
IEEE TRANSACTIONS ON EDUCATION, VOL. 56, NO. 1, FEBRUARY 2013 121

An Embedded Systems Laboratory to Support Rapid
Prototyping of Robotics and the Internet of Things

James O. Hamblen, Senior Member, IEEE, and Gijsbert M. E. van Bekkum, Member, IEEE

Abstract—This paper describes a new approach for a course
and laboratory designed to allow students to develop low-cost
prototypes of robotic and other embedded devices that feature
Internet connectivity, I/O, networking, a real-time operating
system (RTOS), and object-oriented C/C++. The application
programming interface (API) libraries provided permit students
to work at a higher level of abstraction. A low-cost 32-bit SOC
RISC microcontroller module with flash memory, numerous I/O
interfaces, and on-chip networking hardware is used to build
prototypes. A cloud-based C/C++ compiler is used for software
development. All student files are stored on a server, and any Web
browser can be used for software development. Breadboards are
used in laboratory projects to rapidly build prototypes of robots
and embedded devices using the microcontroller, networking, and
other I/O subsystems on small breakout boards. The commercial
breakout boards used provide a large assortment of modern
sensors, drivers, display ICs, and external I/O connectors. Re-
sources provided include eBooks, laboratory assignments, and
extensive Wiki pages with schematics and sample microcontroller
application code for each breakout board.

Index Terms—Design project, embedded systems, mechatronics,
microcontroller, microprocessor, networking, robotics, real-time
operating system (RTOS).

I. INTRODUCTION

F ORECASTERS have predicted that the robotics in-
dustry will undergo exponential growth [1], becoming a

$66 billion industry worldwide by 2025 [2] as a result of the
rapid advances in the enabling technologies, which include
computer hardware, artificial intelligence (AI), vision, energy
storage, actuators, and sensors. For many robotics applica-
tions, networking is now critical. Over half of the new devices
announced at the 2012 Consumer Electronics Show (CES)
featured Internet connectivity. It is estimated that there are
currently 9 billion connected devices, and that there will be
24 billion connected embedded devices by 2020 [3]. Embedded
devices already accounted for over 98% of the world’s proces-
sors in 2003 [4].
A course dedicated to embedded systems design is typically

found at the junior or senior level in Electrical Engineering (EE),

Manuscript received June 18, 2012; revised September 14, 2012; accepted
October 11, 2012. Date of publication December 11, 2012; date of current ver-
sion January 30, 2013.
J. O. Hamblen is with the School of Electrical and Computer Engi-

neering, Georgia Institute of Technology, Atlanta, GA 30332 USA (e-mail:
james.hamblen@ece.gatech.edu).
G. M. E. van Bekkum is with Google, Inc., Mountain View, CA 94043 USA.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TE.2012.2227320

Computer Engineering (CmpE), and even in some systems-ori-
ented Computer Science (CS) degree programs [5]–[11]. Such
a course presents an early opportunity to introduce robotics and
networking to students. A number of related topics are covered
earlier throughout the undergraduate curriculum [12]. Some
schools also utilize small robots in an earlier undergraduate
laboratory course, based on MATLAB or LabVIEW, that also
introduces microprocessors [13], [14]. Typically, programming,
digital logic design and often a computer architecture course
are prerequisites for the more advanced embedded systems or
microprocessor design course that is the focus of this paper. For
software development in the embedded systems industry, the
C/C++ family of languages is still used in the large majority of
new designs, according to annual industry surveys [15]. Many
embedded systems, microcontroller, or microprocessor design
courses started out with low-cost 8-bit processors with limited
capabilities, but most of the development effort in industry has
moved on to modern System on-a-Chip (SOC) 32-bit devices
that contain a reduced instruction set computer (RISC) pro-
cessor with volatile memory, nonvolatile flash memory, and a
wide assortment of standard I/O interfaces, all on a single chip.
According to annual industry surveys of embedded designers,
70% of new designs now utilize an operating system (OS), and
59% include networking [15]. The widespread development of
these new embedded devices with networking has led to the
highly touted concept of the “Internet of Things” [16], [17].
Now that a single-chip microcontroller already contains the

processor, memory, and numerous I/O interfaces with built-in
hardware controllers, it is appropriate to use a higher level of
abstraction in such a course. An increased focus can be placed
on robotics, networking, the use of existing C/C++ applica-
tion programming interface (API) libraries to enhance produc-
tivity, basic operating system concepts, and rapid prototyping
of devices. Less time can be spent on assembly language and
lower-level hardware topics. This paper describes the experi-
ence gained developing a laboratory to support development
of these devices; it will primarily focus on the new technolo-
gies used in the student instructional laboratories during the first
three offerings of the new course.

