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Abstract 
 
 This paper describes the tools, techniques, and devices used 
to design embedded products with system–on-a-chip (SoC) 
type solutions using a large Field Programmable Gate Array 
(FPGA) with an internal processor core.  This new FPGA-
based approach is called system-on-a-programmable-chip 
(SoPC ).  The performance tradeoffs present in SoPC 
systems is compared to more traditional design approaches. 
Commercial devices, processor cores, and CAD tool flows are 
described.  
 The issues in SoPC hardware/software design tradeoffs are 
examined and three example SoPC designs are presented as 
case studies.  
 Key Words:  SoC, SoPC, FPGA, VHDL, verilog, IP core, 
ASIC, embedded systems 
 

1 Introduction 
 
 Traditional system-on-a-chip (SoC) designs require the 
development of a custom IC or Application Specific Integrated 
Circuit (ASIC) [2].  Unfortunately, ASIC costs have risen 
dramatically in recent years along with the vast improvements 
in VLSI technology feature size and transistor counts. Current 
ASIC commercial development costs run several million 
dollars per device.  Only a few high volume embedded 
products can support long ASIC development times and high 
costs.  As a consequence, the number of new traditional ASIC 
designs has fallen dramatically in recent years. 
 A promising new alternative technology has emerged that 
enables designers to utilize a large FPGA that contains both 
memory and logic elements along with an intellectual property 
(IP) processor core to rapidly implement a computer and 
custom hardware for SoC embedded systems [17].  This new 
FPGA-based methodology is called system-on-a-
programmable-chip (SoPC). 
 The traditional design modalities are ASIC and fixed-
processor design.  In a fixed-processor design, a commercial 
microprocessor chip is used along with several selected 
support chips on a printed circuit board.  In an ASIC design, 
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the end user combines user designed logic and other elements 
from the vendor’s IP core library functions.  ASICs then 
require final expensive custom manufacturing steps to 
fabricate and test the device.  
 SoPC design has advantages and disadvantages to both of 
these alternatives as highlighted in Table 1.  The strengths of 
SoPC design are a reconfigurable, flexible nature, and the short 
development cycle.  However, the trade-offs include lower 
maximum processor performance, higher unit costs in 
production, and relatively high power consumption. 
 
Table 1: Comparing SoPC, ASIC, and fixed-processor design 

modalities [10] 

Feature SoPC ASIC Fixed-
processor 

S/W flexibility       

H/W flexibility       

Reconfigurability       

Development 
time/cost       

Peripheral equipment 
costs       

Performance       

Production cost       

Power efficiency       
 
Legend:  – Good;  – Moderate;  – Poor 
 
 The benefit of having a flexible hardware infrastructure can 
not be overestimated.  In many new designs, features and 
specifications are modified throughout the design cycle.  For 
example, marketing may detect a shift in demand requiring 
additional features (e.g., demand drops for cell phones without 
cameras), a protocol or specification is updated (e.g., USB 2.0 
is introduced), or the customer requests an additional feature.  
In traditional design modalities (including ASIC and fixed-
processor designs), these changes can dramatically affect the 
ASIC design, processor selection, and/or printed circuit board 
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design.  Since the hardware architecture is often settled upon 
early in the design cycle, making changes to the hardware 
design later in the cycle will typically result in delaying a 
product’s release and increasing its cost. 
 Flexible infrastructure can also be beneficial in extending 
the life (and thus reducing the cost) of a product’s hardware.  
A fixed-processor option will often require additional 
hardware and perhaps even a new printed circuit board (PCB) 
design for each product variation.  With the flexible, 
reconfigurable logic present in an SoPC device a single printed 
circuit board can be designed for use in multiple product lines 
and in multiple generations/versions of a single product.  
Using reconfigurable logic as the heart of a design allows it to 
be reprogrammed to implement a wide range of systems and 
designs.  Extending the life of a board design even one 
generation can result in significant savings and can largely 
offset the increased per-unit expense of reconfigurable devices. 
 The SoPC approach can offer advantages for many 
embedded systems.  ASIC development times are too long and 
mask setup fees are too high to be considered for most 
products.  However, ASICs can still offer the lowest per unit 
production cost when quantities are large enough to recoup the 
very high mask setup and development costs.  ASICs may still 
be required for very low power applications that need long run 
times using small capacity batteries.  Traditional processor and 
ASIC vendors have also seen the advantage of the SoPC 
approach.  For their next generation of larger ICs, several 
ASIC and processor vendors are developing embedded FPGA 
cores to add to their devices to make them more flexible for a 
wider range of designs. 
 

