
IJCA, Vol. 13, No. 3, Sept. 2006

ISCA Copyright© 2006

1

Using System-on-a-Programmable-Chip Technology to Design Embedded Systems

J. O. Hamblen*
Georgia Institute of Technology, Atlanta, GA 30332, USA

T. S. Hall†

Southern Adventist University, Collegedale, TN 37315, USA

Abstract

 This paper describes the tools, techniques, and devices used
to design embedded products with system–on-a-chip (SoC)
type solutions using a large Field Programmable Gate Array
(FPGA) with an internal processor core. This new FPGA-
based approach is called system-on-a-programmable-chip
(SoPC). The performance tradeoffs present in SoPC
systems is compared to more traditional design approaches.
Commercial devices, processor cores, and CAD tool flows are
described.
 The issues in SoPC hardware/software design tradeoffs are
examined and three example SoPC designs are presented as
case studies.
 Key Words: SoC, SoPC, FPGA, VHDL, verilog, IP core,
ASIC, embedded systems

1 Introduction

 Traditional system-on-a-chip (SoC) designs require the
development of a custom IC or Application Specific Integrated
Circuit (ASIC) [2]. Unfortunately, ASIC costs have risen
dramatically in recent years along with the vast improvements
in VLSI technology feature size and transistor counts. Current
ASIC commercial development costs run several million
dollars per device. Only a few high volume embedded
products can support long ASIC development times and high
costs. As a consequence, the number of new traditional ASIC
designs has fallen dramatically in recent years.
 A promising new alternative technology has emerged that
enables designers to utilize a large FPGA that contains both
memory and logic elements along with an intellectual property
(IP) processor core to rapidly implement a computer and
custom hardware for SoC embedded systems [17]. This new
FPGA-based methodology is called system-on-a-
programmable-chip (SoPC).
 The traditional design modalities are ASIC and fixed-
processor design. In a fixed-processor design, a commercial
microprocessor chip is used along with several selected
support chips on a printed circuit board. In an ASIC design,

* Dept. of Electrical and Computer Engineering.
† School of Computing.

the end user combines user designed logic and other elements
from the vendor’s IP core library functions. ASICs then
require final expensive custom manufacturing steps to
fabricate and test the device.
 SoPC design has advantages and disadvantages to both of
these alternatives as highlighted in Table 1. The strengths of
SoPC design are a reconfigurable, flexible nature, and the short
development cycle. However, the trade-offs include lower
maximum processor performance, higher unit costs in
production, and relatively high power consumption.

Table 1: Comparing SoPC, ASIC, and fixed-processor design

modalities [10]

Feature SoPC ASIC Fixed-
processor

S/W flexibility

H/W flexibility

Reconfigurability

Development
time/cost

Peripheral equipment
costs

Performance

Production cost

Power efficiency

Legend: – Good; – Moderate; – Poor

 The benefit of having a flexible hardware infrastructure can
not be overestimated. In many new designs, features and
specifications are modified throughout the design cycle. For
example, marketing may detect a shift in demand requiring
additional features (e.g., demand drops for cell phones without
cameras), a protocol or specification is updated (e.g., USB 2.0
is introduced), or the customer requests an additional feature.
In traditional design modalities (including ASIC and fixed-
processor designs), these changes can dramatically affect the
ASIC design, processor selection, and/or printed circuit board

 IJCA, Vol. 13, No. 3, Sept. 2006 2

design. Since the hardware architecture is often settled upon
early in the design cycle, making changes to the hardware
design later in the cycle will typically result in delaying a
product’s release and increasing its cost.
 Flexible infrastructure can also be beneficial in extending
the life (and thus reducing the cost) of a product’s hardware.
A fixed-processor option will often require additional
hardware and perhaps even a new printed circuit board (PCB)
design for each product variation. With the flexible,
reconfigurable logic present in an SoPC device a single printed
circuit board can be designed for use in multiple product lines
and in multiple generations/versions of a single product.
Using reconfigurable logic as the heart of a design allows it to
be reprogrammed to implement a wide range of systems and
designs. Extending the life of a board design even one
generation can result in significant savings and can largely
offset the increased per-unit expense of reconfigurable devices.
 The SoPC approach can offer advantages for many
embedded systems. ASIC development times are too long and
mask setup fees are too high to be considered for most
products. However, ASICs can still offer the lowest per unit
production cost when quantities are large enough to recoup the
very high mask setup and development costs. ASICs may still
be required for very low power applications that need long run
times using small capacity batteries. Traditional processor and
ASIC vendors have also seen the advantage of the SoPC
approach. For their next generation of larger ICs, several
ASIC and processor vendors are developing embedded FPGA
cores to add to their devices to make them more flexible for a
wider range of designs.