II. ROBOTICS AND INTERNET OF THINGS LABORATORY

At the Georgia Institute of Technology (Georgia Tech),
Atlanta, ECE 4180 Embedded Systems Design is a senior-level
elective 3-h lecture course with a 1-h laboratory. Students have
previously taken a Digital Logic Design class, Introduction to
Computer Architecture, and C/C++ programming. A labora-
tory-based learning model is ideal for this course, and it is also
an excellent place in the undergraduate curriculum to introduce

0018-9359/$31.00 © 2012 IEEE

122 IEEE TRANSACTIONS ON EDUCATION, VOL. 56, NO. 1, FEBRUARY 2013

robots, networking, sensors, and team-based student design
projects. An electronic textbook and numerous Web-based
resources were developed for the course.
A new low-cost 32-bit microcontroller module with net-

working support is used in the student laboratory assignments
for the first half of the semester. These early laboratory assign-
ments are the focus of this paper. The remaining laboratory
assignments in the course focus on higher-end embedded
devices and are currently based on a low-power Intel Atom
X86-based computer board that is similar to low-end PCs [18].
All materials for the laboratory assignments are provided on
the Web and are updated each semester [19].
Rapid advances in technology force instructors to frequently

update embedded system courses. Selection of the hardware
and software for a student laboratory is always a complex deci-
sion. It also requires significant curriculum development effort
and funding to update the laboratory with new technology. By
adopting the some of the recent approaches being used in in-
dustry, students should be more productive and more rapidly
able to produce prototypes of robots and other complex em-
bedded devices.
PIC and the Atmel AVR used in Arduino boards are pop-

ular in many existing embedded system, microcontroller, or mi-
croprocessor design courses for historical reasons [20], [21],
but 32-bit ARM RISC processors are by far the most widely
used processors in new designs for embedded devices [15]. Em-
bedded designers report that 61% of new designs use 32-bit pro-
cessors for the main processor. It has been estimated that around
80% of the 32-bit processors are ARM-based [15]; they are
found in virtually every cellphone and many other battery-oper-
ated devices. Power consumption has also become a major de-
sign consideration and is one of the main reasons for the wide
adoption of ARM processors.
Numerous options were considered for the laboratory com-

puter boards. The popular 8-bit PIC and Arduino boards have
limited memory, low clock rates, and lack on-chip support
for networking. Newer Arduino shield boards or small system
boards such as the Libelium Waspmote can add selected I/O
features along with wired or wireless networking, but they also
significantly increase cost. Shield-style boards are also a bit
more difficult to use with breadboards when adding custom
hardware for student laboratory projects.
New technology, small, low-cost 32-bit ARM-based boards

are also now available in the same price range; these offer signif-
icantly increased memory, higher clock rates, and performance
along with greatly expanded on-chip I/O hardware features in-
cluding networking. In addition to hardware advantages, several
of these newer boards also provide a complete ISO C/C++ soft-
ware development environment, more comprehensive higher-
level C/C++ I/O APIs, and optional support for a real-time op-
erating system (RTOS).
A number of higher-power and higher-performance boards

with ARM and graphics processors are also available, such as
the Beagle board, Panda board, and the Raspberry Pi. Mini ITX
boards with Intel X86 Atom processors are another option. This
approach is too costly and overpowered for many low-end em-
bedded device product applications that are now appropriate for
new SOC microcontrollers; these boards are also a bit more dif-

ficult for students to use when breadboarding prototypes with
additional custom hardware. They support more demanding em-
bedded applications and would be more appropriate for use in
later courses or laboratory projects that require more memory,
processing power, a graphical user interface, and an operating
system.
The software tools available and the quality of the documen-