2 Hardware/Software Design Alternatives 
 
 The SoPC-based approach offers new design space 
alternatives to explore.  It is possible to consider design 
options that use software, dedicated custom hardware, or a 
mixture of both.  Software implementations require less 
development time, but in many cases, a general-purpose 
processor will be too slow to perform all of the calculations 
using only software.  To speedup the system, some frequently 
executed functions can be implemented in hardware in an 
SoPC design using the FPGA’s logic.  
 SoPC hardware/software design space tradeoffs are shown in 
Figure 1 with the Y axis indicating increasingly complex 
algorithms or programs, and the X axis being the computation 
or program execution time required.  As seen in Figure 1, for 
simple algorithms a hardware solution offers faster 
computation times, but it offers less flexibility since the 
hardware remains dedicated for that calculation and it may 
require a larger FPGA that consumes more power and 
increases system cost.  Potential SoPC applications to 
implement in hardware in this region include pre-processing of 
real-time data with high sample rates, multimedia encoding 
and decoding, low-level communication protocols, and digital 
signal processing algorithms such as filters and FFTs.  
Hardware IP cores designed for FPGAs are available for many 
of these more common functions such as encoders/decoders, 
communication protocols, filters, and FFTs.  The new 

hardware can also be designed using the traditional VHDL or 
Verilog FPGA synthesis tools. 
 

 
 

Figure 1: SoPC hardware & software design space tradeoffs 
 
 As the size of the hardware needed for implementation of 
more complex algorithms increases, the hardware starts to 
slow down, achieves diminishing performance levels, and 
becomes increasingly more difficult for designers to 
implement.  This occurs due to increasing numbers of gate 
delays in logic circuits and increases in the distance and 
communication time needed to transfer data values between 
hardware units.  Pipelining and parallel processing techniques 
can be used to extend the useable range of hardware solutions, 
especially for non-recursive algorithms with a high degree of 
parallelism.  (Typically, hardware pipelining works well in 
FPGAs since they have a register-rich architecture.)  
 Moving to the upper right in Figure 1, as the algorithm 
complexity increases, implementation of algorithms using 
software becomes much easier to design and implement 
(assuming that the increased computation time still meets 
system design goals).  As seen in the upper left of Figure 1, 
there can still be some applications that require complex 
algorithms that are beyond the real-time performance range of 
a single current generation FPGA’s hardware and software.  
 It is also possible to consider a combination of both 
hardware and software approaches.  Some processor cores 
allow the designer to add custom instructions.  If an 
application program requires the same calculation repeatedly 
in loops, adding a custom instruction using extra hardware to 
accelerate the inner loop code can greatly speed up the 
application.  A similar technique was initially developed in 
automatic compilers for microprogrammed processors with 
writeable control store in the 1970s.  In an SoPC system, it is 
possible to add extra hardware to the processor including 
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ALUs and memory to provide additional speedup for a new 
instruction.  One SoPC processor core from Stretch 
Incorporated now features a C compiler that automatically 
attempts to implement inner loop code or simple C functions in 
FPGA hardware [18].  In suitable application programs, 
speedups of one to two orders of magnitude are possible with 
this approach.  For cores that do not allow new instructions to 
be added, it is also possible to use FPGA logic to build a co-
processor for the main processor.  The larger FPGAs contain 
sufficient logic so that several processors working in parallel 
can be placed in a single FPGA.  Current tools provide only 
limited support for multiple processor cores [7].  Automatic 
hardware and software partitioning of SoPC systems and 
partitioning of SoPC systems with multiple processor cores 
working in parallel is still an active area of research and 
development. 
 

