*

QUARTUSII

Quartus Il Handbook, Volume 1

ALTERAW

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com

qii5v1-2.1

Design & Synthesis

http://www.altera.com

Copyright © 2004 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-

plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera mu
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

t’; Printed on recycled paper
LS. EN IS0 9001

Altera Corporation

A D-I: D)/A Contents

- |
®

Chapter ReviSion DAtesccccveiiiiiieiiiiii e r e e e e e e e enes Xi
About this HANADOOKccnoninieiee e e xiii

HOW 10 CONEACE AILETA ...vevviiievieieeiecteeiiee ettt ettt ettt ettt ettt e sb e e beebeessessessessessessessessesseessessessensans xiii

Typographic CONVENIONScccouiiimiiiiiiiiiiii s xiii
Section I. Design Flows

Revision HISTOIYc.covoiiiiiiiiiiiii s Section I-2

Chapter 1. Hierarchical Block-Based & Team-Based Design Flows
TNEFOAUCHION .ottt —
Design Flows: Flattened versus Hierarchical Block-Based ...
Block-Based & Team-Based DeSignsccoueveueirueieriniecieieeene e
Block-Based Design with the Quartus II LogicLock Methodology
Preserving Timing Results Using the LogicLock FIOWc.ccccoeviiiininiinnnenns
Preserving Routingccccooevviiiniinniccnn
Design Partitioning & Creating Multiple Netlist Files ...
Performing Incremental Fithingccccoviiiiiiiiiiic e
Save a Node-Level Netlist into a Persistent Source File (Verilog Quartus Mapping File). ... 1-8
Prevent Further Netlist Optimization ... 1-9
CONCIUSION. .ottt bbb s ante s 1-9

Chapter 2. Quartus Il Design Flow for MAX+PLUS Il Users
TNETOAUCHON .ottt ettt ettt eteeteeteeteersersessessensenseaseseseeseeseersersensensersensensenns
Chapter Overview
Typical Design FIOWccooiiiiiiiiiiiiiiic s
DEVICE SUPPOTL «.evoviiiitiicii st
Quartus II GUI Overview
Project NaVIZAtorcoiiiiiieiec e
INOAE FINAET ...ttt ettt ettt eveeaeev et eteebeeteereeseeasessessensesesseeseeseessensensensensensanns
Tcl Console
IMESSAZES ...ecveveuereneieicnctctctct ettt
SEATUS cveeveerieie ettt ettt ett ettt te et e et e e e e ete e eteeeteeete e be e te et e etee et e e ettete e bt ebeente et eereeeteeeaeeateenteenteenreens
Setting up MAX+PLUS II Look and Feel in Quartus II
COMPILET TOOL ..ottt
Converting an Existing MAX+PLUS II DeSigNccccccovvvviiiininiiiiiiiiiiicices
Converting MAX+PLUS II Graphic Design Files
Importing MAX+PLUS II Assignmentsccoooovviiiieininiienininiccccene

Altera Corporation iii

Quartus Il Handbook, Volume 1

Quartus IT Design FLOWcccciiiiiiiiiiiiciciiii s 2-13
Creating a New Project 2-14
DeSiN ENEIY ..oviiiceeee s 2-14
MakKing ASSIGNIMENTSccoiiuiiiiiiiiiiiiiiiic st 2-17

Synthesis
Functional SImMULAtIONooviiviiiicecceeceeeeeeee ettt e te et eae e reeteeaneerseenneeanas
Place & ROULE ...ooouvieiietiecieeete ettt ettt ettt e e e te e et e aeeteeaveetseeaseeseeesseseeseenseeasaeaeensen
Timing Analysiscccccc.....
Timing Closure Floorplan
Timing Simulation
POWeEr ESHIMAtION ..ocviiiiiiiciieceeeeeee ettt et et e e te e et e e s ae e e eabeeebeaesaeeesseeeasaeensaeenns
Programimingcocoeioieioiiiieeieee s
Conclusionc.cceceeveenenee.
Quick Menu Reference

Chapter 3. System Design Using SOPC Builder

50000 o 1T 5 To) o WU TSSOSOt 3-1
SOPC Builder Peripherals ... 3-2
Embedded Software Applicationscccoeviiiieiiiiiieiiicc s 34
AVAION SWILCR FaDIIC ..oviiiiciicieceeeecee ettt et ea e et etaeeae e teeaseereeeneens 34
System GENETAtION.cccciviiieieiicieiee e 3-6
Simulation Model & TeSTDENCRcvevievieeieieieeeeece ettt e ere et et ersensene 3-6

Using SOPC BUILAETooviiiiiiiiiiicic s
System Contents Pagecccooeieiiiiiiiicee s
System Generation Page
System Dependency Pages ... 3-12
Generating @ SYStEIMc.cccueiiiicieieicce e 3-13

FUurther INFOIMAtioN ..o.oovoieiiieeeecece ettt ettt et et ee e ereeveeveeveeteeteereeseereensensensensensensensensan 3-13

Chapter 4. Quartus Il Support for HardCopy Devices

| 50000 o R Ta 5 o) o NNRRR USSR 4-1

Features

HARDCOPY_FPGA_PROTOTYPE, HardCopy Stratix, and Stratix Devicesccccccouvururnnnee. 4-3

HardCopy Design FIOWcooviuiiiiiiieiiccie ittt 44
The Design Flow Steps of the One Step PTOCESSccoviucuiiiiiiciiiiiiciciricceneseeecceeees 4-6

How to Design HardCopy DeVICESccccuviiiiiiiiiiiiiiiiiiiciiscsssie s 4-6
Targeting Designs to HARDCOPY_ FPGA_PROTOTYPE Devicescccccoevivveveiriniereiennne 4-6
Tcl Support for HardCopy Migration ... 4-9

Design Optimization & Performance ESimation ... 4-10

HardCopy Floorplans & Timing Models
Performance Estimation
Placement Constraints

Location CONSLIAINESc.cuciviiiiiiiiiiiiiiic s
LAB ASSIGNIMENEScoouviviiitiiiicicicicicieeee s
LogicLock ASSIGNMENTEScouiiiiecieiiiiiciiniicei st
Targeting Designs to HardCopy APEX 20KC and HardCopy APEX 20KE Devices

Checking Designs for HardCopy Design Guidelinesccccocvuruviiiiininiiininieincsicsiccnnns 4-15

iv Altera Corporation

Contents

Design Assistant Settings
Running Design Assistant
Reports and SUMMATY ..o
Generating the HardCopy Design Database ... 4-16
Static Timing Analysis (STA)
POWeETr ESHIMAION ..oeciiiiiiiiiieciee ettt ettt e e ete e eba e e teeesabeeebeaesaeeesseesaseaensneenns
HardCopy Stratix Power Calculator ..ot
Opening HardCopy Stratix Power Calculator
HardCopy APEX 20K Power Calculator ...
Power Calculators fOT FPGAS ...ttt ettt ettt e eae e eneeeaseeaseeasenaeeneen
Tcl Support for HardCopy Stratix
CONCIUSION. 1.vvieiieiiietie ettt ettt e ettt teete e e e eteeeteeeseeebeeaseesseessesseeesseseessensessseersenseeeseenseeseens
Related DOCUIMENESocvieviiiiiiecie ettt ettt ettt eete et e eeeteeeteeeteeeteeseeaseeaseeasesssessseseeessenseeseans

Chapter 5. Engineering Change Management

Impact of Last Minute Design Changes ..o 5-1
PEIfOITNANCEcuiiieiiiieicicreetetee sttt ettt ettt ettt b ettt eb et st ebeseaenaebeneaes
ComPile TIME ...
Verification
Documentation

ECO Support ..o,
ECO Support at the HDL Level
ECO Support at the Netlist Level

CONCIUSION .ttt ettt ettt sttt bttt ettt b et s b bt ne et b et st st ebenentenen —

Section Il. Design Guidelines

Revision HISTOIYc.coviiiiiiiiiiiiiiii s Section II-1

Chapter 6. Design Recommendations for Altera Devices

| 50000 o R Ta 5 o) o NNRRR USSR 6-1

Synchronous FPGA Design Practices ... 6-1
Fundamentals of Synchronous Designcccccoieiiiniiiccncc e 62
Hazards of Asynchronous Design

Recommended Design TeChNIQUESccccevviiviiiiiiiiciniicc e
Combinational LOgic STrUCEUIESccccvuiiiiiiiiiiiiiiicic e
Clocking Schemescccocvurunnnee.

Hierarchical Design Partitioning

Targeting Clock & Register-Control Architectural Featurescocooeviiiniiiicininicciniccnns 6-14

CONCIUSION 1.ttt ettt ettt e ettt eteete e e e eteeetaeeseeebeeaseeaseessessseesseseessenseesseessenseeessenseeseens 6-15

Chapter 7. Recommended HDL Coding Styles
TNELOAUCHION oottt ettt ettt et ete et e eteebeeaveeabeeaseeaseeseeessenseerssenseenseenseessesasenens
Instantiating and Inferring Altera Megafunctions ...
Instantiating Altera Megafunctions in HDL Code
Inferring Megafunctions from HDL Codecccccecovurvinnns

Altera Corporation v

Quartus Il Handbook, Volume 1

COUNLETS ..uvivieceeeeiieeieeete ettt et et e et e teeete e beeeseebeetbeetsesssessesaeseensaesseasseessassseassanseensaesseensaesseenseenseans
Adder/Subtractors

MULIEPHETS ..o
Multiply-Accumulators & Multiply-Adders ..., 7-10

Shift REGISTEIS ...ceovuiviiiiiiciiiici e
Device-Specific Coding Recommenda-tionsccc.......

Secondary Control Signals in Registers or Flip-Flops

Tri-State Signalsccocviiiiiniiiii

AT TTEES ...t
General Coding Recommenda-tionsccoeeveviueieiiiininiic e

Latches ..o,

State Machines ...

(@06 1 Tel LT3 To) WSRO 7-47

Section Ill. Synthesis

Revision HISTOIYcccviiiiiiiiiiiiiiii e Section III-2

Chapter 8. Quartus Il Integrated Synthesis

Vi

50000 o AT 5 o) o WU SO 8-1
Verilog HDL & VHDL SUPPOTItcoociuiiiiiiiiiiiiiiiiciisc s s 8-1

Verilog HDLooiiiiiiiicieic s 8-1
VHDL ..ttt sttt ettt s ettt b stttk R et a st b b n et et ebe sttt s eneaes 8-2
Types of Synthesis OPHONSccouiiuiiiiiiiiiiiii e 8-3
Synthesis DIr€CtiVESccciiiiiiiiiiiiiiiiii e 84
Synthesis AtITDULESccoviiiiiiiiii 8-5
Quartus IT Logic OPtioNScccceueveieiiieiiceee s 8-6
Quartus IT Synthesis OPtioNSccccueiviiriiiiiiiic e 8-6
Translate Off & ONc..oueuiiieieeeee ettt sttt sttt b e st se e e e eseneaes 8-7
Read Comments as HDLccoociiiiiinineeeeee ettt ettt 8-7
Full Case
PAralle] CaSE ..oouviviiiiieiietieeeeeiet ettt ettt as et et et ebesbe s b e eseebeeseeseessessensebasbesbebeeseessessensensenbanns 8-9
Keep Combinational Node/Implement as Output of Logic Cellccccccoviiiiniiiiiiinnnnns 8-10
Preserve ReGISLErS ..o
MaximUuM FAN-OULoouieiieieieicecceeeesesee sttt ettt ss et ettt sassaesa e e essensansansens
Optimization Technique
State Machine ProCESSING ...t 8-14
Preserve Hierarchical BoUNAATrY ..o 8-15
Restructure Multiplexers 8-16
POWET-UP LEVEL ..o 8-18
PoWer-Up DONt CATEcoeueiiicieieieci ettt 8-19
Remove Duplicate LOZICccocvuvirueiiiiiieiiicic st 8-19
Remove Duplicate REGISLETScccooiiiiiiiiiiiiiiiiic e 8-20
Remove Redundant Logic Cells ..o 8-20

Altera Corporation

Contents

Megafunction Inference CONtrolccccoiiiiiiiiiiiiiiiii s 8-20
RAM Style
Setting Other Quartus II Options in Your HDL Source Codecccoeoeuvimniiiiniciiiniiciiicicinns 8-23
Use I/0 Flip-Flops
Altera Attribute
ChIP PN oo
SCIPHNG SUPPOTT .ottt e
Quartus II Synthesis Options
ASSIZNING @ PIN o
CONCIUSION ...ttt et nenens

Chapter 9. Synplicity Synplify & SynplifyPro Support

TNEFOAUCHON <o
DESIZN FLIOW ..ottt
Synplify Optimization Strategies ... s
Implementations in Synplify Pro
Timing-driven Synthesis Settings ..o 9-6
Finite State Machine (FSM) Compilercccccoiiiiiiiiiiiiiicc e 9-9
General Optimization Attributes & OptioNnscccoeuiiiiiiiicniicc e 9-10
Altera Specific Attributes s 9-11
Exporting Designs to the Quartus II Software Using NativeLink Integratlon 9-13
Running the Quartus II Software from within the Synplify Softwarec.ccccccevuvrenninc. 9-14
Using the Quartus II Software to Launch the Synplify Softwarecc.cccooviiiniiiiinnnns 9-14
Cross-Probing with the Quartus II SOftware ... 9-15
Enabling Cross-Probing ... 9-15
Cross-Probing from the Quartus II SOftware ..o, 9-16
Cross-Probing from the Synplify SOftware ... 9-16
Guidelines for Altera Megafunctions & Architecture-Specific Features ..o 9-17
Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager 9-18
Inferring Altera Megafunctions from HDL Codeccccooviiiiiniinniiiiniicceceeinas 9-23
Hierarchy & Design Considerations with Multiple VOM Filesc.cccccooviviiininnnnnnnne. 9-29
Creating a Design with Multiple VOM Filescccoooviiiiiiicc, 9-29
Creating a Design with Multiple VQM Files using Multipoint Synthesis (Synplify Pro only) ...
9-30
Generating a Design with Multiple VOM Files Using Black Boxescccccccovruiuiinininnnnnen. 9-36
CONCIUSION ...ttt nens 941

Chapter 10. Mentor Graphics LeonardoSpectrum
Support

50000 To AT 5 o) o MRS RU USSR
DESIZIN FIOW ...ttt
Optimization Srate@ies ...
Timing-Driven Synthesis
Oher CONSIIAINTES ..voovievieiietieeietieeee et et et ereere e et ereeteeree e eseessessesessesseeseeseessessessersersersensessessenseas
Timing Analysis with the Leonardo-Spectrum Softwareccccooeriiiiiiiiciicccns 10-7
Exporting Designs Using NativeLink Integration
Generating Netlist FIles ...