tation are often more important than the hardware when se-
lecting a board for use in a student laboratory. After examining
both the hardware and software ecosystems, the ARM-based
mbed module was selected for its C/C++ API support, avail-
able documentation, software tools, low cost, and ease of use
for students building custom prototypes on breadboards. An
internal research project at ARM to make the embedded de-
velopment process easier both in industry and at schools led
to the development of the mbed module [22]–[25]. The small
40-pin mbedmodule contains an NXP LPC1768 SOC processor
that plugs into a standard student solderless breadboard. The
LPC1768 contains a 32-bit 96-MHzARMCortexM3 processor,
64 kB RAM memory, 512 kB Flash memory, and an Ethernet
network controller. Additional on-chip I/O interfaces include a
real-time clock, timers, the universal serial bus (USB), a serial
peripheral interface (SPI), interintegrated circuit communica-
tion (I2C), general purpose I/O (GPIO), analog-to-digital con-
version (ADC), digital-to-analog conversion (DAC), an RS-232
serial interface, a controller area network (CAN), and pulse
width modulation (PWM). A USB cable provides power, or an
external 4.5–9-V battery or dc supply can be used instead. The
USB interface can download code and also function as a virtual
com port allowing mbed C/C++ programs to perform standard
I/O such as “printfs” or “scanfs” using any terminal application
running on the PC. It contains a flash accelerator and code runs
from flash with RAM being used for data. In production quan-
tities, the LPC1768 SOC IC costs around $5. The price of the
assembled mbed module with a USB cable and user account is
about half the cost of most college textbooks.

III. CLOUD-BASED C/C++ SOFTWARE DEVELOPMENT

There are several commercial and open-source options for
ARM C/C++ compilers. The most widely used and supported
software development tool for mbed is the cloud-based C/C++
compiler [24]. It runs on any PC platform with a Web browser
and is extremely easy for students to use.

A. Cloud-Based Compiler

The cloud-based compiler for the mbed module is based on
the commercial Keil Tools C/C++ compiler. After logging onto
an mbed user account, the cloud-based compiler can run in any
Web browser as seen in Fig. 1.
The mbed module attaches just like a 2-MB USB flash drive,

and a simple mouse click can save new executable files to pro-
gram the device. When the reset pushbutton is depressed on the
mbed module, or power is cycled, the bootloader runs the most
recent executable file from flash. The mbed.org server hosts all
student source files and documentation. This means that there
is no software to install or maintain, and development can ef-
fortlessly move between any machines equipped with a Web
browser. Instructors can get free passwords for students to setup

HAMBLEN AND VAN BEKKUM: EMBEDDED SYSTEMS LAB TO SUPPORT RAPID PROTOTYPING OF ROBOTICS AND INTERNET OF THINGS 123

Fig. 1. The C/C++ cloud compiler for mbed runs in any Web browser, so de-
velopment can move between computers at need. It is based on the industry
standard Keil tools compiler.

an account on the cloud compiler with space for file storage
via e-mail [25], so students can easily work on their projects
in the lab, at home, or even any location with WiFi. Most stu-
dents can have a “hello world” application running on mbed in
under 5 min. Other more traditional offline tool chains are also
supported, but they require more initial setup time for students.

B. C/C++ Object-Oriented I/O APIs

The C/C++ object-oriented I/O API support provided for
the mbed module is also innovative. Network drivers, basic
file system drivers, and easy-to-use APIs were developed for
the NXP1768’s on-chip I/O features. These add higher-level
API support for networking, files, PWM, SPI, I2C, Analog I/O,
timers, delays, and RS-232 serial ports using simple easy-to-use
C++ object-oriented library calls.
Predefined C/C++ pin names for the APIs, px, are used to

specify the use of individual I/O pins on the mbed module.
A typical I/O pin has one of four different programmable I/O
functions on the processor. The C++ object-oriented I/O APIs
are able to automatically configure multifunction pins and hard-
ware controllers based solely on the pin names (numbers) and
the APIs used. Students are able to hook up new I/O device
hardware without ever checking the detailed data sheet and user
manuals for the processor or writing directly to bits in I/O con-
trol registers through the use of the object oriented C/C++ I/O
APIs. I/O registers can still be accessed directly using C/C++ or
assembly, if so desired.
ThembedWeb site contains a number of helpful resources for

students in addition to the cloud compiler. Each student account
gets a “notebook” area where they can save documentationWeb
pages about projects. The “handbook” pages contain an online
API reference manual for the mbed I/O and OS functions [26].
An extensive Wiki site called the “cookbook” contains docu-
mentation and code examples provided by users and a forum
where students can post questions [27].

C. TCP/IP Protocol Suite

To support networking and rapid prototyping of the Internet
of Things, a large assortment of network clients and servers are
also available including a TCP/IP stack, HTTP Web servers,
sockets, Web services, and newWebsocket support for HTML5.
Many of these are available as libraries that can be added with
a few mouse clicks to user projects. The module’s 2-MB flash
can be used for file storage, and if necessary, external storage
such as an SD card breakout board or a USB flash drive can be
added. Since data memory is a bit limited, it is also likely that
only one type of network protocol would be supported at a time
on the embedded device, and the number of active connections
is limited (unlike larger systems such as a PC).