2 Hardware/Software Design Alternatives

 The SoPC-based approach offers new design space
alternatives to explore. It is possible to consider design
options that use software, dedicated custom hardware, or a
mixture of both. Software implementations require less
development time, but in many cases, a general-purpose
processor will be too slow to perform all of the calculations
using only software. To speedup the system, some frequently
executed functions can be implemented in hardware in an
SoPC design using the FPGA’s logic.
 SoPC hardware/software design space tradeoffs are shown in
Figure 1 with the Y axis indicating increasingly complex
algorithms or programs, and the X axis being the computation
or program execution time required. As seen in Figure 1, for
simple algorithms a hardware solution offers faster
computation times, but it offers less flexibility since the
hardware remains dedicated for that calculation and it may
require a larger FPGA that consumes more power and
increases system cost. Potential SoPC applications to
implement in hardware in this region include pre-processing of
real-time data with high sample rates, multimedia encoding
and decoding, low-level communication protocols, and digital
signal processing algorithms such as filters and FFTs.
Hardware IP cores designed for FPGAs are available for many
of these more common functions such as encoders/decoders,
communication protocols, filters, and FFTs. The new

hardware can also be designed using the traditional VHDL or
Verilog FPGA synthesis tools.

Figure 1: SoPC hardware & software design space tradeoffs

 As the size of the hardware needed for implementation of
more complex algorithms increases, the hardware starts to
slow down, achieves diminishing performance levels, and
becomes increasingly more difficult for designers to
implement. This occurs due to increasing numbers of gate
delays in logic circuits and increases in the distance and
communication time needed to transfer data values between
hardware units. Pipelining and parallel processing techniques
can be used to extend the useable range of hardware solutions,
especially for non-recursive algorithms with a high degree of
parallelism. (Typically, hardware pipelining works well in
FPGAs since they have a register-rich architecture.)
 Moving to the upper right in Figure 1, as the algorithm
complexity increases, implementation of algorithms using
software becomes much easier to design and implement
(assuming that the increased computation time still meets
system design goals). As seen in the upper left of Figure 1,
there can still be some applications that require complex
algorithms that are beyond the real-time performance range of
a single current generation FPGA’s hardware and software.
 It is also possible to consider a combination of both
hardware and software approaches. Some processor cores
allow the designer to add custom instructions. If an
application program requires the same calculation repeatedly
in loops, adding a custom instruction using extra hardware to
accelerate the inner loop code can greatly speed up the
application. A similar technique was initially developed in
automatic compilers for microprogrammed processors with
writeable control store in the 1970s. In an SoPC system, it is
possible to add extra hardware to the processor including

IJCA, Vol. 13, No. 3, Sept. 2006

3

ALUs and memory to provide additional speedup for a new
instruction. One SoPC processor core from Stretch
Incorporated now features a C compiler that automatically
attempts to implement inner loop code or simple C functions in
FPGA hardware [18]. In suitable application programs,
speedups of one to two orders of magnitude are possible with
this approach. For cores that do not allow new instructions to
be added, it is also possible to use FPGA logic to build a co-
processor for the main processor. The larger FPGAs contain
sufficient logic so that several processors working in parallel
can be placed in a single FPGA. Current tools provide only
limited support for multiple processor cores [7]. Automatic
hardware and software partitioning of SoPC systems and
partitioning of SoPC systems with multiple processor cores
working in parallel is still an active area of research and
development.

3 SoPC Processor Cores

 SoPC systems require an FPGA with a processor core.
Processor cores are classified as either “hard” or “soft.” This
designation refers to the flexibility/configurability of the core.
Hard cores have a custom VLSI layout that is added to the
FPGA and they are less configurable; however, they tend to
have higher performance characteristics than soft cores [17] .
 Hard processor cores use an embedded processor core (in
dedicated silicon) in addition to the FPGA’s normal
programmable logic elements. Hard processor cores added to
an FPGA are a hybrid approach, offering performance
tradeoffs that fall somewhere between a traditional ASIC and
an FPGA; they are available from several manufacturers with a
number of different processor flavors [1, 6, 11-12, 16, 18-19].
For example, Altera offers an ARM processor core embedded
in its APEX 20KE family of FPGAs that is marketed as an
Excalibur™ device. Xilinx’s Virtex-II Pro family of FPGAs
include up to four PowerPC processor cores on-chip. Stretch
Inc. offers SoPC devices with a Tensilica Xtensa RISC
configurable processor core. Cypress Semiconductor also
offers a variation of the SoPC system. Cypress’s
Programmable-System-on-a-Chip (PSoC™) is formed on an
M8C processor core with configurable logic blocks designed
to implement the peripheral interfaces, which include analog-
to-digital converters, digital-to-analog converters, timers,
counters, and UARTs. Clock rates on commercial hard
processor cores are currently in the 300-500 MHz range.
 Soft cores, such as Altera’s Nios II and Xilinx’s MicroBlaze
and PicoBlaze processors, use existing programmable logic
elements from the FPGA to implement the processor logic. As
seen in Table 2, soft-core processors can be very feature-rich
and flexible, often allowing the designer to specify the
memory width, ALU functionality, number and types of
peripherals, and memory address space parameters at compile
time. However, such flexibility comes at a cost. Soft cores
have slower clock rates and use more power than an equivalent
hard processor core.
 FPGAs that include hard processor cores require long
development times and costs similar to ASICs for the FPGA
vendor. By the time a hard processor core is developed, it may