Altera Corporation vii

Quartus Il Handbook, Volume 1

Including Design Files for Black-Boxed Modules

Passing Constraints Via Scriptsccccocevviniennnnnes
Integration with the Quartus II SOftware ...,
Guidelines for Altera Megafunctions & LPM FUNctionscccccevuveiniiiiniiiciicceccinns 10-9
Inferring Multipliers & DSP Functions
Controlling DSP Block INfErenceccoouiiiiiiiiiiniiciiciccc e
Block-based Design with the Quartus II LogicLock Methodologyccccoeveicniiviicieiiincnnnn, 10-18
Hierarchy & Design Considerations ... 10-19
Creating a Design with Multiple EDIF Flesccccccocoiiiiiiiiiiiiccccnes 10-20
Generating Multiple EDIF Files Using Black BOXEScccccocvuiiiiiiiiiiiiiiiiiccccicnns 10-24
Incremental Synthesis FIOW ..o 10-29
CONCIUSION ..ttt ettt b bbbt b bbbt bt e b et ettt e b e et st eneebeeas 10-31

Chapter 11. Mentor Graphics Precision RTL Synthesis Support

TNELOAUCHON oottt ettt et eteeeteeeaeetbeetaeetseebeeeseenseenseeasessseessenssesseenseeseens 11-1
Design FIOWccocviviviiiiiiiiiiicciccccces 11-1
Creating a Project & Compiling a Design 11-5
Creating @ Projectoooooiiiiii s 11-5
Compiling the DESIGNcceuiiiiiiiiiiiie s 11-6
Setting CONSLIAINEScvoviiiiiiicieice et 11-6
Setting Timing CONSIIAINScceueveiieieiiiictnc s 11-7
Setting Mapping CONSLIAINTScccooiimiiiiiiiiicccc s s 11-7
Assigning Pin Numbers & I/O Settings ..o 11-8
Assigning I/O REGISETSccviiuiiiiiiiiiiciii s

Disabling I/O Pad Insertion
Controlling Fan-Out on Data Netscccocoeiiiiiiiiiiiiic e
Synthesizing the Design & Evaluating the Resultsccccooovoiiiniiiniiiiiccc,
Obtaining Accurate Logic Utilization & Timing Analysis Reportscccccoevieiiiinininns
Megafunctions & Architecture-Specific Features ...
Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager
Inferring Altera Megafunctions from HDL Codeccccoeviiiinicniiiiicncecceecnes
Block-Based Design with the Quartus II LogicLock Methodologyccccoevveiininiicininicnnnns
Hierarchy & Design Considerationscccecoueeuevniccieiniicnsiceecces
Creating a Design with Separate Blocks for the LogicLock Methodology
Creating a Design with Separate Blocks Using the LogicLock Attribute in a Single Precision

PIOJECL ettt s 11-25
Generating a Design with Multiple EDIF Files Using Black Boxescccocoeuviviiininininns 11-26
CONCIUSION. 1.vviiivietieeteeeteeete ettt ettt et et e e te e ae et eeteeete e beeseeaseeaseetseetseseenseenseessseasessseessenseenseenseennas 11-30

Chapter 12. Synopsys FPGA
Compiler Il BLIS & Quartus Il LogicLock Design Flow
INELOAUCHION ..ttt ettt ettt ettt e st be st s
Design Hierarchyc.cccooveeinnnnnn
Block-Level Incremental Synthesis
FPGA Compiler IT Design BIOckcccovuiiiiiiiiiiiicciiccs e
FPGA Compiler II & Quartus II Synthesis ...,
BIOCK ROOL ..ottt
How the BLIS Feature Works with the LogicLock Feature

viii Altera Corporation

Contents

Hierarchy Considerations ... 12-5
Time Stamp Synthesis 12-6

Creating & Maintaining a Design ... 12-6
Opening the Modules Constraint Table & Labeling Block ROOtScccceviiiiiniiiiiiiiiiinnnns 12-7
Exporting Block-Level Netlist Files

Changing Source Within a BIOCKccccoouiriiiiiiieic e
Removing a BIOCK ROOtccoviiiueiiiiiciiictct s
Using BLIS Shell Commands
CONCIUSION ...ttt nne

Chapter 13. Synopsys Design Compiler FPGA Support

Design Flow Using the DC FPGA Software & the Quartus II Softwarecccocoeuviiiiininnnns 13-2
Setup of the DC FPGA Software Environment for Altera Device Familiesc.c.cccccovvivinnnne 13-3
Megafunctions & Architecture-Specific FEatures ..., 13-5

Reading MegaWizard-Generated Variation Wrapper Filesc.c.cccooeviiiiniiniinieinicnnne, 13-7

Using MegaWizard-Generated Variation Wrapper Files in a Black-Box Methodology 13-7
Inferring Altera Megafunctions from HDL Codecccccooiiiiiiiininiiiiiicccccccins 13-8
Reading Design Files into the DC FPGA SOftwarecccccoeviiimininiiiniiiicccneecinns 13-9
Selecting a Target DEVICEcoieiiiiiiiiiiiei s 13-11
Compilation & SYNthESIScooviiiiiiiii s 13-14

Saving Synthesis RESUIScocuiviiiiieiiiiie e 13-17
Exporting Designs to the Quartus II SOftware ..o 13-18
Place & Route with the Quartus IT SOftWATEcccecieerieirieieeieeeee e 13-21
CONCIUSION ...ttt nes 13-21

Chapter 14. Analyzing Designs with the Quartus Il RTL Viewer & Technology Map Viewer
TNEFOAUCHON. .ottt ettt ettt aenenene 14-1
RTL Viewer Overview
Technology Map Viewer OVerviewccoceeeviiceiniicienieciennnes e 1422
Quartus II Design Flow with the RTL & Technology Map Viewersccccccccooieiiniiciiininenne 14-3
Introduction to the User INtErfacec.coveevrrieuiinnieicinrieiccec ettt 144

Schematic View

HieTarchy LISt ...coccuiiiiieici e
Navigating the Schematic VIEWccccovoiiiiiiiiiiiccc e

Zooming & Magnificationcccceeveeucnen

Page Partitioning in the Schematic View

Traversing the Design Hierarchy

Back & Forward Page VIEWINGcccccccviiiiiiiiiiiiiin e

GO tO NEE DITIVET ..ttt sttt sttt s e naenen
Filtering in the Schematic View

Examples of Filtered Netlists

Expanding a Filtered Netlist

Reducing a Filtered Netlist ..o
Probing to Source Design File & Other Quartus II Featurescccooooviviiiiinininciiicnas 14-22
Viewing a Timing Path in the Technology Map VieWer ..o 14-22
Other Features in the SChematiC VIEWETcccoovieiiiiieeieciiecieeeeeveete ettt eveeene s 14-24

TOOIEPS ovvviictieicce b 14-24

Altera Corporation ix

Quartus Il Handbook, Volume 1

Displaying Net Names
Full Screen View
FINd CommMANccccuiiiuiiiiiiiiiiiciceeieee ettt s
Exporting Schematic as JPEG or BMP Image & Copying to Clipboardccccceovuvuniurnnns 14-27
Printing
Using the RTL & Technology Map Viewers to Analyze Design Problemscc..ccccovvunnnne. 14-28
CONCIUSION. ... 14-29
INdeX e 1

Altera Corporation

A |:| -Ig D)/A Chapter Revision Dates

®

The chapters in this book, Quartus II Handbook, Volume 1, were revised on the following dates. Where
chapters or groups of chapters are available separately, part numbers are listed.

Chapter 1. Hierarchical Block-Based & Team-Based Design Flows
Revised: August 2004
Part number: 4ii51001-2.1

Chapter 2. Quartus II Design Flow for MAX+PLUS II Users
Revised: June 2004
Part number: 4ii51002-2.0

Chapter 3. System Design Using SOPC Builder
Revised: June 2004
Part number: 4ii51003-2.0

Chapter 4. Quartus II Support for HardCopy Devices
Revised: June 2004
Part number: 4ii51004-2.0

Chapter 5. Engineering Change Management
Revised: June 2004
Part number: 4ii51005-2.0

Chapter 6. Design Recommendations for Altera Devices
Revised: June 2004
Part number: gii51006-2.0

Chapter 7. Recommended HDL Coding Styles
Revised: June 2004
Part number: 4ii51007-2.0

Chapter 8. Quartus II Integrated Synthesis
Revised: June 2004
Part number: 4ii51008-2.0

Chapter 9. Synplicity Synplify & SynplifyPro Support

Revised: June 2004
Part number: gii51009-2.0

Altera Corporation Xi

Chapter Revision Dates

Quartus Il Handbook, Volume 1

Chapter 10.

Chapter 11.

Chapter 12.

Chapter 13.

Chapter 14.

xii

Mentor Graphics LeonardoSpectrum
Support

Revised: June 2004

Part number: 4ii51010-2.0

Mentor Graphics Precision RTL Synthesis Support
Revised: June 2004
Part number: 4ii51011-2.0

Synopsys FPGA

Compiler II BLIS & Quartus II LogicLock Design Flow
Revised: June 2004

Part number: 4ii51012-1.0

Synopsys Design Compiler FPGA Support
Revised: June 2004
Part number: 4ii51014-1.0

Analyzing Designs with the Quartus II RTL Viewer & Technology Map Viewer

Revised: June 2004
Part number: 4ii51013-2.0

Altera Corporation

A\ [

-
o nYA

About this Handbook

®

How to Contact
Altera

This handbook provides comprehensive information about the Altera®
Quartus®II design software, version 4.0..

For the most up-to-date information about Altera products, go to the
Altera world-wide web site at www.altera.com. For technical support on
this product, go to www.altera.com/mysupport. For additional
information about Altera products, consult the sources shown below.

Information Type

USA & Canada All Other Locations

Technical support

altera.com/mysupport/

(408) 544-7000 (1)
(7:00 a.m. to 5:00 p.m. Pacific Time)

www.altera.com/mysupport/

(800) 800-EPLD (3753)
(7:00 a.m. to 5:00 p.m. Pacific Time)

Product literature

www.altera.com www.altera.com

Altera literature services

lit_req@altera.com (7) lit_req@altera.com (7)

Non-technical customer
service

(408) 544-7000
(7:30 a.m. to 5:30 p.m. Pacific Time)

(800) 767-3753

FTP site

ftp.altera.com ftp.altera.com

Note to table:
(1)

Typographic
Conventions

You can also contact your local Altera sales office or sales representative.

This document uses the typographic conventions shown below.

Visual Cue

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type

External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold
type. Examples: fyax, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital
Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

Altera Corporation

xiii

http://www.altera.com/mysupport/
http://www.altera.com/mysupport/
http://www.altera.com
http://www.altera.com
mailto:lit_req@altera.com
mailto:lit_req@altera.com
ftp://ftp.altera.com
ftp://ftp.altera.com
http://www.altera.com
http://www.altera.com/mysupport

Typographic Conventions

Quartus Il Handbook, Volume 1

Visual Cue

Italic type

Internal timing parameters and variables are shown in italic type.
Examples: tpja, n+ 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters

Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title”

References to sections within a document and titles of on-line help topics are
shown in quotation marks. Example: “Typographic Conventions.”

Courier type

Signal and port names are shown in lowercase Courier type. Examples: datal,
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files (e.g., the AHDL
keyword SUBDES IGN), as well as logic function names (e.g., TR1) are shown in
Courier.

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

Bullets are used in a list of items when the sequence of the items is notimportant.

The checkmark indicates a procedure that consists of one step only.

The hand points to information that requires special attention.

The caution indicates required information that needs special consideration and
understanding and should be read prior to starting or continuing with the
procedure or process.

The warning indicates information that should be read prior to starting or
continuing the procedure or processes

The angled arrow indicates you should press the Enter key.

The feet direct you to more information on a particular topic.

Xiv

Altera Corporation

A I:l -Ig DY/A Section I. Design Flows

®

Altera Corporation

The Altera® Quartus®II design software provides a complete multi-
platform design environment that easily adapts to your specific design
needs. The Quartus II software also allows you to use the Quartus II
graphical user interface, EDA tool interface, or command-line interface
for each phase of the design flow. This section explains the Quartus II
options that are available for each of these flows.

This section includes the following chapters:

Chapter 1, Hierarchical Block-Based & Team-Based Design Flows
Chapter 2, Quartus II Design Flow for MAX+PLUS II Users
Chapter 3, System Design Using SOPC Builder

Chapter 4, Quartus II Support for HardCopy Devices

Chapter 5, Engineering Change Management

Section I-1

Design Flows Quartus Il Handbook, Volume 1

Revision H istorv The table below shows the revision history for Chapters 1 to 5.

Section -2

Chapter(s)

Date / Version

Changes Made

1

Aug. 2004 v2.1

e Minor typographical corrections

June 2004 v2.0

e Updates to tables, figures.
o New functionality for Quartus 4.1.

Feb. 2004 v1.0

Initial release.

June 2004 v2.0

e Updates to tables, figures.
o New functionality for Quartus 4.1.

Feb. 2004 v1.0

Initial release.

June 2004 v2.0

e Updates to tables, figures.
o New functionality for Quartus 4.1.

Feb. 2004 v1.0

Initial release.

June 2004 v2.0

e Updates to tables, figures.
e New functionality for Quartus 4.1.

Feb. 2004 v1.0

Initial release.

June 2004 v2.0

No change to document.

Feb. 2004 v1.0

Initial release.

Altera Corporation

1. Hierarchical Block-Based
ANITERA

- & Team-Based Design Flows

ii51001-2.1

Introduction

Design Flows:
Flattened versus
Hierarchical
Block-Based

Altera Corporation
August 2004

Today's complex designs require multiple hardware description
language (HDL) design files, each of which may undergo significant
testing and optimization before being combined into the final top-level
design. Many designs require work from more than one member of a
design team. In this environment, the traditional flattened netlist
approach to design may not be as effective as a hierarchical block-based
design methodology.

This chapter discusses the differences between flattened and hierarchical
design flows and describes block-based or team-based hierarchical
methodologies in detail. The chapter highlights the Altera® Quartus®II
LogicLock™ design methodology, and discusses issues to consider when
partitioning a design to achieve optimal results when using this
methodology.

Most HDL-based designs are created using either a block-based or a
flattened design methodology. In a flattened synthesis flow, you apply a
single set of optimizations to the design’s top level. Thus, a flattened
design has one output netlist file for the entire design. However, as
designs become more complex and designers work in teams, a
block-based hierarchical design flow is often more effective. In this
approach, each sub-block may have its own output netlist file and you
perform optimization on individual sub-blocks. After you optimize all of
the sub-blocks, you integrate them into a final design and can optimize it
at the top level if desired. Synthesizing and optimizing each sub-block
separately may provide better quality of results.

Using a block-based design methodology can also reduce the placement
and routing changes required with each compilation in the Quartus II
software. Using a hierarchical design approach limits the amount of logic
impacted by engineering change orders (ECOs) that affect only one part
of the design.

When you make small changes to a design, you can use incremental
fitting for Stratix® II, Stratix, Stratix GX, Cyclone™, or MAX® II devices by
choosing Start > Start Incremental Fitting (Processing menu).
Incremental fitting updates the design’s netlist, placement, and routing,
while ensuring that the timing characteristics of the design change as
little as possible from those of the previous compilation. Incremental

Quartus Il Handbook, Volume 1

fitting also helps to reduce the compilation time necessary to regenerate
a netlist. If the changes to the design are too big, complexities in
incremental fitting may cause longer compilation times.

) For more information on incremental fitting and the circumstances
under which it can be used, refer to the Quartus II Help.

When you make changes to a single block in the design, you can use the
LogicLock design methodology to preserve your performance results, as
discussed in “Block-Based Design with the Quartus II LogicLock
Methodology” on page 1-4.

Table 1-1 describes each design flow and its advantages.

Table 1-1. Quartus Il Flatiened Versus Block-Based Hierarchical Design Flow

Design Flow Description Advantages
Traditional flattened One output netlist for | @ You can perform optimization across design boundaries
the entire design and hierarchies for the entire design.

e Simple to manage.

Block-based hierarchical | Separate netlist files |® You compile each module separately.

for design modules e You can apply different optimization techniques to each
module.

e Design modifications do not affect the optimization of
other modules if the placement of other modules is
locked down in the device.

® You can use optimized modules in other designs.