D. RTOS Support

The development environment includes a basic RTOS based
on ARM’s new CMSIS 3.0 RTOS and I/O API standard [28].
CMSIS provides a standard interface to numerous other RTOS
venders. The mbed RTOS provided free with the cloud compiler
supports multiple threads with 1-ms time slice priority-based
scheduling, mutexes, semaphores, signals, message queues, and
timers. The term thread is used instead of process since the
microcontroller does not include a memory management unit
(MMU). It is possible to use the basic I/O APIs without calling
or including RTOS functions in the main thread. The RTOS API
interface is less complex and easier for students to understand
than a traditional desktop OS.

IV. RETURN TO BREADBOARDING

For a number of years, many schools moved away from using
solderless breadboards for prototyping, as most new ICs were
available only in small surface-mount packages, rather than
the older 1/10-in DIP-style IC packages that plug directly into
breadboards. Another problematic issue with breadboarding
was that the number of wires and time required increased
rapidly as system complexity grew. There is some educational
value in having students actually build a circuit rather than
always using a large preassembled board. A breadboard also
allows students to easily add their own custom hardware, which
is helpful when changing laboratory experiments and for design
projects.
Recently, two factors have combined to once again make

breadboards an attractive option to consider for use in student
laboratory work. New SOC processors already have sufficient
internal memory and I/O interfaces on-chip for many appli-
cations. Most external I/O subsystems for embedded devices
(i.e., sensors, displays, drivers, and networks) now use one of
the standard serial interfaces (i.e., SPI, I2C, RS-232, USB, or
Ethernet) that require only a few wires for interfacing. The
greatly increased level of hobbyist activity resulting from the
current generation of inexpensive single-chip microcontroller
kits such as Arduino has provided a vast array of low-cost
external I/O sensors and devices preassembled on small printed
circuit boards, called breakout boards, that contain newer
surface-mount ICs. With breakout boards, no surface-mount
soldering is needed, as they have header pins that will plug
directly into a standard student breadboard.

124 IEEE TRANSACTIONS ON EDUCATION, VOL. 56, NO. 1, FEBRUARY 2013

TABLE I
POPULAR BREAKOUT BOARDS FOR USE IN STUDENT PROJECTS

To support student design projects, an extensive list of over
100 commercial breakout boards with sensors, displays, drivers,
and I/O connectors was developed at Georgia Tech and posted
on thembedWiki site. Table I lists examples of some of themost
popular breakout boards with Wiki C/C++ code that have been
used by students in design projects. All have interface wiring
details and driver and code examples posted on the mbed cook-
book Wiki [27], [29].

A. Breadboarding Using Breakout Boards

A sample student breadboard-based Internet clock project
built with breakout boards is seen in Fig. 2. The network cable
on the right connects to the Internet, and the USB download
and power cable is on the left. Four jumper wires were used
to add an Ethernet jack breakout board, and eight for the LCD
text display. The program uses the network connection to au-
tomatically set the clock using a network time protocol (NTP)
server. For wireless networking, a small WiFi breakout board
can be used.

B. Breadboarding Low-Cost Robotics Platforms

The small size, power requirements, I/O features and APIs,
and ease of use of the mbed module make it ideal for mecha-
tronics and robotics applications. Wiki code examples include
motor speed control using H-bridge drivers with PWM, adding
PID feedback control using encoders, and numerous sensors
that are used in most robotics applications [27]. WiFi network
communication links are often used in mobile robots. The ma-
jority of the student robotics projects have included wireless
networking breakout boards, and many have been controlled or
have transferred data using the Internet.

Fig. 2. Internet clock student project built using the mbed 40-pin DIP module
(center left) with a text LCD (bottom) and an Ethernet connector breakout board
(center right) on a breadboard. The time on the LCD is automatically synchro-
nized using a NTP time server via the Internet [27].

A number of low-cost robotics platforms are available in
the laboratory for use in final design projects. Several student
robotics projects from the course are seen in Fig. 3. Documen-
tation, YouTube videos, and code examples for each of these
robotics projects are posted in the Wiki [27].