compete with a soft core that can run on a newer generation
FPGA. With current pricing on large FPGAs, the addition of a
soft processor core costs as little as thirty-five cents based on
the logic elements it requires. The remainder of the FPGA’s
logic elements can be used to build application-specific system
hardware.

Table 2: Features of commercial soft processor cores for

FPGAs [3]
Feature Nios II 5.0 MicroBlaze 4.0

Gate Count 26,000 – 72,000 30,000 – 60,000

Frequency 50-200 MHz 50-200 MHz

Datapath Width 32 bits 32 bits

Pipeline Stages 1-6 3

Register File

32 general
purpose &
6 special
purpose

32 general
purpose &
32 special
purpose

Instruction Word 32 bits 32 bits

Instruction Cache Optional Optional

Hardware Multiply &
Divide Optional Optional

Hardware Floating
Point Third Party Optional

 FPGAs are available with several million gates of
programmable hardware logic, a few million bits of internal
memory, and optional multiple hard processor cores. Current
generation FPGAs are large enough that a mixture of multiple
hard and soft cores can even be placed in a single FPGA.
FPGAs can also implement relatively fast integer add circuits
using their programmable logic making them a useful design
platform in DSP-intensive applications. FPGA device families
that are specifically designed for the DSP market also include
multiple integer hardware multiply circuits, and floating point
IP cores are available for some FPGA families.
 Traditional system-on-a-chip devices (ASICs and full
custom VLSI ICs) still offer higher performance, but they also
have large development costs and longer turnaround times.
For products requiring a custom hardware implementation, the
FPGA-based SoPC approach is easier, faster, and more
economical in low to medium quantity production.

4 SoPC Design Flow

 Typically, additional software tools are provided along with
each processor core to support SoPC development. A special
CAD tool specific to each soft processor core is used to
configure processor options, which can include register file
size, hardware multiply and divide, floating point hardware,
interrupts, and I/O hardware. This tool outputs an HDL
synthesis model of the processor core in VHDL or Verilog. In
addition to the processor, other system logic is added and the
resulting design is synthesized using a standard FPGA

 IJCA, Vol. 13, No. 3, Sept. 2006 4

synthesis CAD tool. The embedded application program
(software) for the processor is typically written in C or C++
and compiled using a customized compiler provided with the
processor core tools.
 The traditional flow of commercial FPGA design tools
typically follows a path from hardware description language
(HDL) or schematic design entry through synthesis and place
and route tools to the programming of the FPGA. FPGA
manufacturers provide CAD tools such as Altera’s Quartus II
and Xilinx’s ISE software, which step the designer through
this process. As shown in Figure 2, the addition of a processor
core and the tools associated with it are a superset of the
traditional FPGA tools. The standard synthesis, place and
route, and programming functionality is still needed, and in the
case of both Altera and Xilinx, the same CAD tools (Altera’s
Quartus II or Xilinx’s ISE) are used to implement these blocks.

4.1 Processor Core Configuration Tools

 Currently, a number of pre-defined processor cores are
available from various sources. GPL-licensed public processor
cores can be found on the web (i.e., www.opencores.org and
www.leox.org), while companies such as Altera (Nios II
processor), Xilinx (MicroBlaze and PicoBlaze processor), and
Tensilica (Xtensa processor) provide their processors and/or
development tools for a fee.
 Processor cores provided by FPGA manufacturers are