3 SoPC Processor Cores 
 
 SoPC systems require an FPGA with a processor core.  
Processor cores are classified as either “hard” or “soft.”  This 
designation refers to the flexibility/configurability of the core.  
Hard cores have a custom VLSI layout that is added to the 
FPGA and they are less configurable; however, they tend to 
have higher performance characteristics than soft cores [17] . 
 Hard processor cores use an embedded processor core (in 
dedicated silicon) in addition to the FPGA’s normal 
programmable logic elements.  Hard processor cores added to 
an FPGA are a hybrid approach, offering performance 
tradeoffs that fall somewhere between a traditional ASIC and 
an FPGA; they are available from several manufacturers with a 
number of different processor flavors [1, 6, 11-12, 16, 18-19].  
For example, Altera offers an ARM processor core embedded 
in its APEX 20KE family of FPGAs that is marketed as an 
Excalibur™ device.  Xilinx’s Virtex-II Pro family of FPGAs 
include up to four PowerPC processor cores on-chip.  Stretch 
Inc. offers SoPC devices with a Tensilica Xtensa RISC 
configurable processor core.  Cypress Semiconductor also 
offers a variation of the SoPC system.  Cypress’s 
Programmable-System-on-a-Chip (PSoC™) is formed on an 
M8C processor core with configurable logic blocks designed 
to implement the peripheral interfaces, which include analog-
to-digital converters, digital-to-analog converters, timers, 
counters, and UARTs. Clock rates on commercial hard 
processor cores are currently in the 300-500 MHz range. 
 Soft cores, such as Altera’s Nios II and Xilinx’s MicroBlaze 
and PicoBlaze processors, use existing programmable logic 
elements from the FPGA to implement the processor logic.  As 
seen in Table 2, soft-core processors can be very feature-rich 
and flexible, often allowing the designer to specify the 
memory width, ALU functionality, number and types of 
peripherals, and memory address space parameters at compile 
time.  However, such flexibility comes at a cost. Soft cores 
have slower clock rates and use more power than an equivalent 
hard processor core. 
 FPGAs that include hard processor cores require long 
development times and costs similar to ASICs for the FPGA 
vendor.  By the time a hard processor core is developed, it may 

compete with a soft core that can run on a newer generation 
FPGA.  With current pricing on large FPGAs, the addition of a 
soft processor core costs as little as thirty-five cents based on 
the logic elements it requires.  The remainder of the FPGA’s 
logic elements can be used to build application-specific system 
hardware.  
 
Table 2: Features of commercial soft processor cores for 

FPGAs [3] 
Feature Nios II 5.0 MicroBlaze 4.0 

Gate Count 26,000 – 72,000 30,000 – 60,000 

Frequency 50-200 MHz 50-200 MHz 

Datapath Width 32 bits 32 bits 

Pipeline Stages 1-6 3 

Register File 

32 general 
purpose & 
6 special 
purpose 

32 general 
purpose & 
32 special 
purpose 

Instruction Word 32 bits 32 bits 

Instruction Cache Optional Optional 

Hardware Multiply & 
Divide Optional Optional 

Hardware Floating 
Point Third Party Optional 

 
 FPGAs are available with several million gates of 
programmable hardware logic, a few million bits of internal 
memory, and optional multiple hard processor cores.  Current 
generation FPGAs are large enough that a mixture of multiple 
hard and soft cores can even be placed in a single FPGA.  
FPGAs can also implement relatively fast integer add circuits 
using their programmable logic making them a useful design 
platform in DSP-intensive applications.  FPGA device families 
that are specifically designed for the DSP market also include 
multiple integer hardware multiply circuits, and floating point 
IP cores are available for some FPGA families. 
 Traditional system-on-a-chip devices (ASICs and full 
custom VLSI ICs) still offer higher performance, but they also 
have large development costs and longer turnaround times.  
For products requiring a custom hardware implementation, the 
FPGA-based SoPC approach is easier, faster, and more 
economical in low to medium quantity production. 
 