V. WIKI-BASED LABORATORY ASSIGNMENTS AND
DESIGN PROJECTS

At Georgia Tech, this senior-level class contained a mixture
of EE and CmpE undergraduates alongwith several CS graduate

HAMBLEN AND VAN BEKKUM: EMBEDDED SYSTEMS LAB TO SUPPORT RAPID PROTOTYPING OF ROBOTICS AND INTERNET OF THINGS 125

Fig. 3. Robot prototypes built by students using the mbed module. (Clock-
wise from upper left) Small robot built using a low-cost Sparkfun Magician
robot base kit with a breadboard with breakout boards for a dual H-bridge motor
driver, IR encoders, Sonar, and wireless networking; a Lynxmotion robot arm kit
using five low-cost R/C servos controlled by mbed’s PWM outputs that picks
up colored blocks using USB end effector position commands sent by a PC;
an iRobot Create robot interfaced to the mbed module using a small bread-
board; and Pololu’s small m3pi robot base with a top level mbed and protoboard
area [27].

students. It is a 3-h lecture course with a 1-h lab credit. Enroll-
ment is typically around 50 students, and the course has now
been taught for three semesters While students have had pre-
vious experience in C/C++ programming and digital hardware,
they have had minimal experience from prior coursework in
robotics, hardware interfacing, I/O programming, networking,
and operating systems. Students work in teams of two on normal
laboratory assignments, and design project teams range from
two to four.

A. Development of Laboratory Assignments Using the Wiki

The mbed online handbook API reference and cookbook wiki
are valuable resources for course instructors developing new
laboratory assignments. Hyperlinks to I/OAPIs in the handbook
and I/O device examples from the cookbook can be added to
student assignments [26]. When sensors or I/O devices are se-
lected from the cookbook area, theWiki page typically provides
hardware interface and wiring details, photographs, YouTube
videos, links to datasheets, working C/C++ code examples, and
commercial sources for the device and breakout boards [27].
These can be used by instructors as source materials to develop
laboratory assignments or provided as hyperlinks in short online
student laboratory assignments. The Wiki page typically pro-
vides students with enough information to incorporate the I/O
device in more complex projects containing a mixture of dif-
ferent devices. Coverage of sensors and devices has greatly ex-
panded since 2011, as users from industry and academia world-
wide have contributed to the Wiki. Students using new devices
are encouraged to post Wiki pages. Wiki code examples are set
up using the MIT permissive use license.

B. Course Laboratory Assignments

The mbed module is used for the first two laboratory assign-
ments in the course and is followed by a three-week design
project. The course starts out with a basic introductory lab
where students use mbed for digital I/O with pushbuttons, use
hardware PWM to dim an LED, add an I/O port expander, and
use power management to reduce power levels by adapting
the C/C++ examples from the mbed Wiki pages. For extra
credit, they can add a watchdog timer, or go back and use
ARM assembly language instead of C/C++ for the basic digital
I/O LED blink demo. Assembly language development is
supported using standard files in the cloud compiler [27]. In
the second laboratory experiment, students built prototypes on
a breadboard using the breakout boards available in the labo-
ratory with a number of different interfaces for robotic sensors
and devices by adapting several of the C/C++ cookbook Wiki
code examples including RS-232, I2C, SPI, Analog input and
output, USB, Ethernet, LCDs, dc motors with H-bridge drivers
and servo control using PWM, and an HTTP Web page server.
Each group then demonstrated to the teaching assistant (TA)

that each different item was operating correctly on their
breadboarded prototype. The mbed’s higher-level C/C++ I/O
APIs and the Wiki code examples greatly increased student
productivity. During this period, the in-class lectures were
covering different I/O interface standards, sensors, and drivers.
The laboratory assignments reinforced, and expanded on,
information presented in the lectures. Several short hardware
tutorials and YouTube videos were developed at Georgia Tech
to support these laboratory assignments and added to the mbed
Wiki pages [27]. With all reference materials being Web-based,
hardcopy is rarely used.

C. Student Design Projects

The two introductory labs using mbed were followed by a
team-based design project that gave students the freedom to
pick the project idea, subject to instructor and TA approval and
guidance. Students posted their project documentation using the
mbed Web site’s notebook feature and were encouraged to in-
clude photographs and project demo video clips on YouTube in
addition to oral presentations. Several examples of these stu-
dent design projects built using only commercially available
breakout boards and jumper wires are seen in Fig. 4. Additional
design projects from the course are documented on the mbed
site’s student project Wiki pages [27].