typically manually optimized for the specific FPGA family
being used, and as such, are more efficiently implemented on
the FPGA than a user-designed core (especially given the time
and resource constraints of most projects). Additionally,
FPGA companies provide extensive support tools to ease the
customization and use of their cores, including high-level
compilers and debuggers targeted at the custom cores.
 In the case of Altera and Xilinx, the Processor Core
Configuration Tool block shown in Figure 2 is realized in a
user-friendly GUI interface that allows the designer to
customize the processor for a particular project. A screen shot
of Altera’s processor configuration wizard is seen in Figure 3.
The configurable parameters can include the datapath width,
memory, address space, and peripherals (including arbitrarily
defined general-purpose I/O, UARTs, Ethernet controllers,
memory controllers, etc.). Once the processor parameters are
specified in the GUI interface, the processor core is generated
in the form of an HDL file (in Altera) or a netlist file (in
Xilinx). This file can then be included within a traditional
HDL or schematic design using the standard CAD tools.
Specific pin assignments and additional user logic can be
included at this point like any other FPGA design. Next, the
full hardware design (processor core and any additional user
logic) is compiled (synthesis, place and route, etc.), and the
FPGA can be programmed with the resulting file using the
standard tools. The hardware design is complete, and the
FPGA logic has been determined.

Processor Core
Configuration

Tool

Design
Entry
Tool

FPGA
Synthesis

Tool

HDL or NetlistHDL or Schematic

FPGA
Place and Route

Tool

Program
FPGA

and
Initialize
Memory

Processor

Memory

Processor
Config. Data

C/C++ Compiler
for Processor

Additional User
Hardware
(optional)

Application
Program Source

Code

Binary
Program/Data

Files

Operating
System Kernel
and Libraries

(optional)

Hardware
Design

Software
Design

Traditional
FPGA Tool
Flow

Netlist

Figure 2: The CAD tool flow for SoPC design is comprised of the traditional design process for FPGA-based systems with the

addition of the processor core configuration tool and software design tools. In this figure, the program and data memory
is assumed to be on-chip for simplicity [4]

IJCA, Vol. 13, No. 3, Sept. 2006

5

Figure 3: Processor core configuration tool GUI for the Nios II soft processor core. A drag-and-drop style interface can be used to

add I/O hardware and set processor options

4.2 High-Level Compiler for Processor Core

 As shown on the right side of Figure 2, the next step is to
write and compile the software that will be executed on the
soft processor core. When the Processor Core Configuration
Tool generates the HDL or netlist files, it also creates a
number of library files and their associated C header files that
are customized for the specific processor core generated. A
C/C++ cross compiler targeted at this processor is also
provided for the development system. The designer can then
program stand alone programs to run on the processor.
Optionally, the designer can compile code for an operating
system targeted for the processor core (see Sect. 6).

4.3 Memory

 Once a program/data binary file has been generated, it must
be loaded into the processor’s program and data memories.
This loading can be done several ways depending on the
memory configuration of the processor at hand.
 If the application program is small and can fit into the
memory blocks available on the FPGA, then the program can
be initialized in the memory when the hardware configuration
is programmed. This initialization is done through the

standard FPGA tools, such as Altera’s Quartus II software or
Xilinx’s ISE software. However, on-chip memory is typically
very limited, and this solution is not usually a realistic option.
Most SoPC systems have one or two small external memory
chips in addition to the FPGA. If memory controllers are
needed, they are implemented using internal FPGA logic.

4.4 Initializing Program Memory

 In a prototyping environment, the application program will
most likely be modified a number of times before the final
program is complete. In this case, the ability to download the
application code from a PC to the memory on an FPGA board
must be provided. This functionality, typically called a
“bootloader” or “boot monitor,” can be implemented in either
software or hardware.
 A software bootloader is comprised of code that is loaded
into an on-chip memory and starts running on power up. This
program is small enough (1-2 KB) to fit in most on-chip
memories, and its primary function is to receive a program
binary file from the development PC, load it into external
memory, and then start the new code executing. In this way, a
new program can be stored into external memory (SRAM,
SDRAM, Flash memory, etc.) by downloading it over a USB

 IJCA, Vol. 13, No. 3, Sept. 2006 6

(or other) interface on the fly without having to reload the
FPGA’s hardware configuration. Xilinx provides a boot
monitor for their MicroBlaze soft-core processor that includes
the ability to download a program binary over USB (or other
interface), store it in memory, and start the code executing.
They also provide a more enhanced version called XMDstub
that adds debugging capabilities. Altera’s legacy Nios
processors included a software bootloader; however, a
hardware bootloader is the preferred solution in Nios II.
 A hardware bootloader provides functionality very similar to
a software bootloader; however, it is implemented in hardware
logic within the processor core. Typically, the processor will
be paused or stalled upon power up and the hardware
bootloader will have direct access to memory or the memory
registers in the processor’s datapath. The bootloader hardware
can start and stop the processor and can control the
downloading of a program over the USB, JTAG, or serial
interface to the desired memory locations. Altera’s hardware
bootloader is a part of the JTAG debug module, which resides
within the Nios II processor. This logic uses the JTAG
interface with the PC to receive the execution code, and it then
writes the code to the appropriate memory. Finally, the
bootloader hardware overwrites the processor’s program
counter with the start address of the code just downloaded and
releases the pause bit to allow the processor to begin executing
the downloaded code.