Block-Based & For larger designs, such as those implemented in today’s large high
performance devices, a team of designers may work on different modules

Team'BaSEd of a design at the same time.
Designs

To take advantage of a block-based design flow, you must define different
modules as a part of your design hierarchy in different files and
instantiate them in a top-level file.

1-2 Altera Corporation
August 2004

Block-Based & Team-Based Designs

Figure 1-1 shows an example of a design hierarchy.

Figure 1-1. Quartus Il Design Hierarchy

Designer 1

—— —

D

Designer 2

Designer 3

Altera Corporation

August 2004

In Figure 1-1, the top-level design A is assigned to one engineer
(designer 1), while two engineers work on the lower levels of the design.
Designer 2 works on B and its submodules D and E, while designer 3
works on C and its submodule F.

You can treat each module or a group of modules as one block of the
design for block-based synthesis. A submodule can be a Verilog HDL
module, a VHDL entity, an ADHL (.tdf) submodule, a Block Design File
(.bdf) entity, a Verilog Quartus Mapping (.vqm), Electronic Data
Interchange Format (.edf) netlist file, or any combination of these. During
synthesis, you generate a separate VOM or EDF netlist file for each block
of submodules. In this case, there is a separate netlist file for each block
including modules A, B, and C.

To combine these submodules into a block for synthesis, they must form
a single tree in the hierarchical design. For example, you cannot create
one netlist file for the two submodules E and C, while A and B are in
different netlists, because E and C are in different branches of the design.
You can have E and C separate with individual netlists for A, B, C, and E,
or have E and C grouped in one netlist for the whole tree under the
top-level design A.

Quartus Il Handbook, Volume 1

Block-Based
Design with the
Quartus I
LogicLock
Methodology

You can use the LogicLock design methodology in the Quartus II
software to perform block-based hierarchical compilation. Using the
LogicLock design flow, you can design and optimize each module
independently, integrate all optimized modules into a top-level design,
then verify the system. Incorporating each module into the top-level
design does not affect the performance of the lower-level modules, as
long as each module has registered inputs and outputs.

If each submodule in a design is represented by a unique netlist, only the
portions of the design that have been updated must be resynthesized
when you compile the design. You can make changes, optimize, and
resynthesize the submodule you are working on without affecting other
sections. Using the LogicLock design methodology, you can place the
logic in each netlist file into a fixed or floating region in an Altera device.
You can then maintain the placement and, if necessary, the routing of your
blocks in the Altera device, thus retaining performance.

Figure 1-2 compares the traditional design flow with the LogicLock
design flow.

Figure 1-2. Comparison of Traditional Design Flow with Quartus Il LogicLock Design Flow

Traditional Design Flow LogicLock Design Flow
. Design, Optimize
Design & Verify
A 4 A 4
Integrate Integrate
\ 4 \ 4
Optimize Verify
\ 4
Verify

Altera Corporation
August 2004

Preserving Timing Results Using the LogicLock Flow

Preserving
Timing Results
Using the
LogicLock Flow

Altera Corporation
August 2004

For more information on using the LogicLock feature in the Quartus II
software, see the LogicLock Design Methodology chapter in Volume 2 of the
Quartus II Handbook. The rest of this chapter assumes that you are
familiar with the basic LogicLock features and methodology.

When preserving logic placement in an Altera device, Altera
recommends using an atom netlist to preserve the node names in
sub-blocks of your design. An atom netlist contains design information
that fully describes the submodule’s logic in terms of the device
architecture. In the atom netlist, the nodes are fixed as Altera primitives
and the node names do not change if the atom netlist does not change. If
a node name does change, any placement information associated with
that node, such as LogicLock assignments made when back-annotating a
region, is invalid and ignored by the Compiler.

If all the netlists are contained in one Quartus II project, use the
LogicLock flow to back-annotate the logic in each region. If a design
region changes, only the netlist associated with the changed region is
affected. When you place and route the design with the Quartus II
software, the software needs to re-fit only the LogicLock region
associated with the changed netlist file.

s Altera recommends that you turn on the Prevent further netlist
optimization option when back-annotating a region with
Synthesis Netlist Optimizations and/or Physical Synthesis
Optimization options turned on. This sets the Netlist
Optimizations option to Never Allow for all nodes in the
region, avoiding the possibility of a node name change in the
top-level design when the region is imported.

You may need to remove previously back-annotated assignments for a
modified block because the node names may be different in the newly
synthesized version. When you recompile with one new netlist file, the
placement and assignments for the unchanged netlist files assigned to
different LogicLock regions are not affected. Therefore, you can make
changes to code in an independent block and not interfere with another
designer’s changes, even if all the blocks are integrated into the same top-
level design.

With the LogicLock design methodology, you can develop and test
submodules without affecting the other areas of a design.

Quartus Il Handbook, Volume 1

Design
Partitioning &
Creating

Multiple Netlist
Files

Preserving Routing

LogicLock regions not only allow you to preserve logic placement from
one compilation to the next, but they also allow you to retain routing
inside LogicLock regions. You can back-annotate and export the routing
of a submodule, then import it into a top-level project. This feature allows
you to specify the exact location of the submodule in the device and

which routing resources the Quartus Il PowerFit " Fitter should use
during compilation.

You can import back-annotated routing if exactly one instance of the
imported region exists in the top level of the design. If more than one
instance exists, the routing constraint is ignored and the LogicLock region
is imported without back-annotation of routing. The routing constraint
cannot be applied to multiple instances in different parts of the device
because routing channels from one part of the device may not be exactly
the same in another area of the device.

For more information on back-annotating routing, see the LogicLock
Design Methodology chapter in Volume 2 of the Quartus 1I Handbook.

When using a block-based design methodology, you typically create
separate netlists for separate design modules. Partitioning your design
up-front is the best way to employ team-based methodologies and
facilitate design reuse. In addition, to take advantage of the LogicLock
design methodology when synthesizing a design using the Quartus II
software, you should create an atom netlist for each design block before
you lock down the nodes in that block into LogicLock regions.

When creating separate netlist files for a block-based methodology, it is
important to consider how your design is partitioned into sub-blocks that
will be separate netlists in your block-based methodology. Altera
recommends using registered boundaries for all modules. This helps
ensure that the timing between hierarchical blocks does not become the
critical timing path in the design once the blocks are assembled.

See the Design Recommendations for Altera Devices chapter in Volume 1 of
the Quartus I Handbook for more design partitioning guidelines.

Certain third-party synthesis tools allow you to create separate netlist
files for different sections of a design hierarchy, or to maintain separate
partitions within one netlist for different sections of a design hierarchy. To
ensure that the synthesis tool functions properly, tools allow you to create
separate netlist files or partitions only for blocks that contain entire
modules, entities, or existing netlist files. In addition, each module or
entity should have its own design file. If two different modules are in the

Altera Corporation
August 2004

Design Partitioning & Creating Multiple Netlist Files

Altera Corporation
August 2004

same design file but are defined as being part of different blocks, it is
difficult to perform incremental synthesis. In this case, both regions must
be recompiled when you change one of the modules or entities.

If you don’t use a synthesis tool feature to automatically create separate
netlist files, you can create a black box for each submodule in the
higher-level file that instantiates it. Create a black box by first
instantiating the submodule in the top-level design, then providing a
component declaration in VHDL or a dummy module declaration in
Verilog HDL. When creating a black box, you do not provide the actual
design or logic that forms that submodule. You then create a netlist file for
the submodule in a separate synthesis project. Essentially, you instantiate
a wrapper for the submodule netlist in the top-level design or any higher
module that instantiates it. Some synthesis tools have attributes that can
be set to tell the synthesis tool that a submodule contained in a black box
is intended to be empty.

See the appropriate chapter in the Synthesis section in Volume 1 of the
Quartus II Handbook for details on your synthesis tool’s support for
creating multiple netlist files to be used with the LogicLock design
methodology, and for more information on creating submodules
contained in a black box.

If you synthesize a design using Quartus II Integrated Synthesis that
contains a VHDL Design File (.vhd), Verilog Design File (.v), Text Design
File (.tdf), or a Block Design File (.bdf), you must also create an atom
netlist to establish fixed nodes and node names when using the
LogicLock design methodology. Turn on the Save a node-level netlist
into a persistent source file (Verilog Quartus Mapping File) option on
the Compilation Process page in the Settings dialog box (Assignments
menu). This option saves your final results as an atom-based netlist in
VQM format. By default, the Quartus II software places the VQM in the
atom_netlists directory under the current project directory. To create a
different VQM with different Quartus II settings, change the file name
setting on the Compilation Process page in the Settings dialog box
(Assignments menu).

I If you are using an atom netlist from a third-party synthesis tool
and the design has black-boxed library of parameterized
modules (LPM) functions or Altera megafunctions, you must
generate a separate Quartus II VOQM for the modules contained
in the black box.

Quartus Il Handbook, Volume 1

Scripting
Support

You can run procedures and make settings described in this chapter in a
Tel script. You can also run some of these procedures at a command
prompt.

For detailed information about specific scripting command options and
Tcl API packages, type quartus_sh --ghelp at a system command
prompt to run the Quartus II Command-Line and Tcl API Help utility.

For more information on Quartus II scripting support, including
examples, refer to the Tcl Scripting and Command-Line Scripting chapters
of the Quartus II Handbook.

Performing Incremental Fitting

You can perform incremental fitting with a Tcl command or with a

command run at a command prompt.

Tel Script

Use the following in a script or Tcl console:
execute_flow -incremental_fitting

The execute_flow command is in the Flow package.

Command Prompt

Use the following at a system command prompt:
quartus_sh --flow incremental_Tfitting <project name> +

For more information about performing incremental fitting, see page 1-1.

Save a Node-Level Netlist into a Persistent Source File (Verilog
Quartus Mapping File).

Make the following assignments to cause the Quartus II Fitter to save a
node-level netlist into a VQM file:

set_global_assignment \
-name LOGICLOCK_INCREMENTAL_COMPILE_ASSIGNMENT ON
set_global_assignment \
-name LOGICLOCK_INCREMENTAL_COMPILE_FILE <file name>

Any path specified in the file name must be relative to the project
directory. For example, specifying atom_netlists/top.vqm places
top.vqm in the atom_netlists subdirectory of your project directory.

Altera Corporation
August 2004

Conclusion

Conclusion

Altera Corporation
August 2004

Prevent Further Netlist Optimization

Use the following Tcl statements to prevent further netlist optimization of
nodes in a back-annotated LogicLock region:

foreach node [get_logiclock_contents \

-region <region name> -node_location] {
set node_name [lindex $node 0]
set_instance_assignment \
-name ADV_NETLIST_OPT_ALLOWED “NEVER ALLOW” \
-to $node_name

}

The get_logiclock_contents command is in the logiclock
package.

For more information about preventing further netlist optimization, refer
to “Preserving Timing Results Using the LogicLock Flow” on page 1-5.

Hierarchical design methodologies can improve the efficiency of your
design process, providing better design reuse opportunities and fewer
integration problems when working in a team environment. Following
the guidelines in this chapter can help you achieve good results with
these methodologies.

Quartus Il Handbook, Volume 1

1-10 Altera Corporation
August 2004

2. artus Il Design Flow for
A U —E D A Qu u [o] '}

MAX+PLUS Il Users

®

(ii51002-2.0

Introduction

Chapter
Overview

Altera Corporation
June 2004

The feature-rich Quartus®II software enables you to shorten your design
cycles and achieve a reduced time-to-market. With Stratix® I, Stratix GX,
Stratix, and MAX®II family support, the Quartus II software is the most
widely accepted Altera® design software tool today.

This chapter describes a simple process for converting MAX+PLUS II
designs to Quartus II projects, as well as similarities and differences
between the MAX+PLUS II design flow and the Quartus II design flow.
This includes supported device families, GUI comparisons, and the
advantages of the Quartus II software.

There are many features in the Quartus II software to help
MAX+PLUS® II users make an easy transition to the Quartus II software
design environment. These include the ability to choose an option in the
Quartus II software to cause the graphical user interface (GUI) to display
menus, tool bars, and utility windows as they appear in the
MAX+PLUS 1II software without sacrificing functionality.

This chapter covers the following topics:

Typical complex programmable logic device (CPLD) design flow
Device support

Quartus II GUI overview

Setting up the MAX+PLUS Il look and feel in the Quartus II software
MAX+PLUS II look and feel

Compiler tool

MAX+PLUS II design conversion

Quartus II design flow

Quartus Il Handbook, Volume 1

Typical Design
Flow

Figure 2-1 shows a typical design flow with the Quartus II software.

Figure 2-1. Quartus Il Software Design Flow

Constraints and
Settings

Constraints and
Settings

No

< >

Design
Files

Quartus Il Analysis
& Elaboration

)

A4

Quartus Il
Integrated
Analysis &
Synthesis

Quartus II-

Functional Netlist

Quartus Il
Functional
Simulation

Quartus Il Fitter

Timing
and Area

Requirements
Satisfied?

Configuration/
Programming
files
(.sof/.pof)

Configure/Program
Device

Post
place-and-route
simulation files
(.vo/.vho, .sdo)

Quartus Il
Gate-Level Timing
Simulation

Altera Corporation
June 2004

Device Support

Device Support

Altera Corporation
June 2004

The Quartus II software supports most of the devices supported in the
MAX+PLUS 1II software, but it does not support any obsolete devices or

packages. The devices supported by these two software packages are

shown in Table 2-1.

Table 2-1. Device Support Comparison

Device Supported

Quartus Il

MAX+PLUS Il

Classic™

MAX 3000A

MAX 7000S/AE/B

v/
v

MAX 7000 /E

MAX 9000

ACEX® 1K

FLEX® 6000

FLEX 8000

FLEX 10K

v (1)

FLEX 10KA

FLEX 10KE

2)

NEAYAYAYAYAYAYAYANANAN

Mercury™

APEX™ 20K/ APEX Il

Stratix

Stratix GX

Stratix Il

Cyclone™

MAX Il

NESENRNESENRYAIRS

Notes to Table 2-1:

(1) PGA packages (G) are not supported in the Quartus II software.
(2) Some packages are not supported.

2-3

Quartus Il Handbook, Volume 1

Quartus Il GUI

Overview

2-4

The Quartus II software provides the following utility windows to assist
in the development of your designs:

Project Navigator
Node Finder

Tcl Console
Messages

Status

Change Manager

Project Navigator

The Hierarchy tab of the Project Navigator window is similar to the
MAX+PLUS Il Hierarchy Display and provides more information such as
logic cell, register, and memory bit resource utilization. The Files and
Design Units tabs of the Project Navigator window provide a list of
project files and design units.

Node Finder

The Node Finder window provides the equivalent functionality of the
MAX+PLUS II Search Node Database dialog box and allows you to find
and use any node name stored in the project database.

Tecl Console

The Tcl Console window allows access to the Quartus II Tcl shell from
within the GUI. From the Tcl Console window you can enter Tcl
commands and source Tcl scripts to make assignments, perform
customized timing analysis, view information about devices, or fully
automate and customize the way you run all components of the
Quartus II software. There is no equivalent functionality in the
MAX+PLUS 1II software.

For more information on using Tcl with the Quartus II software, see the
Tcl Scripting chapter in Volume 2 of the Quartus II Handbook.

Messages

The Messages window is similar to the Message Processor window in the
MAX+PLUS 1II software, providing detailed information, warning, and
error messages. It also allows you to locate a node from a message to
various windows in the Quartus II software.

Altera Corporation
June 2004

Quartus Il GUI Overview

&, Quartus II - C:/Tol

#PlusTl/maxzwor

Fie Edt Wew Project Assignmerts Processng Tools iindow Help

Status

The Status window displays information similar to the MAX+PLUS II
Compiler window. Progress and time elapsed are shown for each stage of
the compilation.