VI. PEDAGOGICAL RESULTS

To assess the success of the new curriculum and the updated
technology for the course, several techniques were used. To
date, approximately 150 students have completed the updated
course and laboratory during three successive semesters. First,
the traditional campus-wide course assessment tool was used in
three sections of the course. In all categories, improvements in
the Web-based anonymous student survey ratings were demon-
strated when compared to the previous version of the course
taught in prior years. The previous version of the course had

126 IEEE TRANSACTIONS ON EDUCATION, VOL. 56, NO. 1, FEBRUARY 2013

Fig. 4. Student design projects built on breadboards. (Top row, left to right) Environmental sensor readings provided by Web page server; self-balancing two-
wheeled robot using MEMS accelerometers and gyros; an Internet radio. (Middle row, left to right) SMS text messages reporting GPS location coordinates using
a cell phone modem; a digital photo frame with touch control; universal speech translation using Google’s Internet Speech APIs. (Bottom row, left to right) Live
camera images from the Web page server; sonar images of nearby objects on an LCD; wireless-controlled treaded robot [27].

TABLE II
AVERAGE STUDENT RESPONSES TO COURSE SPECIFIC SURVEY STATEMENTS

overall course ratings ranging from 3.9 to 4.1 out of 5.0. After
updating the laboratory portion of the course, the overall course
ratings increased to 4.2, 4.3, and 4.44 over the first three terms.
In addition to the traditional campus-wide assessment tool,

another anonymous student survey was given with detailed
statements tailored to the course materials, laboratory assign-
ments, design project, and the new technologies used in the
course. The results are summarized in Table II. Perhaps the
most interesting feedback from the course-specific survey
questions in Table II was that an overwhelming majority of

students prefer using the breadboard approach to hookup de-
vices, even though it requires a bit more time and effort than a
preassembled board. A small majority preferred the cloud com-
piler approach to that of using locally installed software tools.
A slightly larger majority preferred textbooks and other course
materials to be distributed in an electronic format rather than as
hardcopy. An overwhelming number of students were in favor
of a team-based design project with oral presentations during
the final exam period as opposed to a more traditional written
final exam. Finally, average responses from students indicated

HAMBLEN AND VAN BEKKUM: EMBEDDED SYSTEMS LAB TO SUPPORT RAPID PROTOTYPING OF ROBOTICS AND INTERNET OF THINGS 127

that the amount of time spent on laboratory assignments and
the design project was appropriate.
In addition to the student-based assessment tools, the course’s

instructors noted other improvements. The ease of use of the
software tools and breadboards enabled inclusion of a greatly
expanded number of I/O interface standards, devices, and
sensors in the assigned laboratory experiments. This increased
student interest in the laboratory projects, increased course
enrollments, and enabled the course’s lectures and two written
tests to cover a wider range of topics and more current design
issues. Over 95% of the students were able to complete the
breadboard laboratory assignments and build a functional
design project in each of the first three offerings of the course.
After hands-on experience with a wide range of I/O standards
and devices, students typically selected new sensors or devices
for use in projects that were not previously used in the assigned
laboratory experiments and were able to successfully incor-
porate them in their design project. Virtually every student
project has included several features that would be difficult
to develop without the networking and API support provided,
given the time constraints of doing this within a single course.
Design projects now routinely utilize robotics, the Internet,
and custom I/O devices with a variety of sensors. Using the
RTOS, multithreading and synchronization can also be used
when appropriate. The new technology with breadboarding, I/O
breakout boards, and the C/C++ object-oriented I/O APIs, along
with Wiki-based documentation and code examples, allowed
students to develop significantly more complex laboratory and
design projects than were produced in the previous version of
the course. After taking the course, a number of students went
on to use the robots, I/O sensors, and the mbed module again in
their team-based semester-long senior design projects.

VII. CONCLUSION

The Wiki proved to be extremely useful in providing docu-
mentation and code examples for laboratory experiments. Stu-
dents felt comfortable with this approach, and it worked well to
disseminate the information needed for both traditional labora-
tory experiments and student design projects.
Using the cloud compiler for software development was

easier for students and required less support effort than the tra-
ditional approach of using tools that run locally. No computer
support was required other than initially handing out student
passwords, enabling network access for the mbed modules,
and installing the virtual com port driver. Availability of the
cloud-based compiler and server has been excellent, but schools
with extremely slow and unreliable Internet connections would
probably want to use one of the offline compilation options.
Initially, the virtual com port driver used for serial communi-

cation from mbed to the PC with C/C++ stdio functions such as
printf(), locked to each individual device’s serial number. When
students moved the module to a different computer, the driver
had to be reinstalled. A recent registry change can now fix this
problem.
Breakpoints are not currently supported for debugging in the