4.5 External Non-Volatile Storage

 The application program code can be stored on an external
Flash memory, EEPROM, or other forms of non-volatile
memory. As with most embedded systems, hard disk drives
are rarely used in smaller SoPC-based devices since they have
shorter lifetimes than other non-volatile memory components
and most systems do not require extremely large amounts of
non-volatile storage. The application program and OS code
can either be pre-programmed in the external memory module
(for a production run) or a bootloader program can be used to
store the application program in non-volatile storage. For low-
speed applications, the code can be executed directly from the
external memory. However, if high-speed functionality is
required, then a designer could use three memories as shown in
Figure 4. In this scheme, the on-chip memory is initialized
with a bootloader, which handles the movement of the
application program between the memories. (On-chip memory
is replaced with a hardware bootloader on some systems
including the Nios II processor.)
 The fast, volatile memory (i.e., SDRAM) is used to store the
application program during execution, while the slower, non-
volatile memory (i.e., Flash or EEPROM) is used for the
permanent storage of the application program. The bootloader
can be modified to initialize the system, retrieve a program
from non-volatile memory, store it in the faster, volatile
memory, and then start it executing from the faster memory.
This scheme provides the advantages of permanent storage,
fast execution, and the ability to modify the application
program when needed. Of course, it comes at the expense of
having additional memory.

Figure 4: This arrangement of on-chip and external memories

provides flexibility and performance to an SoPC
system

5 SoPC Development Boards

 To enable designers to learn the complicated tool flow and
to provide for an early start of hardware/software co-design
projects, most FPGA vendors offer SoPC development boards.
These boards offer a large FPGA with several megabytes of
external memory and a variety of built-in I/O features that are
capable of supporting a soft processor core. Many also include
FPGAs with hard processor cores. While a custom PCB is
being designed for the new SoPC-based product, work can
start in parallel on the hardware configuration and software
development tasks using the development board (assuming that
the board has a similar FPGA device and I/O features).
 Two new SoPC development boards from Altera and Xilinx
can be seen in Figures 5 and 6. These boards both support a
wide array of I/O hardware interfaces including VGA, audio,
PS/2, USB, Ethernet, serial I/O, parallel I/O, LCD displays,
LEDs, switches, and additional general purpose I/O pins on
headers that can be connected to external user hardware. The
Altera DE2 board in Figure 5 supports SoPC design using the
Nios II soft-core processor on the Cyclone II FPGA family.
 The Xilinx XUP-V2P board in Figure 6 contains a Virtex II
Pro family FPGA. It contains two PowerPC hard processor
cores and can also be used to develop MicroBlaze soft-core
processor designs [4]. The FPGAs on both boards contain
integer hardware multiply circuits that can be used for DSP
applications. A USB cable connected to a PC development
system is typically used to download FPGA hardware
configuration data and software to the board’s memory
devices. SoPC development tools also support remote
debugging on the boards.

6 Embedded Operating Systems for SoPC Systems

 Many embedded systems now require multitasking,
scheduling, threads, and perhaps support for networking. In
such cases, a commercial embedded operating system is
typically used rather than developing a custom OS for
individual products. Some FPGA vendors provide a tiny
microkernel for their devices. Linux, Nucleus PLUS, NORTi,

IJCA, Vol. 13, No. 3, Sept. 2006

7

Wind River VxWorks AE X, OSE RTOS, and KROS are
available for Altera’s SoPC systems through third party
vendors. Linux, QNX Neutrino, Wind River, and uC/OS-II
RTOS are available for Xilinx’s SoPC systems [1, 4, 19].
 For smaller designs that do not require full O/S support,
IP cores and supporting software for basic communication
and networking are provided. Third-party tools are also
available with complete support for networking including
full TCP/IP protocol stacks, USB, and Bluetooth
communication.
 License fees and legal agreements for the OS,
networking support, and other IP cores can add to the
overall cost of the SoPC system, and they need be carefully
evaluated early in the design process. IP issues tend to be
less involved when dealing directly with the major FPGA
chip vendors; however, IP cores can still vary widely in
cost from free to tens of thousands of dollars.