Change Manager

The Change Manager provides detailed tracking information on all
design changes made with the Chip Editor.

For more information on the Engineering Change Manager and the
Chip Editor, see the Design Analysis and Engineering Change Management
with Chip Editor chapter in Volume 3 of the Quartus II Handbook.

The Quartus II software is shown in Figure 2-2.

Figure 2-2. Example of the Quartus Il Look and Feel

trip - chiptrip

(==
EE|

2 fenpe [2 @F Tk Q8

Kl |

&} Info: Quartus Il Timing Anslyzer was successful. 0 enors. 4 wamings
&2 Info: Quartus Il Full Complation was successiul D errars, 17 wamings

|| [Errr e T
£y Complation Hierarchy A é% Emr"atm Repat
i - egal Notice
-
& chipvip) o ST Flow Summary
D - ¢SS Flow Settings
Flow Elapsed Time
9 B2 Flow Elapsed
&BB Flowlog
1 &1 Analysis & Synthesis _
= &B(] Fitter & chiptrip.gdf [0 x|
&1 Assembler =
| | | F & Timing Analyzer B
fyHierarchy [Files | a7 Design Linits F aite e
S (1] S 01 B eed_too_fat
x| @ oL L oo e
e st alnazs
Wodue Frogess [Tme & $ 2 e B W rn el ticke
Full Compilation 00:00:37 =
Analysis & Sprthesis 000012 | gy
- Filter 000013
Assembler oooood| | £k
Timing Analyzer onoeos) | =
g
()
Ll tick cnt
© et _ticket! -y =
~ et_ticket? gen tides
MELICRES e
™ | 121k
yartus Il
Information
http://wwwr. altera.com
ﬂ %, Ciitical Warming: Timing requirements were not met. See Report windou for detals = ﬂguartus II Tcl Console =l
F .

St 1, Priozing

IMassage 0of 266

4|] [Focaion

= e o L ad

For Help, press F1

LT dle [e |

Altera Corporation

June 2004

2-5

Quartus Il Handbook, Volume 1

Setting up
MAX+PLUS II
Look and Feel in
Quartus I

2-6

You can choose the MAX+PLUS II look and feel by selecting
MAX+PLUS II in the Look & Feel box of the General tab of the
Customize dialog box (Tools menu). Any changes to the look and feel
does not take effect until you restart the Quartus II software.

By default, when you select the MAX+PLUS II look and feel, the
MAX+PLUS II quick menu appears on the left side of the menu bar. You
can turn on or off both Quartus II and MAX+PLUS II quick menus. You
can also change the preferred positions of the two quick menus. These
options are available in the Quick menus box of the General tab of the
Customize dialog box (Tools menu). Click Apply without changing any
of the selections if you want to restore the factory defaults (see

Figure 2-3). Note: This was intended by design. If you simply click on
Apply without changing anything, you will get the factory defaults.

Figure 2-3. Customize Dialog Box -- General Tab

Customize E

General |Tnolbars| Commandsl Tel |

— Look & Fesl

Chooze the preferred look and feel for the Quartus [l software, You can fully customize
the Quartus || software regardless of what pou choose here.

Click Apply and restart the Quartus || software for any change to take effect. You can
alzo click Apply without changing the selection to reset to the factory defaults.

 Quartus Il

& MAKPLUS I &l
— Quick men

Gluartus || menu: off ks

M&E+PLUS | men Off 4

Altera Corporation
June 2004

MAX+PLUS Il Look and Feel

MAX+PLUS I
Look and Feel

Altera Corporation
June 2004

The MAX+PLUS II look and feel of the Quartus II software closely
resembles the MAX+PLUS II software. Figures 2—4 and 2-5 compare the
appearance of the MAX+PLUS II look and feel.

Figure 2—-4. MAX+PLUS Il Software GUI

mes_mag’ I5 never exiie
hased nn the

‘chiparip”
EPMIBITLCAE
T Locate In floorpian Edites

2-7

Quartus Il Handbook, Volume 1

Compiler Tool
2-8

The standard MAX+PLUS II tool bar is also available with the
MAX+PLUS II look and feel (see Figure 2-6).

Figure 2-6. Standard MAX+PLUS Il Tool Bar

The Compiler Tool provides an intuitive MAX+PLUS II-style interface.
You can edit the settings and view result files for the following modules:

Analysis and Synthesis
Fitter

Assembler

Timing Analyzer

EDA Netlist Writer

To start a compilation using the Compiler Tool, choose Compiler Tool
from either the MAX+PLUS II menu or the Tools menu and click Start in
the Compiler Tool (see Figure 2-7).

For information about Quartus I modules outside of the Compiler Tool,
see the Command-Line Scripting chapter in Volume 2 of the Quartus II
Handbook.

Figure 2-7. Running a Full Compilation with the Compiler Tool

i7» Compiler Tool = =] 3|
— Analysis & Syrthesis Fi mbler Timing Analyzer EDA Netlst Witer—
100 %2 100 %
00:00:08 00:00:27 00:00:04 00:00:04 00:00:03
| & &/ | /5| 2| B 2| B

100 %
00:00: 48

P Start @ Stop @ Repart

The Analysis and Synthesis module analyzes your design to build the
design database, optimizes it for the targeted architecture, and performs
technology mapping on the design logic. These are the functions
performed by the Compiler Netlist Extractor, Database Builder, and Logic
Synthesizer in the MAX+PLUS II software. There are no modules in the
Quartus II software similar to the MAX+PLUS II Partitioner module.

Altera Corporation
June 2004

Compiler Tool

Altera Corporation
June 2004

The Fitter module uses the PowerFit™ fitter to fit your design into the
available resources of the targeted device. The Fitter places and routes the
design. The Fitter module is analogous to the Fitter stage of the
MAX+PLUS 1II software.

The Assembler module creates a device programming image of your
design so that you can configure your device. You can select from the
following types of programming images:

Programmer Object File (.pof)

SRAM Output File (.sof)

Hexadecimal (Intel-Format) Output File (.hexout)
Tabular Text File (.ttf)

Raw Binary File (.rbf),

Jam STAPL Byte Code 2.0 File (.jbc)

JEDEC STAPL Format File (.jam).

The Assembler module is analogous with to Assembler stage of the
MAX+PLUS II software.

The EDA Netlist Writer module generates a netlist for simulation with an
EDA simulation tool. The EDA Netlist Writer module is comparable to
the VHDL +Verilog Netlist Writer stage of the MAX+PLUS II software.

You can significantly reduce subsequent compilation times in the
Quartus II software if you turn on Smart Compilation in the
Compilation Process page in the Settings dialog box (Assignments
menu). The Smart Compilation feature skips any compilation stages that
are not required but may use more disk space. This option is similar to the
MAX+PLUS II Smart Recompile command.

2-9

Quartus Il Handbook, Volume 1

MAX+PLUS II
Design
Conversion

2-10

The Quartus II software can open and convert MAX+PLUS Il designs and
assignments. You can automatically convert an entire MAX+PLUS II
design, or choose which assignments and files to convert.

The Quartus II software is project-based. All the files for your design
(HDL input, simulation vectors, assignments etc.) are associated with a
project file. For more information about creating a new project, see
“Creating a New Project” on page 2-14.

Converting an Existing MAX+PLUS Il Design

You can easily convert an existing MAX+PLUS II design for use with the
Quartus II software with the Open Project (File menu) or Convert
MAX+PLUS II Project (File menu) commands in the Quartus II software.

If you use the Convert MAX+PLUS II Project command, browse to the
MAX+PLUS II Assignments and Configuration File (.acf) or top-level
design file. The command generates a Quartus II Project File (.qpf) and a
Quartus II Settings File (.qsf). The Quartus II software stores project and
design assignments in the QSE, equivalent to the ACF in the
MAX+PLUS II software.

You can also open and convert a MAX+PLUS II design with the Open
Project command. In the Open Project dialog box, browse to the ACF or
the top-level design file (see Figure 2-8). Click Open to bring up the
Convert MAX+PLUS II Project dialog box.

=" TheQuartus I software can import all MAX+PLUS Il-generated
files, but it cannot save files in the MAX+PLUS II format. You
cannot open a Quartus II project in the MAX+PLUS II software,
nor can you convert a Quartus II project to a MAX+PLUS I
project.

Altera Corporation
June 2004

MAX+PLUS Il Design Conversion

Altera Corporation
June 2004

Figure 2-8. Convert MAX+PLUS Il Design with Open Project Command

Convyert MAX4-PLUS II Project E

Alloves pou to convert exizting MAX+PLUS || projects and assignments into a
new Cluartus || project.

M&:+FLUS 11 file name:
IE:a"TDu:uls.f'Ma:-:F'IuslI.-’marcEwu:urk.-"E!uartu&_chiptrip!chiptrip.au:f E

Eluartus |1 project name:

Ichiptrip

] Cancel

The conversion process performs the following actions:

Converts the ACF into a QSF (equivalent to importing all
MAX+PLUS II assignments)

Creates a Quartus II Project File (.qpf)

Displays all errors and warnings in the messages window

The Quartus II software can read MAX+PLUS II generated
Graphic Design Files (.gdf) and Simulation Channel Files (.scf)
without converting them. These files are not modified during a
MAX+PLUS II design conversion.

Converting MAX+PLUS Il Graphic Design Files

The Quartus II Block Editor (similar to the MAX+PLUS II Graphic Editor)
saves files as Block Design Files (.bdf). You can convert your GDF into a
BDF using one of the following methods:

Open the GDF and choose Save As (File menu). In the Save As dialog
box, choose Block Diagram/Schematic File (*.bdf) from the Save as
type list.

Run the command line executable quartus_g2b.exe located in the
/<Quartus II installation>/bin directory. For example, to convert the
chiptrip.gdf file to a BDEF, type the following command at a
command prompt:

quartus_g2b.exe chip_trip.gdf «

2-11

Quartus Il Handbook, Volume 1

Importing MAX+PLUS Il Assignments

You can import MAX+PLUS II Assignments into an existing Quartus II
project. Open the project, choose Import Assignments (Assignments
menu), and browse to the ACF. (see Figure 2-9). You can also import QSF

and ESF files.

Figure 2-9. Import Assignments Dialog Box

Import Assignments E

Select a file and the categonies of assignments to import. Mote: When importing
inztance azzighments from a lower hisrarchy level to & higher level, you may need
to specify the promation hierarchy.

Fromation hierarchy farmat: symbol_narmelingt_name

File name: IC:JTDDISHMaHF'IusII.-’maH2work£chiptripx’chiptlip.acf E

Awailable azzignment categories:

[w]all o
Device and device options

[w]|Findocation/chip assignments

Timirg requirementz

Cliques

[w]Individual logic options

[w]Local routing

[w| Compiler proceszing options

[w] Global project parameters

Global project logic sunthesis optionz

EDA tool input options

EDA, bool output optionz

Timing analysis options

[Sirmnlatinn nnbinns ;I

= A signment e o imEart
7| Glatal assimnmerts

I hstanice assignments

Erarmotian biemaneh

= | mpart eEtions
= Glkensite cottlicting assignments

™| Benlace alllassianments in selected sateqaores

Ok Cancel

The Quartus II software accepts most MAX+PLUS II assignments.

However, it is possible for an assignment to be imported incorrectly due

to node name formats.

2-12

Altera Corporation
June 2004

Quartus Il Design Flow

Quartus Il
Design Flow

Altera Corporation
June 2004

The Quartus II and MAX+PLUS II software formats for node names and
bus pin names are different. Make sure that the naming schemes map
properly and do not interfere with design logic. Table 2-2 compares the
differences between the naming conventions used by the Quartus II
software and the MAX+PLUS II software.

Table 2-2. Quartus Il & MAX+PLUS Il Node & Pin Naming Schemes

Feature Quartus Il Format MAX+PLUS Il Format
Node name auto_max:auto|q0 |auto_max:auto|q0
Pin name d[o], d[1], d[2] do, d1, d2

When you import MAX+PLUS II assignments that contain node names
that use numbers, such as signal0 or signall, the Quartus II software
inserts square brackets around the number, resulting in signal[0] or
signal[1].The square bracket format is legal for signals that are part of
abus, but creates illegal signal names for signals that are not part of a bus.
If your MAX+PLUS II design contains node names that end in a number
and are not part of a bus, you must edit the QSF to remove the square
brackets from the node name after importing.

The Quartus II software and the MAX+PLUS II software synthesize
nodes differently. The Quartus II software may not recognize valid
MAX+PLUS II node names, or may split MAX+PLUS II nodes into two
different nodes. As a result, any assignments made to synthesized nodes
are not recognized during compilation.

The following sections include information to help you get started using
the Quartus II software. They describe the similarities and differences
between the Quartus II software and the MAX+PLUS II software. The
following sections highlight improvements and benefits in the Quartus II
software.

To assist you through the Quartus II design flow, you can select from the
following wizards to guide you through various settings:

New project wizard

Timing wizard

Compiler settings wizard
Simulator settings wizard
Software build settings wizard

You can start the New Project Wizard from the File menu and the other
wizards under Wizards (Assignments menu).

2-13

Quartus Il Handbook, Volume 1

2-14

Creating a New Project

The Quartus II software provides a wizard to help you create new
projects. Choose New Project Wizard (File menu) to start the New Project
wizard. The New Project Wizard generates the QPF and QSF for your
project.

Design Entry

The Quartus II software supports the following design entry methods:

AHDL (.tdf)

VHDL (.vhd)

Verilog HDL (.v)

Block Diagram File (.bdf)
EDIF netlist file (.edf)
VQM netlist file (.vqm)

The Quartus II software has an advanced integrated synthesis engine that
fully supports the Verilog HDL and VHDL languages and provides
options to control the synthesis process.

For more information, see the Quartus II Integrated Synthesis chapter in
Volume 1 of the Quartus IT Handbook.

To create a new design file, select a design entry type in the Device
Design Files tab of the New dialog box (File menu) and click OK (see
Figure 2-10).

Figure 2-10. New Dialog Box

Mew x|

Device Design Files | Software Files | Other Files I

Werilog HOL File
WHDL File

Cancel |

Altera Corporation
June 2004

Quartus Il Design Flow

Altera Corporation
June 2004

e You can create other files, such as a Vector Waveform File (.vwf)
from the Software Files tab and Other Files tab of the New
dialog box (File menu).

To analyze a netlist file created by an EDA tool, select the synthesis tool
used to generate it in the Tool name list of the Design Entry & Synthesis
page under EDA Tool Settings in the Settings dialog box (Assignments
menu). See (Figure 2-11).

Figure 2-11. Settings Dialog Box

Settings - tsi_top
Category:
General Design Entry & Synthesis
Files
User Libraries Specify options for processing input files created by other EDA toals.
Device
Timing Requirements & Options
=1 EDA. ool Setlings Vel Bl |
; ; FPGA Compl -
D'ESI?”[Enlry & Spnthesis Ramis FrCA Egrm"gzlz I
!mya fon) FPGA Compiler || <era Edition
iming Analysis I Run this | FPGA Express

LeonardoS pectum

- Formal Verification LeonardoSpectiumitera (Level 1
“ Resprthesis g | |
e Iv Synplity Pro

Compilation Pragess \iawDran —
[+ Analysiz & Synthesis Settings Precision Synthesis hd
&) Fitter Settings GND IE

& Physical Synthesis O ptimizations
Timing Analyzer

 Library Mapping Fil

Design Assistant
SignalTap I Lagic Analyzer Fil name: [synplcty Inf
SignalFrobe Settings)) :)
g‘iu\am, ¢ I~ Show information messages describing LMF mapping during compilation

Software Build Settings
Stratix G Registration
HardCopy Settings

= Gererate baek-arnotation deta far tining clasure

Fieset
Cancel

4

The Quartus II Block Editor has many advantages over the MAX+PLUS II
Graphic Editor. The Block Editor offers an infinite amount of sheet space,
multiple region selections, an enhanced Symbol Editor, and conduits.