4 SoPC Design Flow 
 
 Typically, additional software tools are provided along with 
each processor core to support SoPC development.  A special 
CAD tool specific to each soft processor core is used to 
configure processor options, which can include register file 
size, hardware multiply and divide, floating point hardware, 
interrupts, and I/O hardware.  This tool outputs an HDL 
synthesis model of the processor core in VHDL or Verilog.  In 
addition to the processor, other system logic is added and the 
resulting design is synthesized using a standard FPGA 
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synthesis CAD tool.  The embedded application program 
(software) for the processor is typically written in C or C++ 
and compiled using a customized compiler provided with the 
processor core tools. 
 The traditional flow of commercial FPGA design tools 
typically follows a path from hardware description language 
(HDL) or schematic design entry through synthesis and place 
and route tools to the programming of the FPGA.  FPGA 
manufacturers provide CAD tools such as Altera’s Quartus II 
and Xilinx’s ISE software, which step the designer through 
this process.  As shown in Figure 2, the addition of a processor 
core and the tools associated with it are a superset of the 
traditional FPGA tools.  The standard synthesis, place and 
route, and programming functionality is still needed, and in the 
case of both Altera and Xilinx, the same CAD tools (Altera’s 
Quartus II or Xilinx’s ISE) are used to implement these blocks. 
 
4.1 Processor Core Configuration Tools 
 
 Currently, a number of pre-defined processor cores are 
available from various sources. GPL-licensed public processor 
cores can be found on the web (i.e., www.opencores.org and 
www.leox.org), while companies such as Altera (Nios II 
processor), Xilinx (MicroBlaze and PicoBlaze processor), and 
Tensilica (Xtensa processor) provide their processors and/or  
development tools for a fee. 
 Processor cores provided by FPGA manufacturers are 

typically manually optimized for the specific FPGA family 
being used, and as such, are more efficiently implemented on 
the FPGA than a user-designed core (especially given the time 
and resource constraints of most projects).  Additionally, 
FPGA companies provide extensive support tools to ease the 
customization and use of their cores, including high-level 
compilers and debuggers targeted at the custom cores. 
 In the case of Altera and Xilinx, the Processor Core 
Configuration Tool block shown in Figure 2 is realized in a 
user-friendly GUI interface that allows the designer to 
customize the processor for a particular project.  A screen shot 
of Altera’s processor configuration wizard is seen in Figure 3.  
The configurable parameters can include the datapath width, 
memory, address space, and peripherals (including arbitrarily 
defined general-purpose I/O, UARTs, Ethernet controllers, 
memory controllers, etc.).  Once the processor parameters are 
specified in the GUI interface, the processor core is generated 
in the form of an HDL file (in Altera) or a netlist file (in 
Xilinx).  This file can then be included within a traditional 
HDL or schematic design using the standard CAD tools.  
Specific pin assignments and additional user logic can be 
included at this point like any other FPGA design.  Next, the 
full hardware design (processor core and any additional user 
logic) is compiled (synthesis, place and route, etc.), and the 
FPGA can be programmed with the resulting file using the 
standard tools.  The hardware design is complete, and the 
FPGA logic has been determined. 
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Figure 2: The CAD tool flow for SoPC design is comprised of the traditional design process for FPGA-based systems with the 

addition of the processor core configuration tool and software design tools. In this figure, the program and data memory 
is assumed to be on-chip for simplicity [4] 
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Figure 3: Processor core configuration tool GUI for the Nios II soft processor core.  A drag-and-drop style interface can be used to 

add I/O hardware and set processor options 
 
4.2 High-Level Compiler for Processor Core 
 
 As shown on the right side of Figure 2, the next step is to 
write and compile the software that will be executed on the 
soft processor core.  When the Processor Core Configuration 
Tool generates the HDL or netlist files, it also creates a 
number of library files and their associated C header files that 
are customized for the specific processor core generated.  A 
C/C++ cross compiler targeted at this processor is also 
provided for the development system.  The designer can then 
program stand alone programs to run on the processor.  
Optionally, the designer can compile code for an operating 
system targeted for the processor core (see Sect. 6).  
 
4.3 Memory 
 
 Once a program/data binary file has been generated, it must 
be loaded into the processor’s program and data memories.  
This loading can be done several ways depending on the 
memory configuration of the processor at hand. 
 If the application program is small and can fit into the 
memory blocks available on the FPGA, then the program can 
be initialized in the memory when the hardware configuration 
is programmed.  This initialization is done through the 

standard FPGA tools, such as Altera’s Quartus II software or 
Xilinx’s ISE software.  However, on-chip memory is typically 
very limited, and this solution is not usually a realistic option.  
Most SoPC systems have one or two small external memory 
chips in addition to the FPGA.  If memory controllers are 
needed, they are implemented using internal FPGA logic. 
 
