature control system. The project used an eBox with a
Phidget temperature sensor. Digital outputs from the Phidget
board turn on the heater, air conditioning, and fan. The eBox
runs a Web page server to provide remote control (R/C) and
monitoring over the Internet.

Fig. 7. A student VoIP Phone system project using two eBoxes.

Fig. 8. Students used an eBox with the 802.11 wireless option, a low-cost
iRobot Create robot [17], a USB Web camera, a Phidget USB interface module
with a Sonar sensor, and a GPS receiver to create this teleoperated robot design
project. Live video and sensor data is sent back to the operator’s desktop PC.

Several projects have included cell phone technology using a
cell phone modem attached to the eBox. Applications can then
send and respond to short message service text messages, or ini-
tiate voice cell phone calls. An OS device driver is available for
the small Enfora SA-GL global system for mobile communica-
tions/general packet radio service (GSM/GPRS) modem [17].
The Enfora modem uses a subscriber identity module card from
an active cell phone account.

Students built the teleoperated robot design project seen in
Fig. 8. It uses iRobot’s new low-cost Create robot controlled
by an eBox. The eBox runs off of the robot’s internal battery.
Using 802.11 wireless, live video from the Web camera along
with Sonar and GPS data is sent back to a GUI on a desktop PC
which serves as the operator’s console.

Another student project developed a GUI application running
on the eBox that monitors and controls all of analog and digital
I/O devices on a Cypress PSoC board with a USB interface.
Students developed a USB human interface device (HID) device
driver for their new device. Custom firmware on the Cypress

362 IEEE TRANSACTIONS ON EDUCATION, VOL. 51, NO. 3, AUGUST 2008

Fig. 9. Students mounted an eBox on this R/C model plane along with a GPS
receiver and a small battery. They recorded flight data to the flash drive and
displayed the data using Google earth.

PSoC USB board responds to USB commands received from
the eBox. In the GUI window, the Cypress PSoC board’s LEDs
can be turned on and off, button status read, data written to the
LCD display, and analog inputs can be read back on the eBox.

An eBox Phidget IR scanner project [26] uses two Phidgets
controlled R/C servos with a commercial pan and tilt R/C servo
mounting bracket, and an analog IR distance sensor attached to
a Phidget’s interface board. This same pan and tilt servo setup
has been used with a Web camera.

Students built a flight data recorder for the R/C airplane seen
on the left in Fig. 9. The plane has an eBox mounted above the
wing in a small enclosure (near the center of gravity for bal-
ance). A GPS receiver is attached to the serial port on the eBox.
The data recorder is setup to operate as a headless device (i.e.,
no monitor or keyboard) and a Phidget LCD module displays
status info. Data recorded from a flight to the flash drive is re-
formatted. This data was used to generate the flight path image
using Web-based satellite imagery, as seen on the right of Fig. 9.

A small 7.4 V Lithium Polymer battery pack connected to a
5-V, 3-A voltage regulator IC powers the eBox. In this config-
uration, the eBox required only 1.5 A and the battery could run
the eBox for around 40 min.

The eBox and Windows Embedded CE 6.0 was also recently
used in the Imagine Cup Embedded Development Student De-
sign Contest. Project reports for a large number of additional
interesting student projects can be found at the Imagine Cup
website [31] in the Embedded Development section.

B. Other Observations

Around a quarter of the students responded that they used
only the electronic version of the textbook, which they typically
burned onto a CD-ROM or copied to their notebook PC hard
disk, and the remaining students printed out a hard copy of the
textbook [17] or used a low-cost Web-based on-demand pub-
lishing service [32].

Approximately one-quarter of the students purchased their
own eBox for use at home. This option was explained on the
first day of class to allow adequate time for students to order
and receive the eBox for use in laboratory assignments. It was
suggested to students that the money saved on a textbook could
be invested in their own eBox target computer. Each design team
can check out one eBox for the final design project and several
eBoxes are available in the laboratory for the required laboratory
assignments.

Thanks to the eBox’s thick metal case, students have not
destroyed any boards to date. With the bare computer boards
used previously in the laboratory, a significant number of
embedded computer boards were accidentally destroyed each
semester when attaching external devices and probing signals.