The Symbol Editor allows you to change the positions of the ports in a

symbol (see the three images in Figure 2-12). You can reduce wire
congestion around a symbol by changing the positions of the ports.

2-15

Quartus Il Handbook, Volume 1

2-16

Figure 2-12. Various Port Position for a Symbol

. ”///////////////////////////.’///////////////////////////’ .
[/ R——

=
E time cnt Z-
A] o .
o LT
;W enable time[?. . P
% | .
: g #—{ clk g :
% 7
e Z.
R .

o o o o o o

- = .

N ey e
4
2 time cnt
LE =
“o
LEe .
;x enable ﬁ time[7. .
: U

I

e

B P P i

"

enable time[7. .
clk ;

Rttty SRR

:nst

L4

N B P P i

- R

=
=
=
=
[
%
.
=
=
=
=
=
[
=
iz
Lz
2]

///////////////////////////.f///////////////////////////’ .
=

To make changes to a symbol in a BDF, right-click on a symbol in the
Block Editor and select Properties (right button pop-up menu) to bring
up the Symbol Properties dialog box. This dialog box allows you to
change the instance name, add parameters, and specify the line and text

color.

You can use conduits to connect blocks (including pins) in the Block
Editor. Conduits contain signals for the connected objects (see

Figure 2-13). You can determine the connections between various blocks
in the Conduit Properties dialog box by right clicking a conduit and
choosing Properties (right button pop-up menu).

Altera Corporation
June 2004

Quartus Il Design Flow

Altera Corporation
June 2004

Figure 2-13. Blocks and Pins Connected with Conduits

laps

10 | Type

ik IMPLIT

reset [IMPUT

sel1..0] NPT

et [MPUT

di7.0] NPT

W7.0] [OUTPOT
1

hvalues

10 | Type

=el[1..0] [MPUIT

hiz.0] [oUTPOT
1

CLlIIIIIIIIIIIIIIIII {state_m
S b 0| Twpe
S e ck__ |NPUT
DLIIIIIIIIIIIIIIII I reset MRUT
N et IMPUT
............................ =el[1..0] [DUTPUT
DIIIIIIIIIIIIII I e |OUTRLT
CLIIIIIIIIIIIIIII I oo [first JoUTRUT
N T

Making Assignments

The Quartus II software stores all project and design assignments in a
QSE. The QSF is a collection of assignments stored as Tcl commands and
organized by compilation stage and assignment type. The QSF stores all
assignments, regardless of how they are made: from the Floorplan Editor,
the Assignment Editor, with Tcl, or any other method.

2-17

Quartus Il Handbook, Volume 1

Assignment Editor

The Assignment Editor has an intuitive spreadsheet interface designed to
allow you to easily make, change, and manage a large number of
assignments.

The Assignment Editor is composed of the Category Bar, Node Filter Bar,
Information Bar, Edit Bar, and spreadsheet.

To make an assignment, perform the following steps in the Assignment
Editor:

1. Choose Assignment Editor (Assignments menu) to open the
Assignment Editor.

2. Select an assignment category in the Category bar.

3. Select a node name using the Node Finder or type a node name filter
into the Node Filter bar. (This step is optional; it excludes all
assignments unrelated to the node name.)

4. Type the required values into the spreadsheet.

5. Choose Save (File menu).

If you are unsure about the purpose of a cell in the spreadsheet, select the
cell and read the description displayed in the Information bar.

You can use the Edit bar to change the contents of multiple selected cells
simultaneously. Select cells in the spreadsheet and type the value in the
Edit box.

Other advantages of the Assignment Editor include clipboard support in
the spreadsheet and automatic font coloring to identify the status of

assignments.
“®.e Formore information, see the Assignment Editor chapter in Volume 1 of
the Quartus Il Handbook.
2-18 Altera Corporation

June 2004

Quartus Il Design Flow

Timing Assignments

You can use the timing wizard to help you set your timing requirements.
Choose Timing Wizard (Assignments menu) to create global clock and
timing settings. The settings include fy;x, setup times, hold times, clock
to output delay times, and individual absolute or derived clocks.

You can also set timing settings manually with the Timing Requirements
& Options page in the Settings dialog box (Assignments menu).

You can make more complex timing assignments with the Quartus II
software than allowed by the MAX+PLUS II software, including
multicycle and point-to-point assignments using wildcards.

Multicycle timing assignments allow you to identify register-to-register
paths in the design where you expect a delayed latch edge. This
assignment enables accurate timing analysis of your design.

Point-to-point timing assignments allow you to specify the required
delay between two pins or two registers or between a pin and a register.
This assignment helps you optimize and verify your design timing
requirements.

Wildcard characters “?” and “ * “ allow you to apply an assignment to a
large number of nodes with just a few assignments. For example,
Figure 2-14 shows a 4 ns tg assignment to a bus of registers made in the
Assignment Editor.

Figure 2-14. Single Tgy Timing Assignment Applied to All Nodes of a Bus

From Assignment Mame Walue

To
1 0 * 0 d?] tsu Requirement 4ns

«® For more information, see the Timing Analysis chapter in Volume 3 of the
Quartus II Handbook.

Altera Corporation 2-19
June 2004

Quartus Il Handbook, Volume 1

2-20

Synthesis

Quartus II integrated synthesis offers an alternative to EDA synthesis
tools. Quartus II integrated synthesis fully supports VHDL and Verilog
HDL synthesizable language features, as well as selected compiler
directives.

You can set several synthesis options in the Analysis & Synthesis
Settings page of the Settings dialog box. Similar to MAX+PLUS II
synthesis options, you can select Speed, Area, or Balanced for the
optimization technique.

= Only the APEX 20K, APEX II, Cyclone, Stratix II, and Stratix
device families support the balanced optimization technique.

To achieve higher performance, you can turn on synthesis netlist
optimizations that are available when targeting certain devices. You can
unmap a netlist created by an EDA tool and remap back to Altera
primitives by turning on Perform WYSIWYG primitive resynthesis.
Additionally, you can move registers across combinational logic to
balance timing without changing design functionality by turning on
Perform gate-level register retiming. Both of these options are accessible
from the Synthesis Netlist Optimizations page under Analysis &
Synthesis Settings in the Settings dialog box (Assignments menu,).

For more information, see the Quartus II Integrated Synthesis chatper in
Volume 1 of the Quartus II Handbook.

Functional Simulation

Similar to the MAX+PLUS II simulator, the Quartus II Simulator Tool
performs both functional and timing simulations.

To open the Simulator Tool, choose Simulator (MAX+PLUS II menu) or
Simulator Tool (Tools menu). Before you perform a functional
simulation, a functional simulation netlist is required. Click Generate
Functional Simulation Netlist in the Simulator Tool window (see
Figure 2-15) or choose Generate Functional Simulation Netlist
(Processing menu).

Altera Corporation
June 2004

Quartus Il Design Flow

Altera Corporation
June 2004

Figure 2-15. Simulator Tool Ready for Functional Simulation

= Simulator Tool =] 3
Simulation mode; IFunctinnaI vl Generate Functional Simulation Netlist |

Simulation input: IE:.n"TnnISa’MaHPIusII.n"ma>:2wnrka’chiplripfchiptrip.vwf

— Simulation period
& Run simulation until all vector simuli are used

" End simulation at: [100 Ins j

r— Simulation options
¥ Automatically add ping ta simulation output waveforms

™ Check outputs
= St and bold tme vislation detection

= Giteh detection: |1.D Ins j

™ Ovenwrite sirmulation input file with simulation results

2
00:00:00

!n Start | @ Ston | 1,-:';']- Open | GE‘LD Repart

[l=" Generating a functional simulation netlist creates a separate
database to significantly improve the performance of the
simulation.

You can view and modify the simulator options on the Simulator page of
the Settings dialog box or in the Simulator Tool window. You can set the
simulation period and turn Check outputs on or off. You can choose to
display the simulation outputs in the simulation report or in the vector
waveform file (.vwf). To display the simulation results in the simulation
input vector waveform file, turn on Overwrite simulation input file with
simulation results.

When using either the MAX+PLUS Il software or the Quartus Il software,
you may have to compile additional behavioral models to perform a
simulation with an EDA simulation tool. In the Quartus II software,
behavioral models for library of parameterized modules (LPM) functions
and Altera-specific megafunctions are available in the altera_mf and
220model library files, respectively. The 220model and altera_mf
files can be found in the /<Quartus II Install>/eda/sim_lib directory.

2-21

Quartus Il Handbook, Volume 1

2-22

The Quartus II schematic design files (BDF) are not compatible with EDA
simulation tools. To perform an RTL functional simulation of a BDF using
an EDA tool, convert your schematic designs to a VHDL or Verilog HDL
design file. Open the schematic design file and choose Create/Update >
Create HDL Design File for Current File (File menu) to create an HDL
design file that corresponds to your BDE.

You can export a VWF or SCF simulation file as a Verilog HDL or VHDL
testbench file for simulation with an EDA tool. Open your VWF or SCF
file and choose Export (File menu) (see Figure 2-16). Select Verilog or
VHDL testbench from the Save as type list. Turn on Add self-checking
code to file to add additional self-checking code to the testbench.

Figure 2-16. Export Dialog Box

X x|
Save i I@ chiptrip j - £k B
Cldb

File name: Ichiptrip.vt Expart I
VRN erilog Test Bench File [7.wt) Cancel |

¥ &dd self-checking code to file

A

Place & Route

The Quartus II Fitter, known as the PowerFit fitter, is the compiler
module that fits your design into a device. The PowerFit fitter performs
placement and routing.

You can turn on various fitter options located in the Fitter Settings page
in the Settings dialog box (Assignments menu).

High-density device families supported in the Quartus II software, such
as Stratix devices, sometimes require significant fitter effort to process.
Quartus II has several options to reduce the time required to fit a design.

You can control the effort the Quartus II Fitter places by achieving your
timing requirements with two options: Optimize Timing and Optimize
I/O cell register placement for timing options. By default, both options

Altera Corporation
June 2004

Quartus Il Design Flow

are turned on; however, if the length of time needed to compile is more
important than achieving specific timing results, you can turn off these
options.

You can control the amount of effort the Fitter makes by selecting
Standard Fit or Fast Fit. Select Standard Fit in the Fitter Effort box of the
Fitter Settings page in the Settings dialog box (Assignments menu) to
have the Fitter use the highest effort, preserving the performance from
previous compilations. Select Fast Fit for up to 50% faster compilation
times though this may cause a reduction in performance.

You can also select Auto Fit to decrease compilation time by directing the
Fitter to reduce Fitter effort after meeting the design's timing
requirements. The Auto Fit option is available for Stratix II, Stratix GX,
Stratix, and Cyclone devices.

To further reduce compilation times, turn on Limit to one fitting attempt
in the Fitter Settings page in the Settings dialog box (Assignments
menu).

If your design is very close to meeting your timing requirements, you can
control the seed number used in the fitting algorithm by changing the
value in the Seed box of the Fitter Settings page of the Settings dialog
box (Assignments menu). The value of the seed does not control
compilation time or the fitter effort level. It simply provides a different
starting point for the fitter algorithm.

Timing Analysis

You can use the Quartus II Analyzer to analyze more complex clocking
schemes than is possible with the MAX+PLUS II Timing Analyzer.

Launch the Timing Analyzer Tool by choosing Timing Analyzer
(MAX+PLUS II menu) or by choosing Timing Analyzer Tool (Tools
menu) (see Figure 2-17). To start the analysis, click Start in the Timing
Analyzer Tool or choose Start > Start Timing Analyzer (Processing
menu).

Altera Corporation 2-23
June 2004

Quartus Il Handbook, Volume 1

2-24

Figure 2-17. Registered Performance Tab of the Timing Analyzer Tool

& Timing Analyzer Tool - O] x|
Registered Ferformance Itpd | [£20] I [{sds] I th I Cuztarn Dela_l.JsI
Clock: Iclock d
Walue |
Fram auto_max:1lg2
To speed_ch:2zpeed™30

Clack period | 4,535 ns
Frequency | 22051 MHz

125

100 150

75 175

Wiy Start | @Stnp | @Heport | Murnber of paths b list: IF Lizt Paths |

IThe Quartus II Timing Analyzer analyzes all clock domains in your
design, including paths that cross clock domains. You can ignore paths
crossing clock domains by creating a Cut Timing Path assignment or by
turning on Cut paths between unrelated clock domains in the Timing
Requirements & Options page in the Settings dialog box (Assignments
menu).

You can view the results by clicking on the available tabs or by clicking
Report in the Timing Analyzer Tool. The Quartus II Timing Analyzer
reports both fy;x and slack. Slack is the margin by which a timing
requirement was met or not met. A positive slack value, displayed in
black, indicates the margin by which a requirement was met. A negative
slack value, displayed in red, indicates the margin by which a
requirement was not met.

To analyze a particular path in more detail, select a path in the Timing
Analyzer Tool and click List Paths. This displays a detailed description of
the path in the System tab of the Messages window (see Figure 2-18).

Altera Corporation
June 2004

Quartus Il Design Flow

Figure 2-18. Messages Window Displaying Detailed Timing Information

Info: -

nfo: Slack time iz -2.942 nz for clock clock between source pin di1] and destination register speed_ch: 2|zpeed™30
Infao: + tzu requirement for source pin and destination register iz 4.000 ns

c 10+ C(0.000 nz) +
;20 +IC[3.971 nz) + CELL{0.518 ng] = 5621 ne; Loc, = LC_<E_Y2_N8; Fanout = 3; COMBE Mode = 'auto_max1]_~215
2 3+ IC[1.206 nz) + CELL[D.204 ng] = 7.031 ns; Loc. = LC_<5_v2_N5; Fanout = 1; COME Node = 'auto_max1lspeed_too_fast~574"
2 d: + |C[0.738 ne) + CELL[0.518 ng] = 8.347 ns; Loc. = LC_<E_Y2_N1; Fanout = 4; COME Node = 'auto_max1lspeed_too_fast~578"
c B+ IC[0.F73 nz) + CELLID. 204 ng] = 9.324 ns; Loc. = LC_%5_¥'2_ME; Fanout = 1; COME Mode = 'speed_ch: 2lzspd_out~0"
2B+ IC[0.312 ne) + CELL{0.B03 el = 10.239 ne; Loe, = LE_X5_v2_M7; Fanout = 1; REG Mode = "speed_ch:2lspeed 30"
; Total cell delay = 3179 ns [31.05 %)

L} Info: Total interconnect delay = 7.060 n: [B2.95 %)
L} Info: + Micro setup delay of destination is 0.180 ns
[]-55} Infa: - Shortest clock path from clock clock to destination register iz 3.477 nz

=1.132 nz; Loc. = PIN_339; Fanout = 17; FIN Mode = 'di[1]'

32 nz)

h Sﬂ!mil" Froceming f
IMessage: 40f 18 t e ILocation 1: chiptrip Compilation Feport - Floorplan Yiew j Locate |

Altera Corporation
June 2004

«® For more information, see the Quartus Il Timing Analysis chapter in

Volume 3 of the Quartus II Handbook.