4.4 Initializing Program Memory 
 
 In a prototyping environment, the application program will 
most likely be modified a number of times before the final 
program is complete.  In this case, the ability to download the 
application code from a PC to the memory on an FPGA board 
must be provided.  This functionality, typically called a 
“bootloader” or “boot monitor,” can be implemented in either 
software or hardware. 
 A software bootloader is comprised of code that is loaded 
into an on-chip memory and starts running on power up.  This 
program is small enough (1-2 KB) to fit in most on-chip 
memories, and its primary function is to receive a program 
binary file from the development PC, load it into external 
memory, and then start the new code executing.  In this way, a 
new program can be stored into external memory (SRAM, 
SDRAM, Flash memory, etc.) by downloading it over a USB 
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(or other) interface on the fly without having to reload the 
FPGA’s hardware configuration.  Xilinx provides a boot 
monitor for their MicroBlaze soft-core processor that includes 
the ability to download a program binary over USB (or other 
interface), store it in memory, and start the code executing.  
They also provide a more enhanced version called XMDstub 
that adds debugging capabilities.  Altera’s legacy Nios 
processors included a software bootloader; however, a 
hardware bootloader is the preferred solution in Nios II. 
 A hardware bootloader provides functionality very similar to 
a software bootloader; however, it is implemented in hardware 
logic within the processor core.  Typically, the processor will 
be paused or stalled upon power up and the hardware 
bootloader will have direct access to memory or the memory 
registers in the processor’s datapath.  The bootloader hardware 
can start and stop the processor and can control the 
downloading of a program over the USB, JTAG, or serial 
interface to the desired memory locations.  Altera’s hardware 
bootloader is a part of the JTAG debug module, which resides 
within the Nios II processor.  This logic uses the JTAG 
interface with the PC to receive the execution code, and it then 
writes the code to the appropriate memory.  Finally, the 
bootloader hardware overwrites the processor’s program 
counter with the start address of the code just downloaded and 
releases the pause bit to allow the processor to begin executing 
the downloaded code. 
 
4.5 External Non-Volatile Storage 
 
 The application program code can be stored on an external 
Flash memory, EEPROM, or other forms of non-volatile 
memory.  As with most embedded systems, hard disk drives 
are rarely used in smaller SoPC-based devices since they have 
shorter lifetimes than other non-volatile memory components 
and most systems do not require extremely large amounts of 
non-volatile storage.  The application program and OS code 
can either be pre-programmed in the external memory module 
(for a production run) or a bootloader program can be used to 
store the application program in non-volatile storage.  For low-
speed applications, the code can be executed directly from the 
external memory.  However, if high-speed functionality is 
required, then a designer could use three memories as shown in 
Figure 4.  In this scheme, the on-chip memory is initialized 
with a bootloader, which handles the movement of the 
application program between the memories.  (On-chip memory 
is replaced with a hardware bootloader on some systems 
including the Nios II processor.) 
 The fast, volatile memory (i.e., SDRAM) is used to store the 
application program during execution, while the slower, non-
volatile memory (i.e., Flash or EEPROM) is used for the 
permanent storage of the application program.  The bootloader 
can be modified to initialize the system, retrieve a program 
from non-volatile memory, store it in the faster, volatile 
memory, and then start it executing from the faster memory.  
This scheme provides the advantages of permanent storage, 
fast execution, and the ability to modify the application 
program when needed.  Of course, it comes at the expense of  
having additional memory. 