cloud compiler; this triggered some initial concerns. The ma-
jority of student problems were actually a result of errors in
wiring up breadboards rather than coding errors. It is also now

possible to compile, set breakpoints, and debug code via the
USB cable using ARM’s Keil Tools traditional offline compiler
or by using software emulation.
Using breadboarding, a wide range of interesting robots and

embedded devices were successfully prototyped for the design
projects. The low-cost robot kits were popular with students,
and a large majority of the projects used the Internet or wire-
less networking. Students need to select a design project idea
early in the term to allow ample time for any custom parts to
arrive. Supporting diverse design projects also requires a larger
assortment of robots and breakout boards. Fortunately, all of the
robots and breakout boards can be reused.
Coverage of RTOS topics and the new debugging tools is

being expanded this term. Currently, the mbed module is being
incorporated earlier in the ECE curriculum for several in-class
active learning demonstrations [10], [30] in the C/C++ Pro-
gramming and Introductory Computer Architecture classes.

REFERENCES
[1] Next Big Future, San Francisco, CA, “The robotics industry is

now on an exponential growth path,” Oct. 2011 [Online]. Avail-
able: http://nextbigfuture.com/2011/10/robotics-industry-is-now-
on-exponential.html

[2] Japan Robotics Association, Tokyo, Japan, “The state of the industry-
worldwide robotics market growth,” Jun. 2011.

[3] GSMA, London, U.K., “The connected life,” Feb. 2012 [Online].
Available: http://connectedlife.gsma.com/wp-content/uploads/2012/
02/conn_lif_pospaper_web_01_11-13.pdf

[4] J. Turley, “The two percent solution,” Embed. Syst. Program., vol. 16,
no. 1, p. 29, Jan. 2003.

[5] J. W. Bruce, J. C. Harden, and R. B. Reese, “Cooperative and progres-
sive design experience for embedded systems,” IEEE Trans. Educ., vol.
47, no. 1, pp. 83–91, Feb. 2004.

[6] D. T. Rover, R. A. Mercado, Z. Zhang, M. C. Shelley, and D. S.
Helvick, “Reflections on teaching and learning in an advanced under-
graduate course in embedded systems,” IEEE Trans. Educ., vol. 51,
no. 3, pp. 400–412, Aug. 2008.

[7] C. Lee, J. Su, K. Lin, J. Chang, and G. Lin, “A project-based labora-
tory for learning embedded system design with industry support,” IEEE
Trans. Educ., vol. 53, no. 2, pp. 173–181, May 2010.

[8] Z. Ye and C. Hua, “An innovative method of teaching electronic system
design with PSoC,” IEEE Trans. Educ., vol. 55, no. 3, pp. 418–424,
Aug. 2012.

[9] K. Hwang, W. Hsiao, G. Shing, and K. Chen, “Rapid prototyping plat-
form for robotics applications,” IEEE Trans. Educ., vol. 54, no. 2, pp.
236–246, May 2011.

[10] A. Carpeno, J. Arriaga, J. Corredor, and J. Hernandez, “The key factors
of an active learningmethod in a microprocessors course,” IEEE Trans.
Educ., vol. 54, no. 2, pp. 229–235, May 2011.

[11] J. Kim, “An ill-structured PBL-based microprocessor course without
formal laboratory,” IEEE Trans. Educ., vol. 55, no. 1, pp. 145–153,
Feb. 2012.

[12] K. Ricks, D. Jackson, and W. Stapleton, “An embedded systems
curriculum based on the IEEE/ACM model curriculum,” IEEE Trans
Educ., vol. 51, no. 2, pp. 262–270, May 2008.

[13] A. Behrens, L. Atorf, R. Schwann, B. Neumann, R. Schnitzler, J. Balle,
T. Herold, A. Telle, T. Noll, K. Hameyer, and T. Aach, “MATLAB
meets LEGO Mindstorms—A freshman introduction course into prac-
tical engineering,” IEEE Trans Educ., vol. 53, no. 2, pp. 306–317, May
2010.

[14] J. Gómez-de-Gabriel, A. Mandow, J. Fernández-Lozano, and A.
García-Cerezo, “Using LEGO NXT mobile robots with LabVIEW for
undergraduate courses on mechatronics,” IEEE Trans Educ., vol. 54,
no. 1, pp. 41–47, Feb. 2011.