Timing Closure Floorplan

The Quartus II Timing Closure Floorplan is similar to the MAX+PLUS II
Floorplan Editor but has many improvements to help you more
effectively debug and view your design. With its ability to display logic
cell usage, routing congestion, critical paths, and LogicLock regions, the
Timing Closure Floorplan also makes it easy to improve your design
performance.

To view the Timing Closure Floorplan, choose Floorplan Editor
(MAX+PLUS II menu) or Timing Closure Floorplan (Assignments
menu).

The Timing Closure Floorplan Editor provides Package (Top and Bottom)
and Interior Cell views equivalent to the MAX+PLUS II Device and LAB
views. In addition to these views available from the View menu, you can
also choose between the Interior MegaLABs (where applicable), Interior
LABs, and the Field view.

The Interior LABs view hides cell (logic cell, Adaptive Logic Module
[ALM], and macrocells) details and shows LAB information (see
Figure 2-19). You can display the number of cells used in each LAB by
selecting Show Usage Numbers (View menu).

2-25

Quartus Il Handbook, Volume 1

2-26

Figure 2-19. Interior LAB view of the Timing Closure Floorplan

H H H H H H H H H H

The Field view is a color-coded, high-level view of your device resources
that hides both cell and LAB details. In the Field view, you can see critical
paths and routing congestion for your design.

The View Critical Paths feature shows a percentage of all critical paths in
your floorplan. You can enable this feature by choosing Show Critical
Paths (View menu). You can control the number of critical paths shown
by modifying the settings in the Critical Paths Settings dialog box (View
menu).

The View Congestion feature displays routing congestion by coloring and
shading logic resources. Darker shading shows greater resource
utilization. This feature assists in identifying locations where there is a
lack of routing resources.

I You can show lower level details in any view by right-clicking
on a resource and choosing Show Details (right-click pop-up
menu).

For more information, see the Timing Closure Floorplan chapter in Volume
2 of the Quartus II Handbook.

Timing Simulation

Timing simulation is an important part of the verification process. The
Quartus II software supports native timing simulation and exports
simulation netlists to third party software for design verification.

Quartus Il Simulator Tool

The Quartus II Simulator tool provides an easy-to-use integrated
solution. It uses the compiler database to simulate the logical and timing
performance of your design (Figure 2-20). When performing timing
simulation, the simulator uses place-and-route timing information.

Altera Corporation
June 2004

Quartus Il Design Flow

Altera Corporation
June 2004

Figure 2-20. Quartus Il Simulator Tool

&, Simulator Tool =l
Sirnulation mode: ITiming vl EErerate Eirmstint ! it esis |

Sirnulation input: IE:a’qdesigna’fir_filtera’input.vwf

—

— Simulation period

@ Run simulation until l vector stimul are used

" End simulation at I‘IDD s *

— Simulation options
v Automatically add pinz to simulation output wavefoms

™ Check outputs
- Setup and hold time violation detection

™ Glitch detection: I‘I.D ns T

W Dvenurite sirmulation input file with gimulation results

@ Stom | q} Open |

E_L Start |

GE‘LQ Report |

You can use Tcl commands, Vector Waveform Files, text-based Vector
Files, or an existing SCF file as the vector stimuli for your simulation.

The simulation options available are similar to the options available in the
MAX+PLUS 1II Simulator. You can control the length of the simulation
and the type of checks performed by the Simulator. When the
MAX+PLUS II look and feel is selected, the Overwrite simulation input
file with simulation results option is on by default. If you turn it off, the
simulation results are written to the Report File. To view the Report File,

click Report in the Simulator Tool window.

You can also follow step-by-step instructions to help you set simulation
settings. To start the Simulator Setting Wizard, choose Simulator Settings

Wizard (Assignments menu).

2-27

Quartus Il Handbook, Volume 1

2-28

EDA Timing Simulation

The Quartus II software also supports timing simulation with other EDA
simulation software. Performing timing simulation with other EDA
simulation software requires a Quartus II-generated timing netlist file, a
Standard Delay Format Output File, and a device-specific atom file.

Specify your EDA simulation tool by selecting the tool under Tool name
on the EDA Tool Settings > Simulation page of the Settings dialog box
(Assignment menu).

You can generate a timing netlist for the selected EDA simulator tool by
running a full compile or by choosing Start > Start EDA Netlist Writer
(Processing menu). The generated netlist and SDF file are placed into the
/<project directory>/simulation/<EDA simulator tool> directory. The
device-specific atom files are located in the /<Quartus II Install>
/eda/sim_lib/ directory.

Power Estimation

To develop an appropriate power budget and to design the power
supplies, voltage regulators, heat sink, and cooling system, you need an
accurate estimate of the power that your design consumes. You can
estimate power by using the Excel-based power calculator available on
the Altera Web Site at www.altera.com, or in the Quartus II software.

You can use the Excel-based power calculator by entering device resource
and performance information. Or, you can use the Quartus II
software-generated power estimation file and import it into the power
calculator. To generate the power estimation file, choose Generate Power
Estimation File (Project menu). The power calculator spreadsheet
supports the Stratix, Stratix GX, and Cyclone device families.

To report estimated power using the Quartus II software, simulate your
design with an input stimulus file. You can use the Quartus II simulator
or an EDA simulation tool to perform the simulation. The Cyclone,
MAX 7000B, MAX 7000AE, MAX 30004, Stratix II, Stratix GX, and Stratix
device families are supported by this method for estimating power.

If you use the Quartus II simulator, enter the required information in the
Power Estimation dialog box available from the Simulator page of the
Settings dialog box (Assignments menu). Power estimation results
appear in the simulator summary page of the simulation report after a
timing simulation.

Altera Corporation
June 2004

Conclusion

Conclusion

Altera Corporation
June 2004

For more information on early power estimation, see the Early Power
Estimation chapter in Volume 3 of the Quartus II Handbook. For more
information about how to use the simulation-based power estimation
feature in Quartus II, see the Simulation-Based Power Estimation chapter in
the Quartus Il Handbook.

Programming

The Quartus II Programmer has the same functionality as the
MAX+PLUS II Programmer including programming, verifying,
examining, and blank checking operations. To improve usability the
Quartus II Programmer displays all programming-related information in
one window (see Figure 2-21).

Click Add File or Add Device in the Programmer window to add a file or
device, respectively.

Figure 2-21. Programmer Window

1 Filkref.cdp® (O] x]

&, Hardware Setup . | | ByteBlaster [LPTT] Mode: [746 =] Progress: | 0%
Program/ Blank- Secut
Wi Stan Fie Device Checksum | Usercods < Veily Examine i
Configure: Check i
WL Sios 1. .. FilkerjcompilefFiltref.sof EPZOKZ00EFG72 000243ES FFFFFFFF]] Ll]

2, kericomplieftiteeF, pof EPMFSIZETIAE ol O [— |)
Bl Auto Detect

% [UElete

Gl Add File:
& IChErgE File
B G File

I Add Device. |

You can save the programmer settings as a Chain Description File (.cdf).
The CDF is an ASCII text file that stores device name, device order, and

programming file name information. To restore the programmer settings,
browse to the CDF in the Open dialog box (File menu).

The Quartus II software is the most comprehensive design environment
available for programmable logic designs. Features such as the
MAX+PLUS II look and feel help you make the transition from Altera’s
MAX+PLUS 1II design software and become more productive with the
Quartus II software. The Quartus II software has all the capabilities and
features of the MAX+PLUS II software and many more to speed up your
design cycle.

2-29

Quartus Il Handbook, Volume 1

Quick Menu
Reference

2-30

The MAX+PLUS II Quick Menu changes according to the window that is
active (see Figures 2-22 and 2-23). In the following example, the Graphic

Editor window is active.

Figure 2-22. MAX+PLUS Il Quick Menu

| MagtpLUSTT File Edib
Hierarchy Display
Graphic Editor
Symbol Editor

Text Editor
Waveform Editar
E Eloorplan Editar
ﬁ Zompiler

B Simulator

& Timing Analyzer
ﬂ Programmer
Message Processar

it Quick Start Guide

File

Edit
Wiew
Symbol
Assign
Ltilities
Options

* T w w v w ¥ w

Iz

=lp

Altera Corporation
June 2004

Quick Menu Reference

Figure 2-23. Quartus Il Quick Menu

4! Quartus II

[Quartes 1

Altera Corporation 2-31
June 2004

Quartus Il Handbook, Volume 1

Quartus Il
Command
Reference for
MAX+PLUS I
Users

2-32

NA means either Not Applicable or Not Available.

If the command is not listed, then the command is the same in both tools.

Table 2-3. Quartus Il Reference for MAX+PLUS Il Users

(Part 1 0f 11)

MAX+PLUS Il Software

Quartus Il Software

MAX+PLUS 1l Menu

Hierarchy display

View > Utility Windows > Project
Navigator

Graphic Editor

& =

Block Editor

)

3]
E Symbol Editor Effy] Block Symbol Editor
IE Text Editor Zhe| Text Editor

il

Waveform Editor Waveform Editor

iy| Floorplan Editor e Assignments > Timing Closure

- Floorplan

I Compiler =] Tools > Compiler Tool

[=h Simulator i) Tools > Simulator Tool

FoH] Timing Analyzer ;‘r'i Tools > Timing Analyzer Tool
[#2] Programmer M| Tools > Programmer

o~
|

]

Message Processor

View > Utility Windows > Messages

S

'_"'
@
=
@
=
=

File > Project > Name
(Ctrl+J)

File > Open Project (Ctrl+J)

[B] | [

File > Project > Set Project
to Current File (Ctrl+Shift+J)

Project > Set as Top-Level Entity
(Ctrl+Shift+J), or
File > New Project Wizard

<

File > Project > Save &
Check (Ctrl+K)

Processing > Start > Start Analysis &
Synthesis (Ctrl+K) or

Processing > Start > Start Analysis &
Elaboration

-
i3]

File > Project > Save &
Compile (Ctrl+L)

Processing > Start Compilation
(Ctrl+L)

I

File > Project > Save &
Simulate (Ctrl+Shift+L)

9|) [[0 e | [

Processing > Start Simulation (Ctrl+l)

Altera Corporation
June 2004

Quartus Il Command Reference for MAX+PLUS Il Users

Altera Corporation
June 2004

Table 2-3. Quartus Il Reference for MAX+PLUS Il Users

(Part 2 of 11)

MAX+PLUS Il Software

Quartus Il Software

File > Project > Save, Compile &
Simulate (Ctrl+Shift+K)

Processing > Start Compilation & Simulation
(Ctrl+Shift+K)

File > Project > Archive

Project > Archive Project

File > Project > <Recent Projects>

File > <Recent Projects>

File > Delete File

NA

File > Retrieve

NA

File > Info (Ctrl+l)

File > File Properties

File > Create Default Symbol

File > Create/Update > Create Symbol Files
for Current File

File > Edit Symbol

(Block Editor) Edit > Edit Selected Symbol

File > Create Default Include File

File > Create/Update > Create AHDL Include
Files for Current File

% File > Hierarchy Project Top
= (Ctrl+T)

Project > Hierarchy > Project Top
(Ctrl+T)

File > Hierarchy > Up (Ctrl+U)

Project > Hierarchy > Up (Ctrl+U)

File > Hierarchy > Down (Ctrl+D)

Project > Hierarchy > Down (Ctrl+D)

[551 | omd

File > Hierarchy > Top

P4

A

File > Hierarchy > Project
== Top (Ctrl + T)

Project > Hierarchy > Project Top
(Ctrl+T)

File > MegaWizard Plug-In
Manager

Tools > MegaWizard Plug-In Manager

2| [o8

(Graphic Editor) File > Size

NA

(Waveform Editor) File > End Time

(Waveform Editor) Edit > End Time

(Waveform Editor) File > Compare

(Waveform Editor) View > Compare to
Waveforms in File

(Waveform Editor) File > Import
Vector File

File > Open (Ctrl+O)

(Waveform Editor) File > Create
Table File

File > Save As

(Hierarchy Display) File > Select
Hierarchy

NA

(Hierarchy Display) File > Open
Editor

(Project Navigator) Double-click

(Hierarchy Display) File > Close
Editor

NA

(Hierarchy Display) File > Change
File Type

(Project Navigator) Select file in Files tab and
choose Properties on right click menu

2-33

Quartus Il Handbook, Volume 1

2-34

Table 2-3. Quartus Il Reference for MAX+PLUS Il Users (Part 3 of 11)

MAX+PLUS Il Software

Quartus Il Software

(Hierarchy Display) File > Print
Selected Files

NA

(Programmer) File > Select
Programming File

File > Open

(Programmer) File > Save
Programming Data As

File > Save

(Programmer) File >
Inputs/Outputs

NA

(Programmer) File > Convert
SRAM Object Files

File > Convert Programming Files

(Programmer) File > Archive JTAG
Programming Files

NA

(Programmer) File > Create Jam
or SVF File

File > Create/Update > Create JAM, SVF, or
ISC File

(Message Processor) Select
Messages

NA

(Message Processor) Save
Messages As

(Messages) Save Messages on right click
menu

(Timing Analyzer) Save Analysis
As

Processing > Compilation Report - Save
Current Report on right click menu in Timing
Analyzer sections

(Simulator) Create Table File

(Waveform Editor) File > Save As

(Simulator) Execute Command NA
File
(Simulator) Inputs/Outputs NA
Edit Menu

(Waveform Editor) Edit >
Overwrite

(Waveform Editor) Edit > Value

(Waveform Editor) Edit > Insert

(Waveform Editor) Edit > Insert Waveform
Interval

(Waveform Editor) Edit > Align to
Grid (Ctrl+ Y)

NA

(Waveform Editor) Edit > Repeat

(Waveform Editor) Edit > Repeat Paste

(Waveform Editor) Edit > Grow or
Shrink

Edit > Grow or Shrink (Ctrl+Alt+G)

(Text Editor) Edit > Insert Page
Break

(Text Editor) Edit > Insert Page Break

@ (Text Editor) Edit > Increase
Indent (F2)

(Text Editor) Edit > Increase Indent

Altera Corporation
June 2004

Quartus Il Command Reference for MAX+PLUS Il Users

Table 2-3. Quartus Il Reference for MAX+PLUS Il Users (Part 4 of 11)

MAX+PLUS II Software Quartus Il Software
E (Text Editor) Edit > (Text Editor) Edit > Decrease Indent
=== Decrease Indent (F3)
E (Graphic Editor) Edit > (Block Editor) Edit > Toggle Connection Dot

Toggle Connection Dot
(Double-Click)

5’“ (Graphic Editor) Edit > Flip (Block Editor) Edit > Flip Horizontal
===l Horizontal

(Graphic Editor) Edit > Flip Ii‘l (Block Editor) Edit > Flip Vertical

Vertical
(Graphic Editor) Edit > Rotate (Block Editor) Edit > Rotate by
Degrees
View Menu
View > Fit in Window | View > Fitin Window (Ctrl+W)
(Ctrl+W)
View > Zoom In gl View > Zoom In (Ctrl+Space)
(Ctrl+Space)
View > Zoom Out gl View > Zoom Out (Ctrl+Space)
(Ctrl+Shift+Space)
View > Normal Size (Ctrl+1) NA
View > Maximum Size (Ctrl+2) NA
(Hierarchy Display) View > Auto | NA
Fit in Window
(Waveform Editor) View > Time = View > Zoom
Range
Assign Menu

Assign > Device Assignments > Device or

Assignments > Settings (Ctrl+Shift+E)