 
 
Figure 4: This arrangement of on-chip and external memories 

provides flexibility and performance to an SoPC 
system 

 
5 SoPC Development Boards 

 
 To enable designers to learn the complicated tool flow and 
to provide for an early start of hardware/software co-design 
projects, most FPGA vendors offer SoPC development boards.  
These boards offer a large FPGA with several megabytes of 
external memory and a variety of built-in I/O features that are 
capable of supporting a soft processor core.  Many also include 
FPGAs with hard processor cores.  While a custom PCB is 
being designed for the new SoPC-based product, work can 
start in parallel on the hardware configuration and software 
development tasks using the development board (assuming that 
the board has a similar FPGA device and I/O features). 
 Two new SoPC development boards from Altera and Xilinx 
can be seen in Figures 5 and 6.  These boards both support a 
wide array of I/O hardware interfaces including VGA, audio, 
PS/2, USB, Ethernet, serial I/O, parallel I/O, LCD displays, 
LEDs, switches, and additional general purpose I/O pins on 
headers that can be connected to external user hardware.  The 
Altera DE2 board in Figure 5 supports SoPC design using the 
Nios II soft-core processor on the Cyclone II FPGA family.  
 The Xilinx XUP-V2P board in Figure 6 contains a Virtex II 
Pro family FPGA.  It contains two PowerPC hard processor 
cores and can also be used to develop MicroBlaze soft-core 
processor designs [4].  The FPGAs on both boards contain 
integer hardware multiply circuits that can be used for DSP 
applications.  A USB cable connected to a PC development 
system is typically used to download FPGA hardware 
configuration data and software to the board’s memory 
devices.  SoPC development tools also support remote 
debugging on the boards. 
 

6 Embedded Operating Systems for SoPC Systems 
 
 Many embedded systems now require multitasking, 
scheduling, threads, and perhaps support for networking.  In 
such cases, a commercial embedded operating system is 
typically used rather than developing a custom OS for 
individual products.  Some FPGA vendors provide a tiny 
microkernel for their devices.  Linux, Nucleus PLUS, NORTi, 
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Wind River VxWorks AE X, OSE RTOS, and KROS are 
available for Altera’s SoPC systems through third party 
vendors.  Linux, QNX Neutrino, Wind River, and uC/OS-II 
RTOS are available for Xilinx’s SoPC systems [1, 4, 19].  
 For smaller designs that do not require full O/S support, 
IP cores and supporting software for basic communication 
and networking are provided. Third-party tools are also 
available with complete support for networking including 
full TCP/IP protocol stacks, USB, and Bluetooth 
communication.  
 License fees and legal agreements for the OS, 
networking support, and other IP cores can add to the 
overall cost of the SoPC system, and they need be carefully 
evaluated early in the design process. IP issues tend to be 
less involved when dealing directly with the major FPGA 
chip vendors; however, IP cores can still vary widely in 
cost from free to tens of thousands of dollars. 
 

7 Two SoPC Design Examples 
 
Two system design examples will now be presented as case 
studies that show some of the advantages and design 
tradeoffs present in SoPC technology. Both systems have 
been successfully implemented using current SoPC devices 
and tools. The first system uses an FPGA with Altera’s 

soft-core Nios processor, and the second system uses an 
FPGA with Xilinx’s hard-core PowerPC processor. 

7.1 SoPC-Based Digital Autopilot Design 
 
The miniature SoPC-based autopilot system seen in the 
photographs in Figure 7 is used for unmanned aerial 
vehicles. This system makes an interesting case study in 
SoPC design. The autopilot system continuously reads in 
sensor data that indicates attitude, altitude, speed, and 
location via GPS. It then uses this data to solve the control 
system motion equations for the aircraft and outputs 
updated signals to control the aircraft [3].  
 The flexibility of SoPC design allows the use of the FPGA’s 
logic elements to interface to a wide range of sensors without 
the need for additional I/O support chips that would be 
requireed if a more traditional fixed-processor option was 
used.  This results in an extremely small and low weight PCB 
design.  An ASIC could be used instead of the FPGA, but the 
small production quantities needed for this system do not 
justify the greatly increased development time and cost needed 
for an ASIC. 
  Different types of small unmanned aircraft also require 
markedly different I/O standards for the control outputs.  Some 

 

 
 

Figure 5:  Altera SoPC board with Cyclone II FPGA that can run the Nios II soft-core processor 



 IJCA, Vol. 13, No. 3, Sept. 2006 8

 
 

Figure 6:  Xilinx SoPC board with Virtex II Pro FPGA with two PowerPC hard-core processors 
 