[15] EE Times Group, New York, NY, “2010 embedded market
study,” Apr. 19, 2010 [Online]. Available: http://www.eetimes.
com/electrical-engineers/education-training/webinars/4006580/
2010-Embedded-Market-Study

[16] N. Gershenfeld, R. Kirikorian, and D. Cohen, “The Internet
of Things,” Sci. Amer. Oct. 2004 [Online]. Available: http://
www.scientificamerican.com/article.cfm?id=the-internet-of-things

128 IEEE TRANSACTIONS ON EDUCATION, VOL. 56, NO. 1, FEBRUARY 2013

[17] A. Vance, “You too can join the Internet of Things,” New York Times
Sep. 20, 2010 [Online]. Available: http://bits.blogs.nytimes.com/
2010/09/20/you-too-can-join-the-internet-of-things/

[18] J. O. Hamblen, “Using a low-cost SoC computer and a commercial
RTOS in an embedded systems design course,” IEEE Trans Educ., vol.
51, no. 3, pp. 356–363, Aug. 2008.

[19] J. O. Hamblen and G. M. E. Van Bekkum, “Using a Web 2.0 approach
for embedded microcontroller systems,” in Proc. FECS, Las Vegas,
NV., Jul. 2011, pp. 277–281.

[20] R. Reese and B. Jones, “Improving the effectiveness of microcontroller
education,” in Proc. IEEE SoutheastCon, Mar. 2010, pp. 172–175.

[21] P. Jamieson, “Arduino for teaching embedded systems. are computer
scientists and engineering educators missing the boat?,” inProc. FECS,
Las Vegas, NV., Jul. 2011, pp. 289–294.

[22] S. Ford, “Rapid prototyping for microcontrollers,” Arm Hold-
ings, Cambridge, U.K., Mar. 2012 [Online]. Available: http://
www.embeddeddeveloper.com/corp/flex/mbed-IQ28.pdf

[23] Arm Holdings, Cambridge, U.K., “ARM university program,” Mar.
2012 [Online]. Available: http://www.arm.com/support/university/

[24] J. Bungo, “Embedded systems programming in the cloud: A novel
approach for academia,” IEEE Potentials, vol. 30, no. 1, pp. 17–23,
Jan.–Feb. 2011.

[25] C. Styles, “mbed educational program,” Arm Holdings, Cambridge,
U.K., Mar. 2012 [Online]. Available: http://mbed.org/handbook/
Education

[26] Arm Holdings, Cambridge, U.K., “mbed API handbook,” Mar. 2012
[Online]. Available: http://mbed.org/handbook/Homepage

[27] Arm Holdings, Cambridge, U.K., “mbed cookbook wiki,” Mar. 2012
[Online]. Available: http://mbed.org/cookbook/Homepage

[28] Arm Holdings, Cambridge, U.K., “Cortex microcontroller software
interface standard version 3.0, February 2012,” Mar. 2012 [Online].
Available: http://www.arm.com/products/processors/cortex-m/cortex-
microcontroller-software-interface-standard.php

[29] Arm Holdings, Cambridge, U.K., “IC sensor and driver breakout
boards,” Mar. 2012 [Online]. Available: http://mbed.org/cookbook/IC-
Sensor-and-Driver-Breakout-Boards

[30] K. E. Holbert and G. G. Karady, “Strategies, challenges and prospects
for active learning in the computer-based classroom,” IEEE Trans.
Educ., vol. 52, no. 3, pp. 356–363, Aug. 2009.

James O. Hamblen (S’73–M’76–SM’89) received the B. S. degree from the
Georgia Institute of Technology (Georgia Tech), Atlanta, in 1974, the M. S. de-
gree from Purdue University, West Lafayette, IN, in 1976, and the Ph.D. degree
from Georgia Tech in 1984, all in electrical engineering.
He is currently a Professor in electrical and computer engineering with

Georgia Tech. Prior to earning the Ph.D. degree, he worked as a Systems
Analyst with Texas Instruments, Austin, TX, and as a Senior Engineer with
Martin Marietta, Denver, CO.
Prof. Hamblen received the ECE Outstanding Teacher Award in 2004 and the

2006 W. Roane Beard Outstanding Teacher Award at Georgia Tech.

Gijsbert M. E. van Bekkum (S’09–M’12) received the B.S. and M.S. degrees
in electrical engineering from the Georgia Institute of Technology (Georgia
Tech), Atlanta, in 2009 and 2011, respectively.
In 2010 and Fall 2011, he worked as a Graduate Teaching Assistant with

Georgia Tech. He currently works as a Software Engineer for Google, Mountain
View, CA.