Assign > Pin/Location/Chip Assignments > Assignment Editor -

Locations category

N E

Assign > Timing Requirements F&5| Assignments > Assignment Editor -
> 1 Timing category
Assign > Clique F&5| Assignments > Assignment Editor -
=1 Cliques category
Assign > Logic Options F&5| Assignments > Assignment Editor -
® | Logic Options category
Assign > Probe NA
Altera Corporation 2-35

June 2004

Quartus Il Handbook, Volume 1

2-36

Table 2-3. Quartus Il Reference for MAX+PLUS Il Users (Part 5 of 11)

MAX+PLUS Il Software

Quartus Il Software

Assign > Connected Pins

&3] Assignments > Assignment Editor -
Simulation category

Assign > Local Routing

Assignments > Assignment Editor -
Local Routing category

Assign > Global Project Device
Options

Assignments > Device - Device & Pin
Options

Assign > Global Project
Parameters

Assignments > Settings - Analysis &
Synthesis - Default Parameters

Assign > Global Project Timing
Requirements

Assignments > Timing Settings

Assign > Global Project Logic
Synthesis

Assignments > Settings - Analysis &
Synthesis

Assign > Ignore Project
Assignments

Assignments > Assignment Editor -
disable

N EH N N E |

Assign > Clear Project
Assignments

Assignments > Remove Assignments

Assign > Back-Annotate Project

Assignments > Back-Annotate Assignments

Assign > Convert Obsolete
Assignment Format

NA

Utilities Menu

ﬂ Utilities > Find Text (Ctrl+F)

Edit > Find (Ctrl+F)

:;:! Utilities > Find Node in
Design File (Ctrl+B)

BET] Project > Locate > Locate in Design
i .
File

H Utilities > Find Node in

EEA] Project > Locate > Locate in Timing

Fin

Floorplan Closure Floorplan
Utilities > Find Clique in Floorplan | NA
Utilities > Find Node Source NA
(Ctrl+Shift+S)
Utilities > Find Node Destination | NA
(Ctrl+Shift+D)
Utilities > Find Next (Ctrl+N) Edit > Find Next (F3)
Utilities > Find Previous NA
(Ctrl+Shift+N)
Utilities > Find Last Edit NA
F] Utilities > Search and F Edit > Replace (Ctrl+H)
ﬂ Replace (Ctrl+R)
Utilities > Timing Analysis Source | NA

(Ctrl+Alt+S)

Altera Corporation
June 2004

Quartus Il Command Reference for MAX+PLUS Il Users

Altera Corporation
June 2004

Table 2-3. Quartus Il Reference for MAX+PLUS Il Users

(Part 6 of 11)

MAX+PLUS Il Software

Quartus Il Software

Utilities > Timing Analysis NA
Destination (Ctrl+Alt+D)

Utilities > Timing Analysis Cutoff | NA
(Ctrl+Alt+C)

Utilities > Analyze Timing NA
Utilities > Clear All Timing NA

Analysis Tags

(Text Editor) Utilities > Go To
(Ctrl+G)

Edit > Go To (Ctrl+G)

(Text Editor) Utilities > Find
Matching Delimiter (Ctrl+M)

(Text Editor) Edit > Find Matching
Delimiter (Ctrl+M)

(Waveform Editor) Utilities > Find
Next Transition (Right Arrow)

Waveform Editor) View > Next Transition

(Waveform Editor) Utilities > Find
Previous Transition (Left Arrow)

(
(Right Arrow)
(

Waveform Editor) View > Next Transition
(Left Arrow)

Options Menu

Options > User Libraries

Izl Assignments > Settings (Ctrl+Shift+E)

Options > Color Palette

Tools > Options

Options > License Setup

Tools > License Setup

Options > Preferences

Tools > Options

(Hierarchy Display) Options > NA
Orientation
(Hierarchy Display) Options > NA

Compact Display

(Hierarchy Display) Options >
Show All Hierarchy Branches

(Project Navigator) Expand All on right click
menu

(Hierarchy Display) Options >
Hide All Hierarchy Branches

NA

(Editors) Options > Font

Tools > Options

(Editors) Options > Text Size

Tools > Options

(Graphic Editor) Options > Line
Style

Edit > Line

(Graphic Editor) Options >

Rubberbanding

EI Tools > Options

(Graphic Editor) Options > Show
Parameters

View > Show Parameter Assignments

(Graphic Editor) Options > Show
Probes

NA

2-37

Quartus Il Handbook, Volume 1

2-38

Table 2-3. Quartus Il Reference for MAX+PLUS Il Users (Part 7 of 11)

MAX+PLUS Il Software

Quartus Il Software

(Graphic Editor) Options > Show
Pins/Locations/Chips

View > Show Pin and Location
Assignments

(Graphic Editor) Options > Show | NA
Clique, Timing & Local Routing
Assignments
(Graphic Editor) Options > Show | NA
Logic Options

NA

E} (Graphic Editor) Options >
: Show All (Ctrl+Shift+M)

(Graphic Editor) Options > Show
Guidelines (Ctrl+Shift+G)

Tools > Options - Block/Symbol Editor page

(Graphic Editor) Options >
Guideline Spacing

Tools > Options - Block/Symbol Editor page

(Symbol Editors) Options > Snap
to Grid

Tools > Options - Block/Symbol Editor page

(Text Editor) Options > Tab Stops

Tools > Options - Text Editor page

(Text Editor) Options > Auto-
Indent

Tools > Options - Text Editor page

(Text Editor) Options > Syntax
Coloring

NA

(Waveform Editor) Options >
Snap to Grid

View > Snap to Grid

(Waveform Editor) Options >
Show Grid (Ctrl+Shift+G)

Tools > Options - Waveform Editor page

(Waveform Editor) Options > Grid
Size

Edit > Grid Size - Waveform Editor page

(Floorplan Editor) Options >
Routing Statistics

NA

BH] (Floorplan Editor) Options >
Q!ﬂ Show Node Fan-In

EI View > Routing > Show Fan-In

=. (Floorplan Editor) Options >
=1 Show Node Fan-Out

View > Routing > Show Fan-Out

,;" (Floorplan Editor) Options >
= Show Path

FH] View > Routing > Show Paths between
=1 Nodes

(Floorplan Editor) Options > Show
Moved Nodes in Gray

NA

(Simulator) Options > Breakpoint

Processing > Simulation Debug >
Breakpoints

(Simulator) Options > Hardware
Setup

NA

Altera Corporation
June 2004

Quartus Il Command Reference for MAX+PLUS Il Users

Table 2-3. Quartus Il Reference for MAX+PLUS Il Users (Part 8 of 11)

MAX+PLUS II Software Quartus Il Software
(Timing Analyzer) Options > Time EI Assignments > Timing Settings
Restrictions
(Timing Analyzer) Options > NA

Auto-Recalculate

(Timing Analyzer) Options > Cell | NA
Width

(Timing Analyzer) Options > Cut EI Assignments > Timing Settings
Off 1/0 Pin Feedback

(Timing Analyzer) Options > Cut EI Assignments > Timing Settings
Off Clear & Reset Paths

(Timing Analyzer) Options > Cut @ Assignments > Timing Settings
Off Read During Write Paths

(Timing Analyzer) Options > List | NA

Only Longest Path

(Programmer) Options > Sound NA

(Programmer) Options > Tools > Options - Programmer page
Programming Options

(Programmer) Options > Select (Programmer) Edit > Change Device
Device

(Programmer) Options > (Programmer) Edit > Hardware Setup
Hardware Setup

Symbol (Graphic Editor)

Symbol > Enter Symbol (Block Editor) Edit > Insert Symbol
(Double-Click) (Double-Click)
Symbol > Update Symbol Edit > Update Symbol or Block

Symbol > Edit Ports/Parameters Edit > Properties

Element (Symbol Editor)

Element > Enter Pinstub Double-click on edge of symbol

Element > Enter Parameters NA

Templates (Text Editor)
%a Templates (Text Editor) Edit > Insert Template

Altera Corporation 2-39
June 2004

Quartus Il Handbook, Volume 1

2-40

Table 2-3. Quartus Il Reference for MAX+PLUS Il Users (Part 9 of 11)

MAX+PLUS Il Software

Quartus Il Software

Node (Waveform Editor)

Node > Insert Node
(Double-Click)

Edit > Insert Node or Bus (Double-Click)

Node > Enter Nodes from SNF

Edit > Insert Node - click on Node Finder...

Node > Edit Node

Double-click

Node > Enter Group

Edit > Group

Node > Ungroup

Edit > Ungroup

Node > Sort Names

Node > Enter Separator

Edit > Sort
NA

Layout (Floorplan Editor)

Layout > Full Screen

View > Full Screen (Ctrl+Alt+Space)

Layout > Report File Equation
Viewer

EI View > Equations

Layout > Device View (Double-
Click)

View > Package Top or

View > Package Bottom

Layout > LAB View (Double-Click)

View > Interior Labs

Layout > Current
Assignments Floorplan

View > Assignments > Show User
Assignments

B == E

Fﬁ] Layout > Last Compilation

== Floorplan

View > Assignments > Show Fitter
Assignments

Processing (Compiler)

Processing > Design Doctor

Processing > Start > Start Design
Assistant

Processing > Design Doctor
Settings

Assignments > Settings - Design
Assistant

| &

Processing > Functional SNF
Extractor

Processing > Generate Functional
Simulation Netlist

Processing > Timing SNF

Processing > Start Analysis &

Extractor Synthesis
Processing > Optimize Timing NA

SNF

Processing > Linked SNF NA

Extractor

Processing > Fitter Settings

Assignments > Settings - Fitter
Settings

Altera Corporation
June 2004

Quartus Il Command Reference for MAX+PLUS Il Users

Table 2-3. Quartus Il Reference for MAX+PLUS Il Users

(Part 10 of 11)

MAX+PLUS Il Software

Quartus Il Software

Processing > Report File Settings

Assignments > Settings

]

Processing > Generate AHDL
TDO File

NA

Processing > Smart Recompile

Assignments > Settings - Compilation
Process

<]

Processing > Total Recompile

Assignments > Settings - Compilation
Process

<]

Processing > Preserve All Node
Name Synonyms

Assignments > Settings - Compilation
Process

<]

Interfaces (Compiler)

Assignments > EDA Tool Settings

@]

Initialize (Simulator)

Initialize > Initialize Nodes/Groups | NA
Initialize > Initialize Memory NA
Initialize > Save Initialization As NA
Initialize > Restore Initialization NA
Initialize > Reset to Initial SNF NA

Values

Node (Timing Analyzer)

Node > Timing Analysis Source NA
(Ctrl+Alt+S)

Node > Timing Analysis NA
Destination (Ctrl+Alt+D)

Node > Timing Analysis Cutoff NA

(Ctrl+Alt+C)

Analysis

(Timing Analyzer)

Analysis > Delay Matrix

(Timing Analyzer Tool) Delay tab

Analysis > Setup/Hold Matrix

NA

Analysis > Registered
Performance

(Timing Analyzer Tool) Registered
Performance tab

JTAG

(Programmer)

JTAG > Multi-Device JTAG Chain

(Programmer) Mode: JTAG

JTAG > Multi-Device JTAG Chain

Setup

(Programmer) Window

Altera Corporation

2-41

Quartus Il Handbook, Volume 1

Table 2-3. Quartus Il Reference for MAX+PLUS Il Users (Part 11 of 11)

MAX+PLUS Il Software Quartus Il Software
JTAG > Save JCF File > Save
JTAG > Restore JCF File > Open

JTAG > Initiate Configuration from | Tools > Options - Programmer page
Configuration Device

FLEX (Programmer)

FLEX > Multi-Device FLEX Chain | (Programmer) Mode: Passive Serial

FLEX > Multi-Device FLEX Chain | (Programmer) Window

Setup
FLEX > Save FCF File > Save
FLEX > Restore FCF File > Open
2-42 Altera Corporation

June 2004

A I:l = b A 3. System Design Using
= SOPC Builder

®

ii51003-2.0

Introduction The Altera® SOPC Builder system development tool provides a powerful
platform for creating memory-mapped systems based on processors,
peripherals, and memories that are internal or external to the FPGA. You
can use SOPC Builder to define and implement a complete system in a
fraction of the time required using traditional, manual system-on-a-chip
(SoC) methods. SOPC Builder is included in Altera’s Quartus®II
software, giving Quartus II users immediate access to this development
tool.

SOPC Builder automates the task of integrating the address-based

read /write interfaces to hardware design modules. By integrating
modules automatically, SOPC Builder dramatically simplifies the task of
creating high-performance system-on-a-programmable-chip (SOPC)
designs. In traditional SoC design, you must manually connect all of the
system components. Using SOPC Builder, you need only specify the
peripherals; SOPC Builder generates the interconnect logic automatically,
including address decoding, data-path multiplexing, wait-state
generation, interrupt controller, and data-width matching.

The outputs of SOPC Builder are hardware design language (HDL) files
that define all components of the system, and a top-level HDL design file
called the system module that ties all these components together.

Figure 3-1 on page 3-2 shows an example of a multi-master system
module connecting multiple master and slave peripherals. SOPC Builder
generates the Avalon™ switch fabric that contains logic to manage the
connectivity of all modules in the system.

Altera Corporation 3-1
June 2004

Quartus Il Handbook, Volume 1

3-2

Figure 3-1. Example of a System Module Generated by SOPC Builder

Processor Ethernet
(Bus Master) (Bus Master)
32-Bit 32-Bit

il il

Avalon Switch Fabric

Address Interrupt Data Wait-State
Decoder Controller Multiplexing Generation

Arbiter Arbiter Arbiter Arbiter Arbiter

Width-Match Width-Match Width-Match Width-Match Width-Match

Slave 1 Slave 2 Slave 3 Slave 4 Slave 5
8-Bit 32-Bit 16-Bit 32-Bit 64-Bit

SOPC Builder Peripherals

Altera and other developers provide SOPC Builder components that
range from simple blocks of fixed logic, to complex, parameterized, and
dynamically-generated subsystems. Available SOPC Builder hardware
components include:

Microprocessors

Microcontroller peripherals

Timers

Serial communication interfaces, such as UART and serial peripheral
interface (SPI)

General-purpose I/O

Digital signal processing (DSP) functions
Communications peripherals

Interfaces to off-chip devices

e Memory controllers

Buses and bridges

Application-specific standard products (ASSPs)
ASICs

You can use the SOPC Builder to connect any block of logic that uses the
Avalon interface or the AMBA™ advanced high-performance bus (AHB)
interface. Most SOPC Builder peripherals use the Avalon interface.

Altera Corporation
June 2004

Introduction

Check the Altera web site at www.altera.com for up-to-date information
about available SOPC Builder Ready components.

SOPC Builder Ready Functions

Altera awards the SOPC Builder Ready certification to intellectual
property (IP) design functions that have plug-and—play integration with
SOPC Builder. These functions may be accompanied by software drivers,
low-level routines, or other software design files.

Altera offers a free “test drive” of IP functions through the OpenCore®
and OpenCore Plus evaluation features. You can verify the functionality
quickly and easily of a IP function both in simulation and in hardware, as
well as evaluate the size and performance before making the purchase
decision.

«® You can download OpenCore and OpenCore Plus evaluations of Altera
IP functions directly from www.altera.com/IPMegastore. For IP
functions provided by third-party vendors, contact the vendor directly
to obtain an OpenCore evaluation.

User-Defined Peripherals

SOPC Builder provides a simple method for you to develop and connect
your own modules:

1. You create a block of logic with an Avalon or AHB interface in either
Verilog HDL or VHDL.

With the Avalon interface, user-defined peripherals need to adhere
only to a simple interface based on address, data, read-enable, and
write-enable signals.