Under the academic software agreement for students with Mi-
crosoft [23], or by using the free 180-day demo version [24],
students can download and install the software required on their
own PCs. At Georgia Tech, all undergraduates are required to
purchase their own PCs. About half of the students responded
that they installed all of the software on their home PCs with
the remainder choosing to work only in the class laboratory. A
graduate teaching assistant is available in the laboratory approx-
imately 13 hours per week, and 24/7 student access to the labora-
tory is provided using a door lock with a student ID card reader.
Without round-the-clock student access to the laboratory, more
students would have used their own PCs for development work.
A fair amount of time is also required to install the software ini-
tially, and up to 20G of available disk space is needed to install
all of the software and still leave adequate room for future OS
development work.

VIII. CONCLUSION

Using a commercial RTOS and the low-cost SoC computers
for student laboratory and design projects has been a very pos-
itive development for the Georgia Tech embedded systems de-
sign course. Along with significant improvements in the assess-
ment measures, the complexity of the design projects has in-
creased since introduction of the newer technology. Most stu-
dent design projects now include a GUI-based user interface
with multiple threads, and utilize some aspect of networking
technology. Such projects more closely approximate the level
of embedded design work currently underway in industry.

Using an OS with laboratory tutorial assignments to learn the
tool flow, before starting project work, enables students to ac-
complish more in less time in their team-based design projects.
Additional benefits are now being seen among the first group
of students to complete this class, when they choose to use this
new technology again in their semester-long senior design class
projects.

ACKNOWLEDGMENT

The author would like to thank the contributions of L. Kane,
M. Hall, and S. Loh, Microsoft; S. Phung, ICOP Technology
Corp.; J. Wilson; T. Hall; D. Jones; and the reviewers who have
provided materials, software, hardware, helpful advice, and en-
couragement. W. Tennille, Y. Feng, and all of the students in the
fall 2006 and spring 2007 Embedded Systems Design classes
helped to develop, test, provide feedback, and improve the cur-
riculum materials.

REFERENCES

[1] D. L. Maskell and P. J. Grabau, “A multidisciplinary cooperative
problem-based learning approach to embedded systems design,” IEEE
Trans. Educ., vol. 41, no. 2, pp. 101–103, May 1998.

[2] J. W. Bruce, J. C. Harden, and R. B. Reese, “Cooperative and progres-
sive design experience for embedded systems,” IEEE Trans. Educ., vol.
47, no. 1, pp. 83–92, Feb. 2004.

HAMBLEN: USING A LOW-COST SOC COMPUTER 363

[3] M. Moallem, “A laboratory testbed for embedded computer control,”
IEEE Trans. Educ., vol. 47, no. 3, pp. 340–347, Aug. 2004.

[4] S. Nooshabadi and J. Garside, “Modernization of teaching in em-
bedded systems design-an international collaborative project,” IEEE
Trans. Educ., vol. 49, no. 2, pp. 254–262, May 2006.

[5] S. Hussmann and D. Jensen, “Crazy car race contest: Multicourse de-
sign curricula in embedded system design,” IEEE Trans. Educ., vol. 50,
no. 1, pp. 61–67, Feb. 2007.

[6] M. Grimheden and M. Törngren, “What is embedded systems and how
should it be taught?—Results from a didactic analysis,” ACM Trans.
Embed. Comput. Syst., vol. 4, no. 3, pp. 633–651, Aug. 2005.

[7] K. G. Ricks, D. J. Jackson, and W. A. Stapleton, “Incorporating em-
bedded programming skills into an ECE curriculum,” ACM SIGBED
Rev., vol. 4, pp. 17–26, Jan. 2007.

[8] R. E. Seviora, “A curriculum for embedded system engineering,” ACM
Trans. Embed. Comput. Syst., vol. 4, no. 3, pp. 569–586, Aug. 2005.

[9] J. K. Muppala, “Experience with an embedded systems software
course,” ACM SIGBED Rev., vol. 2, pp. 29–33, Oct. 2005.

[10] P. Koopman, H. Choset, R. Gandhi, B. Krogh, D. Marculescu, P.
Narasimhan, J. Paul, R. Rajkumar, D. Siewiorek, A. Smailagic, P.
Steenkiste, D. Thomas, and C. Wang, “Undergraduate embedded
system education at Carnegie Mellon,” ACM Trans. Embed. Comput.
Syst., vol. 4, no. 3, pp. 500–528, Aug. 2005.