7 Two SoPC Design Examples

Two system design examples will now be presented as case
studies that show some of the advantages and design
tradeoffs present in SoPC technology. Both systems have
been successfully implemented using current SoPC devices
and tools. The first system uses an FPGA with Altera’s

soft-core Nios processor, and the second system uses an
FPGA with Xilinx’s hard-core PowerPC processor.

7.1 SoPC-Based Digital Autopilot Design

The miniature SoPC-based autopilot system seen in the
photographs in Figure 7 is used for unmanned aerial
vehicles. This system makes an interesting case study in
SoPC design. The autopilot system continuously reads in
sensor data that indicates attitude, altitude, speed, and
location via GPS. It then uses this data to solve the control
system motion equations for the aircraft and outputs
updated signals to control the aircraft [3].
 The flexibility of SoPC design allows the use of the FPGA’s
logic elements to interface to a wide range of sensors without
the need for additional I/O support chips that would be
requireed if a more traditional fixed-processor option was
used. This results in an extremely small and low weight PCB
design. An ASIC could be used instead of the FPGA, but the
small production quantities needed for this system do not
justify the greatly increased development time and cost needed
for an ASIC.
 Different types of small unmanned aircraft also require
markedly different I/O standards for the control outputs. Some

Figure 5: Altera SoPC board with Cyclone II FPGA that can run the Nios II soft-core processor

 IJCA, Vol. 13, No. 3, Sept. 2006 8

Figure 6: Xilinx SoPC board with Virtex II Pro FPGA with two PowerPC hard-core processors

Top board

Bottom board

Figure 7: Minature SoPC-based Autopilot System. Left: Top board contains an FPGA with a soft core Nios processor, SRAM,
Flash, and a DSP processor. Right: Bottom board contains 3-axis MEMs gyros and accelerometers, GPS receiver,
altitude sensor, airspeed sensor, and three ADCs. Photograph ©2004 courtesy of Henrik Christophersen, Georgia
Institute of Technology Unmanned Aerial Research Facility

IJCA, Vol. 13, No. 3, Sept. 2006

9

aircraft controls use serial interfaces, while others use PWM or
even parallel I/O. Here again, the flexibility of using the
FPGA’s logic elements to implement the I/O interface is of
great benefit. By varying the logic in the interface peripherals,
the same programmable processor core and PCB board has
been used to support a wide range of aircraft without any
hardware changes to the PCB.
 The autopilot system requires intensive floating-point
calculations to solve the complex control system equations for
the aircraft. While it would be possible to perform floating-
point calculations using a larger FPGA, the decision was made
to use a fixed-processor DSP chip for the intensive floating-
point calculations. By offloading the algorithmic
computations to a fixed DSP processor, the Nios II processor is
primarily acting as an intelligent I/O processor for the system.
 This partitioning of the system between a fixed-processor
DSP and soft-core processor results in higher computational
performance than using just an FPGA (with floating-point
hardware logic) and higher interface flexibility than using just
a fixed DSP processor in the system. However, new
generations of FPGAs with DSP features such as hardware
multipliers and floating-point IP cores are currently changing
this set of design tradeoffs.

7.2 SoPC-Based Data Acquisition System

 Another SoPC design example is a data acquisition system
developed for a seismic landmine detection system [15]. In
this system, a seismic shaker sends sound waves through the
soil. An array of seismic sensors in contact with the soil
measure the response. Since mines have vastly different
acoustic properties than the surrounding soil, it is possible to
determine the location of plastic mines buried in the soil
through analysis of this response. (The sensor contact pressure
and seismic excitation signals are well below the threshold for
detonation of the mine.)
 The full 32 by 32 seismic sensor array used in this system
contains 1024 low-cost accelerometers each spaced several
inches apart. The sample rate of a single sensor is a relatively
modest 4-8 KHz. Simultaneously sampling a thousand sensors
synchronized to a master clock at this rate for several seconds
without dropping any samples poses a challenge for most
current data acquisition systems. Current commercial off-the-
shelf data acquisition solutions would be very large and cost
prohibitive, since they do not scale well for such a large
number of channels that must all be synchronized to a common
sample clock signal.
 The new data acquisition computer system that was
developed for the seismic sensor array uses SoPC technology
to achieve the desired goal of scalability. Each sensor in the
array has its own low-cost 16-bit SPI Analog to Digital
converter. Each row of sensors clocks its digital sample data
into the FPGA using a high-speed 1-bit daisy chained SPI
serial data stream. Serial interfaces work well on an FPGA
since FPGAs implement high-speed shift registers efficiently.
Serial interfaces also require fewer I/O pins, which can become
a scarce resource when the system is implemented on a single