 
 
Top board  

Bottom board 

Figure 7: Minature SoPC-based Autopilot System.  Left: Top board contains an FPGA with a soft core Nios processor, SRAM, 
Flash, and a DSP processor.  Right: Bottom board contains 3-axis MEMs gyros and accelerometers, GPS receiver, 
altitude sensor, airspeed sensor, and three ADCs. Photograph ©2004 courtesy of Henrik Christophersen, Georgia 
Institute of Technology Unmanned Aerial Research Facility 
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aircraft controls use serial interfaces, while others use PWM or 
even parallel I/O.  Here again, the flexibility of using the 
FPGA’s logic elements to implement the I/O interface is of 
great benefit.  By varying the logic in the interface peripherals, 
the same programmable processor core and PCB board has 
been used to support a wide range of aircraft without any 
hardware changes to the PCB.  
 The autopilot system requires intensive floating-point  
calculations to solve the complex control system equations for 
the aircraft.  While it would be possible to perform floating-
point calculations using a larger FPGA, the decision was made 
to use a fixed-processor DSP chip for the intensive floating-
point calculations.  By offloading the algorithmic 
computations to a fixed DSP processor, the Nios II processor is 
primarily acting as an intelligent I/O processor for the system.  
 This partitioning of the system between a fixed-processor 
DSP and soft-core processor results in higher computational 
performance than using just an FPGA (with floating-point 
hardware logic) and higher interface flexibility than using just 
a fixed DSP processor in the system.  However, new 
generations of FPGAs with DSP features such as hardware 
multipliers and floating-point IP cores are currently changing 
this set of design tradeoffs. 
 
7.2 SoPC-Based Data Acquisition System 
 
 Another SoPC design example is a data acquisition system 
developed for a seismic landmine detection system [15].  In 
this system, a seismic shaker sends sound waves through the 
soil.  An array of seismic sensors in contact with the soil 
measure the response.  Since mines have vastly different 
acoustic properties than the surrounding soil, it is possible to 
determine the location of plastic mines buried in the soil 
through analysis of this response.  (The sensor contact pressure 
and seismic excitation signals are well below the threshold for 
detonation of the mine.) 
 The full 32 by 32 seismic sensor array used in this system 
contains 1024 low-cost accelerometers each spaced several 
inches apart.  The sample rate of a single sensor is a relatively 
modest 4-8 KHz.  Simultaneously sampling a thousand sensors 
synchronized to a master clock at this rate for several seconds 
without dropping any samples poses a challenge for most 
current data acquisition systems.  Current commercial off-the-
shelf data acquisition solutions would be very large and cost 
prohibitive, since they do not scale well for such a large 
number of channels that must all be synchronized to a common 
sample clock signal. 
 The new data acquisition computer system that was 
developed for the seismic sensor array uses SoPC technology 
to achieve the desired goal of scalability.  Each sensor in the 
array has its own low-cost 16-bit SPI Analog to Digital 
converter.  Each row of sensors clocks its digital sample data 
into the FPGA using a high-speed 1-bit daisy chained SPI 
serial data stream.  Serial interfaces work well on an FPGA 
since FPGAs implement high-speed shift registers efficiently.  
Serial interfaces also require fewer I/O pins, which can become 
a scarce resource when the system is implemented on a single 

chip.  A custom hardware interface was designed using VHDL 
for each row of sensors.  This hardware interface, implemented 
in the FPGA, performs serial to parallel conversion using a 
shift register and also contains a FIFO memory buffer to store 
data samples.  All rows can work in parallel, since each row 
has its own independent FPGA hardware interface and shift 
register.  Since all rows work in parallel, the system scales well 
for large numbers of sensors.  A 256MB SDRAM memory 
module is used to buffer data samples, and a PowerPC hard-
core processor in the FPGA runs a web server application 
program written in C that provides an easy-to-use web-based 
interface to the system.  A standard Ethernet network interface 
is used to access the web interface and to download data 
sample files to a PC for analysis in Matlab. 
 The ability to add extensive custom hardware to interface 
thousands of sensors to a processor was ideally suited for this 
application.  The SoPC solution was able to meet the desired 
performance, small packaging, and power consumption goals.  
A commercial microprocessor would require a large number of 
I/O expansion chips or perhaps even an external FPGA to 
interface to the sensor array.  Also, since the production 
quantities are small, the high development and setup costs for 
an ASIC would likely not be recovered. 
 