[11] A. Sangiovanni-Vincentelli and A. Pinto, “An overview of embedded
system design education at Berkeley,” ACM Trans. Embed. Comput.
Syst., vol. 4, no. 3, pp. 472–499, Aug. 2005.

[12] R Nass, “Annual study uncovers the embedded market,” Embed. Syst.
Des., vol. 20, no. 9, Sep. 2007 [Online]. Available: http://www.em-
bedded.com/design/opensource/201803499

[13] J. Peatman, Embedded Design with the PIC18F452. Englewood
Cliffs, NJ: Prentice-Hall, 2002.

[14] J. Hamblen, T. Hall, and M. Furman, Rapid Prototyping of Digital Sys-
tems SOPC Edition. New York: Springer, 2007.

[15] ECE 4180 Embedded Systems Design Course [Online]. Available:
http://www.ece.gatech.edu/~hamblen/4180

[16] P. Raghavan, A. Lad, and S. Neelakandan, Embedded Linux System
Design and Development. New York: Auerbach, 2005.

[17] Introduction to Embedded Systems Using Windows Embedded CE 6.0
Microsoft Academic Alliance Curriculum Repository [Online]. Avail-
able: http://www.msdnaacr.net/curriculum

[18] H. Messmer, The Indispensable PC Hardware Book, Fourth
ed. Reading, MA: Addison-Wesley, 2001.

[19] D. Boling, Programming Windows Embedded CE 6.0 Developer Ref-
erence, 4th ed. Seattle, WA: Microsoft Press, 2008.

[20] ICOP Technology, eBox Academic [Online]. Available: http://www.
embeddedpc.net/academic

[21] SiS55x SoC Family Data Sheet, ICOP Technology, eBox Aca-
demic Download Page [Online]. Available: http://www.embed-
dedpc.net/download/Vortex86-(SiS-550)_Data.pdf

[22] Windows Embedded Academic Program [Online]. Available: http://
msdn2.microsoft.com/en-us/embedded/aa731249.aspx

[23] Microsoft MSDN Academic Alliance Program [Online]. Available:
http://msdn2.microsoft.com/en-us/academic/default.aspx

[24] Windows Embedded CE 6.0 Evaluation Edition [Online]. Available:
http://www.microsoft.com/downloads

[25] Phidgets Inc. [Online]. Available: http://www.phidgets.com and http://
www.phidgetsusa.com

[26] J. Wilson, Creating a Windows CE 6.0 OS Design For Development
With Phidgets Devices 2008 [Online]. Available: http://www.academi-
cresourcecenter.net

[27] Cypress University Alliance Program [Online]. Available: http://www.
cypress.com/CUAP

[28] Gumstix Corporate [Online]. Available: http://www.gumstix.com
[29] Drumstix Community BSP Project [Online]. Available: http://www.

codeplex.com/gumstix
[30] ICOP Technology, eBox 2300SX [Online]. Available: http://www.em-

beddedpc.net/ebox2300sx
[31] Imagine Cup [Online]. Available: http://www.imaginecup.com
[32] Lulu Inc. [Online]. Available: http://www.lulu.com

James O. Hamblen (S’73–M’76–SM’89) received the B.S. degree from the
Georgia Institute of Technology (Georgia Tech), Atlanta, the M.S. degree from
Purdue University, West Lafayette, IN, and the Ph.D. degree from Georgia Tech,
in 1974, 1976, and 1984, respectively, all in electrical engineering.

He is currently a Professor in the School of Electrical and Computer Engi-
neering, Georgia Tech. Prior to earning the Ph.D. degree, he worked as a Sys-
tems Analyst at Texas Instruments Incorporated, Austin, and as a Senior Engi-
neer at Martin Marietta, Denver, CO. In 1999, he worked at Intel as a Summer
Visiting Faculty Member in the Embedded Systems Division, Phoenix, AZ.
His current research interests include rapid prototyping, embedded systems,
high–speed parallel and VLSI computer architectures, computer-aided design,
and reconfigurable computing.

Dr. Hamblen received the ECE Outstanding Teacher Award in 2004, the 2006
W. Roane Beard Outstanding Teacher Award at Georgia Tech, and the IEEE
Education Society’s Best Transactions Paper award in 2003.