chip. A custom hardware interface was designed using VHDL
for each row of sensors. This hardware interface, implemented
in the FPGA, performs serial to parallel conversion using a
shift register and also contains a FIFO memory buffer to store
data samples. All rows can work in parallel, since each row
has its own independent FPGA hardware interface and shift
register. Since all rows work in parallel, the system scales well
for large numbers of sensors. A 256MB SDRAM memory
module is used to buffer data samples, and a PowerPC hard-
core processor in the FPGA runs a web server application
program written in C that provides an easy-to-use web-based
interface to the system. A standard Ethernet network interface
is used to access the web interface and to download data
sample files to a PC for analysis in Matlab.
 The ability to add extensive custom hardware to interface
thousands of sensors to a processor was ideally suited for this
application. The SoPC solution was able to meet the desired
performance, small packaging, and power consumption goals.
A commercial microprocessor would require a large number of
I/O expansion chips or perhaps even an external FPGA to
interface to the sensor array. Also, since the production
quantities are small, the high development and setup costs for
an ASIC would likely not be recovered.

8 SoPC Design in Education

 The SoPC approach is ideally suited for student projects.
The vast hardware, software, and I/O flexibility of an SoPC
development board allows a single board to be used and reused
for a wide variety of student projects. Low-cost SoPC boards
have been used for a number of team-based undergraduate
student projects including image processing systems, robots,
internet appliances, web and email servers, simple video
games, and various multimedia systems.
 SoPC developers and students need a background in C/C++
programming, digital logic, computer architecture, operating
systems, and VHDL or Verilog to design complete SoPC
systems. In most cases, this restricts SoPC projects to senior
year undergraduate or graduate courses. Students can also
concentrate on software development tasks, if they are
provided with a hardware reference design that implements the
features needed for their project on the SoPC development
board. The same boards can also be used without the
processor cores for digital logic hardware projects in lower
level courses [13]. FPGA CAD tools are available free to
schools from the major FPGA vendors, and SoPC development
boards are available with educational discounts [1, 4, 7].
Tools, operating systems, and IP cores from smaller third-party
vendors are still difficult for schools to obtain at a discount.
 An example of a student SoPC project is seen in Figure 8. A
student design team modified a hobbyist R/C truck to build an
autonomous robot. A low-cost CMUCAM color vision system
[14] is used to guide the vehicle down hallways. The path to
follow in the hallway of the building is marked with colored
tape. The solid-state camera detects and tracks color blobs and
sends out data on a serial port to the processor. A program
written in C running on the processor reads the tracking data

 IJCA, Vol. 13, No. 3, Sept. 2006 10

and determines how to control the speed and steer the vehicle.
Like most R/C models, pulse width modulation (PWM) servo
signals control the speed and steering. Students on this team
decided to build hardware PWM controllers with additional
FPGA logic rather than having several complex processor
timer interrupt routines to generate the PWM signals for each
servo. The processor writes the pulse width value to an I/O
register on a parallel output port. State machine based PWM
controllers written in VHDL read the I/O registers and
generate the appropriate PWM timing signals for the servos.
An additional serial interface was added to the processor’s I/O
system to interface the camera, and a parallel I/O port was used
to interface an LCD status display. This was all accomplished
by programming the FPGA hardware and writing C/C++ soft-
ware without the need for additional external hardware, per-
manent modifications to the SoPC board, or add-on I/O boards.
 The complexity of the senior-level student design projects
has increased since introduction of the SoPC boards. Using a
general purpose SoPC board saves both time and money.
These boards have been successfully reused several semesters
for a wide variety of projects. Newer generation SoPC tools
are more user friendly, but there is still a significant learning
curve for students to overcome, when using the complex

commercial SoPC CAD tools. Students should successfully
complete a system level tutorial during the first few weeks of
the course to force them to start early and learn the tool flow.
The flexibility of the new SoPC boards has worked very well
for student design projects and it has improved the overall
quality of the design projects [5, 8-9].

9 Conclusions

 This paper has provided a brief overview of SoPC systems
and designs. The SoPC approach should be considered for
many embedded devices. In many cases, it can reduce
development time and costs. The exceptions are low-end
devices easily implemented on a low-cost single-chip
microcontroller, devices produced in very large quantities,
devices that need very high performance, and devices that
require very low power consumption. Traditional processor
and ASIC vendors have also seen the advantage of the SoPC
approach using FPGAs for custom user logic. More
information about specific SoPC devices, tools, and systems is
available from manufacturers such as Altera, Xilinx, Cypress
Semiconductor, Stretch Incorporated, and Tensilica [1, 4,
18].