8 SoPC Design in Education 
 
 The SoPC approach is ideally suited for student projects.  
The vast hardware, software, and I/O flexibility of an SoPC 
development board allows a single board to be used and reused 
for a wide variety of student projects.  Low-cost SoPC boards 
have been used for a number of team-based undergraduate 
student projects including image processing systems, robots, 
internet appliances, web and email servers, simple video 
games, and various multimedia systems.  
 SoPC developers and students need a background in C/C++ 
programming, digital logic, computer architecture, operating 
systems, and VHDL or Verilog to design complete SoPC 
systems.  In most cases, this restricts SoPC projects to senior 
year undergraduate or graduate courses.  Students can also 
concentrate on software development tasks, if they are 
provided with a hardware reference design that implements the 
features needed for their project on the SoPC development 
board.  The same boards can also be used without the 
processor cores for digital logic hardware projects in lower 
level courses [13].  FPGA CAD tools are available free to 
schools from the major FPGA vendors, and SoPC development 
boards are available with educational discounts [1, 4, 7].  
Tools, operating systems, and IP cores from smaller third-party 
vendors are still difficult for schools to obtain at a discount. 
 An example of a student SoPC project is seen in Figure 8.  A 
student design team modified a hobbyist R/C truck to build an 
autonomous robot.  A low-cost CMUCAM color vision system 
[14] is used to guide the vehicle down hallways.  The path to 
follow in the hallway of the building is marked with colored 
tape.  The solid-state camera detects and tracks color blobs and 
sends out data on a serial port to the processor.  A program 
written in C running on the processor reads the tracking data 



 IJCA, Vol. 13, No. 3, Sept. 2006 10

and determines how to control the speed and steer the vehicle.  
Like most R/C models, pulse width modulation (PWM) servo 
signals control the speed and steering.  Students on this team 
decided to build hardware PWM controllers with additional 
FPGA logic rather than having several complex processor 
timer interrupt routines to generate the PWM signals for each 
servo.  The processor writes the pulse width value to an I/O 
register on a parallel output port.  State machine based PWM 
controllers written in VHDL read the I/O registers and 
generate the appropriate PWM timing signals for the servos.  
An additional serial interface was added to the processor’s I/O 
system to interface the camera, and a parallel I/O port was used 
to interface an LCD status display.  This was all accomplished 
by programming the FPGA hardware and writing C/C++ soft-
ware without the need for additional external hardware, per-
manent modifications to the SoPC board, or add-on I/O boards. 
 The complexity of the senior-level student design projects 
has increased since introduction of the SoPC boards.  Using a 
general purpose SoPC board saves both time and money.  
These boards have been successfully reused several semesters 
for a wide variety of projects.  Newer generation SoPC tools 
are more user friendly, but there is still a significant learning 
curve for students to overcome, when using the complex 

commercial SoPC CAD tools.  Students should successfully 
complete a system level tutorial during the first few weeks of 
the course to force them to start early and learn the tool flow.  
The flexibility of the new SoPC boards has worked very well 
for student design projects and it has improved the overall 
quality of the design projects [5, 8-9]. 
 

9 Conclusions 
 
 This paper has provided a brief overview of SoPC systems 
and designs.  The SoPC approach should be considered for 
many embedded devices.  In many cases, it can reduce 
development time and costs.  The exceptions are low-end 
devices easily implemented on a low-cost single-chip 
microcontroller, devices produced in very large quantities, 
devices that need very high performance, and devices that 
require very low power consumption.  Traditional processor 
and ASIC vendors have also seen the advantage of the SoPC 
approach using FPGAs for custom user logic.  More 
information about specific SoPC devices, tools, and systems is 
available from manufacturers such as Altera, Xilinx, Cypress 
Semiconductor, Stretch Incorporated, and Tensilica [1, 4, 
18].  

 
 
 
 

 
 

Figure 8:  Student robot project controlled by an SoPC board with a camera and PWM servos 
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