Figure 8: Student robot project controlled by an SoPC board with a camera and PWM servos

IJCA, Vol. 13, No. 3, Sept. 2006

11

References

[1] Altera Corporation, Embedded Processor Web Site,

www.altera.com.
[2] H. Chang, L. R. Cooke, M. Hunt, G. Martin, A. McNelly,

and L. Todd, Surviving the SOC Revolution A Guide to
Platform-Based Design, Kluwer Academic Publishers,
1999.

[3] H. Christophersen, R. Pickell, J. Neidhoefer, A. Koller,
S. Kannan, and E. Johnson, “A Compact Guidance,
Navigation, and Control System for Unmanned Aerial
Vehicles,” to appear in Journal of Aerospace Computing,
Information, and Communication, 2006.

[4] Digilent Inc, XUPV2P Reference Manual,
www.digilentinc.com.

[5] ECE 4006 Senior Design Project Class Web Site,
Georgia Institute of Technology,
www.ece.gatech.edu/~hamblen/4006/projects.

[6] J. Fisher, P. Faraboschi, and C. Young, Embedded
Computing: A VLIW Approach to Architecture,
Compilers and Tools, Morgan Kaufmann, 2004.

[7] T. S. Hall and J. O. Hamblen, "System-on-a-
Programmable-Chip Development Platforms in the
Classroom," IEEE Transactions on Education,
47(4):502-507, Nov. 2004.

[8] J. O. Hamblen, “Using Second Generation SoPC Boards
for Student Design Projects” Proceedings of the 2005
International Conference on Microelectronic Systems
Education, Anaheim, CA, pp. 69-70, June 2005.

[9] J. Hamblen and T. Hall, “Engaging Undergraduate
Students with Robotic Design Projects,” Proceedings of
the Second IEEE International Workshop on Electronic
Design, Test and Applications, Perth, Australia, pp. 140-
145, January 28-30, 2004.

James O. Hamblen is a Professor in
Electrical and Computer Engineering
at Georgia Tech. His current research
interests include rapid prototyping,
high–speed parallel and VLSI
computer architectures, computer–
aided design, and reconfigurable
computing. He received a PhD in
Electrical Engineering from Georgia
Tech, an MSEE from Purdue
University, and a BEE from Georgia

Tech. Prior to earning his PhD, he worked as a Systems
Analyst for Texas Instruments in Austin, Texas, and as a
Senior Engineer for Martin Marietta in Denver, Colorado.

[10] J. O. Hamblen, T. S. Hall, and M. Furman, Rapid
Prototyping of Digital Systems Quartus II Edition,
Springer, August 2005.

[11] A. Jerraya, H. Tenhunen, and W. Wolf, “Multiprocessor
Systems-on-Chips,” S. Liebson and J. Kim,
“Configurable Processors: A New Era in Chip Design,”
IEEE Computer, 38(7):51-59, July 2005.

[12] M. Mar, B. Sullam, and E. Blom, “An architecture for a
configurable mixed-signal device,” IEEE J. Solid-State
Circuits, 38:565–568, Mar. 2003.

[13] K. Newman, J. O. Hamblen, and T. Hall, “An
Introductory Digital Design Course Using a Low-cost
Autonomous Robot,” IEEE Transactions on Education,
45(3):289-296, August 2002.

[14] A. Rowe, C Rosenberg, and I. Nourbakhsh, “A Low Cost
Embedded Color Vision System,” IROS 2002
Proceedings, http://www-2.cs.cmu.edu/~cmucam/.

[15] W. Scott, J. Hamblen, J. Martin, and G. Larson, “Large
Vibrometer Arrays for Seismic Landmine Detection,”
SPIE Defense and Security Symposium, Orlando,
Florida, April 2006.

[16] D. Seguine, “Just add sensor - integrating analog and
digital signal conditioning in a programmable system on
chip,” Proceedings of IEEE Sensors, 1:665–668, 2002.

[17] C. Snyder, “FPGA Processor cores get serious,” in
Cahners Microprocessor Report,
http://www.MPRonline.com/, Sept. 2000.

[18] Stretch Incorporated, Software Configurable Processor
Web Site, www.stretchinc.com.

[19] Xilinx Corporation, Embedded Processor Web Site,
www.xilinx.com.

Tyson S. Hall received the PhD,
MSECE, and BSCMPE degrees in
Electrical and Computer Engineering
from the Georgia Institute of
Technology in 2004, 2001, and 1999.
He is currently an Assistant Professor
in the School of Computing at
Southern Adventist University in
Collegedale, Tennessee. Dr. Hall’s
research interests include rapid
prototyping of mixed-signal systems,
cooperative analog/digital signal

processing, reconfigurable computing, and embedded systems
education.