2. Use the Interface to User Logic Wizard to import your HDL files
into SOPC Builder.

You use the wizard to map the input and output signal names to
Avalon signal types, specify the timing requirements, and specify
simulation files.

3. Instantiate the custom module in the same manner as for other
SOPC Builder Ready components.

User-defined peripherals can be instantiated multiple times in a
single design, and can be used in other system designs.

Altera Corporation 3-3
June 2004

http://www.altera.com
http://www.altera.com/IPMegastore
http://www.altera.com/IPMegastore

Quartus Il Handbook, Volume 1

3-4

Embedded Software Applications

You can specify and integrate software components for
microprocessor-based systems. For each processor included in the
system, SOPC Builder generates the following applications
software-specific information:

Software components

Header files (C and assembly)
Generic C drivers

Operating system (OS) kernels
Middleware libraries

These files form a custom software development kit (SDK) for each
processor. For more details, see “SDK Option” on page 3-10.

Avalon Switch Fabric

The Avalon switch fabric is the glue that binds SOPC Builder-generated
systems together. The Avalon switch fabric is the collection of control,
data and address signals, and arbitration logic connecting master and
slave peripherals. The Avalon switch fabric is implemented as a
configurable architecture that matches the interface ports, logical
behavior, and signal sequencing of the specific peripherals connected to
the system.

The Avalon switch fabric is designed for both simplicity and
performance. The Avalon signal types are straightforward, and you can
design peripherals generically without knowing about the other
peripherals connected to the system. The Avalon switch fabric
implements a point-to-point connection between all master-slave pairs
that require connection.

The multi-master Avalon switch fabric maximizes system throughput by
allowing all master peripherals to transfer data in parallel. The Avalon
switch fabric also supports pipelined transfers, so that master-slave pairs
achieve the maximum throughput possible. SOPC Builder automatically
implements slave-side arbitration whenever necessary. With slave-side
arbitration, master transfers stall only when multiple master ports
attempt to access the same slave port at the same time.

Automatic Generation

SOPC Builder generates the Avalon switch fabric to connect master and
slave peripherals. Use the SOPC Builder to define the connectivity
between peripherals. With this information, SOPC Builder automatically
creates and connects the HDL modules.

Altera Corporation
June 2004

Introduction

Altera Corporation
June 2004

Because of the SOPC Builder interface, your view of the Avalon switch
fabric is usually limited to the specific ports that relate to the connection
of custom Avalon peripherals. For SOPC Builder Ready IP functions,
SOPC Builder automatically connects the Avalon ports correctly, making
it unnecessary for you to consider the interfaces for these IP functions.

Function

The Avalon switch fabric provides the following services to connected
peripherals:

B Data-Path Multiplexing—Multiplexers in the Avalon switch fabric

transfer data from the selected slave peripheral to the appropriate
master peripheral.

Address Decoding—Address decoding logic produces chip-select
signals for each peripheral. This simplifies peripheral design,
because individual peripherals do not need to decode the address
lines to generate chip-select signals.

Pipelined Transfer Capabilities—Latency-aware peripherals are
capable of initiating multiple read transfers in succession without
waiting for the first transfer to complete, also known as pipelining
data transfers. Transfers with latency allow master-slave pairs to
achieve maximum throughput performance, even though the first
transfer may require several cycles of latency to present valid data.

Wait-State Generation—Wait-state generation extends transfers by
one or more clock cycles, for the benefit of peripherals with special
synchronization needs. Wait states can be generated to stall a master
peripheral in cases when the target peripheral cannot respond in a
single clock cycle. Wait states are also generated in cases when
read-enable and write-enable signals have setup or hold time
requirements.

Dynamic-Bus Sizing—Dynamic-bus sizing hides the details of
interfacing narrow Avalon slave ports to a wider Avalon master port,
and vice versa. For example, in the case of a 32-bit master read
transfer from a 16-bit memory, dynamic-bus sizing automatically
executes two slave read transfers to fetch 32 bits of data from the
16-bit memory device. This reduces the logic and/or software
complexity in master peripherals, because the master port does not
need to be aware of the physical nature of the slave port.

Interrupt-Priority Assignment—When one or more slave ports

generate interrupts, the Avalon switch fabric passes the interrupts to
appropriate master peripherals.

3-5

Quartus Il Handbook, Volume 1

Using SOPC
Builder

3-6

System Generation

After you add all peripherals and specify all necessary system
parameters, SOPC Builder is ready to generate the system. During system
generation, SOPC Builder creates the following items:

B The HDL files for the top-level system module and each component
in the system

B A Block Symbol File (.bsf) representation of the top-level system
module

B The SDK for application software development

ModelSim® simulation project files

A Tcl script that sets up all of the files needed for compilation in the

Quartus II software

After you generate the system module, it can be compiled directly by the
Quartus II software, or included in a larger design.

Simulation Model & Testhench

During system generation, SOPC Builder optionally can output a
simulation environment that accelerates the system simulation effort.
SOPC Builder generates both a simulation model and a testbench for the
entire system. You can simulate your custom systems with minimal effort,
immediately after generating the system with SOPC Builder. For more
information, see the “Simulation Option” on page 3-12.

Launch SOPC Builder in the Quartus II software as follows:

1. Open a project in the Quartus II software.

2. Choose SOPC Builder (Tools menu) in the Quartus II software to
run SOPC Builder.

SOPC Builder provides an easy-to-use, table-oriented user interface for
defining systems. SOPC Builder contains two primary pages, System
Contents page and System Generation page.

In addition, certain peripherals may add system dependency pages that
allow you to specify refinements and relationships with other peripherals
in the system.

Altera Corporation
June 2004

Using SOPC Builder

System Contents Page

You select components and define the system on the System
Components page. The page is split into two sections: the module pool
and the module table. The module pool lists all the available components,
while the module table displays the components added to the current
system. Figure 3-2 shows an example of the System Contents page.

Figure 3-2. Systems Contents Page

Device Family Setting

System Clock Frequency Setting

¥ Altera SOPC Builder - SOPC_2_ASSP ol x|
Fle System Module Wiew Help
System Cortents | System Generation |
!! A.'tel::;c:;g i“&iz: Logie || TeroetDeviee Fawly: [Stafi: =] System Cock Freauency: fion MHz
- Avalan Modules
© Nios Frocessor - Afera Use Motius Nams Descrlption Base | End R
Bridges v owerPC_interface_0
c i v 0x00000000 0x00FFFFFr
Module Pool — EP1C20 Hios [D&, 0x01000000 | 0=0100001F | 16
EP1510 Hios: v On-Chip Mermary (RAM ar ROM) 0x01002000 0x0710037FF
EP20K200E Hios Developr v 0x01010000 0x0101FFFF | 17
Ethernet v 0x01000020| 0x0100003F | 18
Math Coprocessars v 0x01000040| 0=07100005¢ | 19
Memory n3 _avalon_am29lv065d_flash_0 0x01600000| 001 FFFIFF
Other v state_bridge_0 Ervalon Tr-Glete Bridge
PCl W 0x01000060| 0x0100007F | 20
Peripherals v
UsB v/ [0x00000000| 000000017 | 21
uP Interfaces n 0x00000020| 00000003 | 22
- AHB Modules
@ Excalibur Stripe
Bridges e
CPU Interface
Module Table T —
4 »
All Awailable Compoonents
o | ® | | O
Module ——
Pool Filter Leld B check A Move Up = Move Down
(1) Done checking for updates. Al
Messages —— I
|« _’l_I
Exit = Prey Next > Cerierete

Altera Corpor
June 2004

Module Pool

The module pool shows the available library of components organized
according to category. Each component appears with a colored dot next
to its name. The colors of the dots have the following meanings:

ation

Green dot—Indicates fully licensed components.

Yellow dot—Indicates that a component is available for system design
evaluation in some limited form, typically subject to a hard time out
or reduced functionality.

White dot—Indicates SOPC Builder Ready components available
from Altera or partner vendors that are not currently installed on the
PC. Evaluation versions of these components can be downloaded
from the web for free.

3-7

Quartus Il Handbook, Volume 1

3-8

You can use the module pool to filter the display for available
components, installed components, components available on the web, or
components with updates available on the web. In addition, if you have
an Internet connection, the module pool is updated to show new
components from Altera and partner vendors as they become available.

Module Table

The module table lists components that are included in the current
system. Additionally, the module table describes the following elements:

Connectivity between master and slave ports

Addresses for each slave port

Interrupt controller (IRQ) assignments for each slave port
Arbitration priorities for slave ports shared by multiple-master ports

If Show Master Connections (View menu) is turned on, the left side of
the module table displays the connectivity between master ports and
slave ports. You can selectively connect any master port to any slave port.
Whenever two or more master ports share (i.e., have access to) the same
slave port, SOPC Builder automatically inserts an arbiter to grant access
to the slave when simultaneous requests occur.

To view arbitration priorities, choose Show Arbitration Priorities (View
menu).

You can connect any master port to any slave port if they use the same
interface protocol. If they use different interface protocols, they must
communicate through a bridge component, such as the AHB-to—Avalon
bridge provided with SOPC Builder.

For more information on master/slave connections and arbitration
priorities, see Application Note 184: Simultaneous Multi-Mastering with the
Avalon Bus.

Altera Corporation
June 2004

Using SOPC Builder

Additional Settings

The System Contents page includes additional options as shown in
Table 3-1.

Table 3-1. System Contents Page Options

Option

Description

Target

Select one of the listed Development boards. The Target Device Family and System
Clock Frequency fields are automatically populated. Select the Unspecified Board to
select the Target Device Family and to set the System Clock Frequency manually.

Target Device Family

Select the target FPGA device family from the Target Device Family list. SOPC
Builder takes advantage of the architectural features of a specified device family
when generating the system module. (7)

System Clock Frequency

The System Clock Frequency setting specifies the master clock frequency that drives
the system module. Many peripherals use the system clock frequency to generate
clock dividers, baud rate generators, etc. SOPC Builder’s built-in testbench
generator also uses the setting to simulate a clock of the requested frequency. (7)

Note to Table 3-1:

(1) The Quartus II software does not detect this setting automatically. The setting must also be specified in the

Quartus II software.

Altera Corporation
June 2004

System Generation Page

The System Generation page includes settings to control the generation
process for the hardware design files, simulation model, and the SDK.
Figure 3-3 on page 3-10 shows the System Generation page.

3-9

Quartus Il Handbook, Volume 1

Figure 3-3. System Generation Page Note (1)

L% Altera SOPC Builder - SOPC_2_ASSP -0l x|
Fle System Module Yiew Help

System Contents | Systemn Generation
- Options

Enable SDK

v SDK. Generate header files, lbrary fles, sndl memory contents for CRUCE) and peripherats in your system.
Enable HDL——————Hv HOL. Generate hus and system logic in Yerilog

[7 Siriulation. Creats ModeiSin(tn) project s Run MotietSin

Enable ModelSim—F
Simulation File
Generation

Run the ModelSim
Software

System Generation—j—
Progress Message

(1) Done checking for Lpdates. B

SOPC Builder
Messages

.
4 | Jﬂ

ee | [cme | weas | G |

Note to Figure 3-3:

(1) Some SOPC Builder Ready processor components may modify the look of this page to allow the user better access
to the processors software tool chain. Please refer to the processors documentation for more information.

SDK Option

When the SDK option is turned on, SOPC Builder creates a custom SDK
for each CPU in the system. This SDK contains software files (drivers,
libraries, and utilities) for any system components that provide
software-support files.

You can build software applications for Excalibur™ devices as part of the
generation process. The SDK files are arranged into the following
directories:

B inc—This directory contains header files. These files include the
definition for the memory map, register declarations for included
peripherals, and macros that can be used in creating embedded
software applications.

B lib—This directory contains software library files. During system
generation, processor components can include commands to have
SOPC Builder compile the libraries automatically.

3-10 Altera Corporation
June 2004

Using SOPC Builder

B src—This directory provides a location for application source-code
development. Example source code files associated with peripherals
may also be copied into this directory during system generation.

You should save any file you have edited with a unique filename to
prevent the file from being overwritten in a subsequent system
generation. Altera recommends that your source code be stored in one of
the following locations:

B src directory
B A subdirectory of the src directory
B A directory on the same level as the src directory in the SDK

You should provide all the SDK files to the software engineers developing

application code for the system every time you generate or update the

system hardware module.

= Certain components, such as the Nios® II embedded processor,
may modify the contents on the page to provide better access to
the software development environment for the processor. Please
refer to the CPU component documentation for more
information.

HDL Option

To generate HDL files that describe the system, turn on the HDL option.
The files are Verilog HDL or VHDL, depending on which language you
specify when starting SOPC Builder. The Verilog HDL files contain the
following components:

B Aninstance of every component in the system

B The Avalon switch fabric tailored to connect all components in the
system. See “Avalon Switch Fabric ” on page 3—4 for more details.

B A simulation model and a simulation testbench, depending on the
Simulation option. See the “Simulation Option” section for more
details.

Altera Corporation 3-11
June 2004

Quartus Il Handbook, Volume 1

3-12

Simulation Option

To generate a simulation model and a test bench to simulate a custom
model, turn on the Simulation option. The testbench is tailored to the
structure of system module. The testbench provides the following
functionality:

B Instantiates the system module

B Drives clock and reset inputs with default behaviors

B Instantiates and connects the simulation models provided for any
components external to the system module (e.g., memory models)

There are custom simulation files associated with each peripheral. SOPC
Builder copies these files into a simulation directory during system
generation. The simulation directory is separate from the directory for
synthesizable HDL. The system provides files for each peripheral that
address the needs of both environments.

Simulating with ModelSim
SOPC Builder generates a ModelSim project directory that includes the
following files:

B Simulation data files for all memory components that have
initialized contents

B A setup_sim.do file that contains setup information and aliases
customized for simulating the system module

B A wave_presets.do file that displays an initial set of bus interface
waveforms

B A ModelSim Project File (.mpf) for the current system

Run the ModelSim software in SOPC Builder by clicking Run ModelSim.
If the ModelSim software is not in your search path, specify the location
in the SOPC Builder Setup dialog box (File menu).

Simulating with Other Simulators

You can use the SOPC Builder-generated simulation files with simulation
software other than ModelSim. However, you cannot use the files
generated for ModelSim (.tcl, .do, .mpf, etc.) directly. You can inspect
these files and use them as a basis for setting up similar capabilities in
other simulation tools.

System Dependency Pages

Certain components, such as a CPU like the Nios I embedded processor,
display an additional page called a system dependency page in SOPC
Builder. System dependency pages display additional parameters or
associations to be specified for a component. For example, you can

Altera Corporation
June 2004

Further Information

Further
Information

Altera Corporation
June 2004

specify the relationship between a CPU and memory components to
indicate which memory is to be used as the program memory and which
is to be used as data memory. For components that use system
dependency pages, a separate system dependency page is displayed for
each instance of the component added to a system.

Generating a System

After you have specified the component and selected the generation
options, click the Generate button to cause SOPC Builder to generate the
system. This button is available from any page in the SOPC Builder user
interface.

As the generation process proceeds, SOPC Builder displays messages and
information in the system generation progress messages box. SOPC
Builder displays the message “Generation Complete” when it is finished,
and places a log file in the root directory of the project.

For more information on using SOPC Builder, see the following
documents:

B Avalon Specification—The Avalon interface specification is useful for
developers creating custom peripherals. It defines terms and
concepts of SOPC designs based on the Avalon interface used for
connecting on-chip processors and peripherals into a
system-on-a-programmable chip. Avalon interface signal functions
and timing are defined.

B Application Note 184: Simultaneous Multi-Mastering with the Avalon Bus
—This application note describes the simultaneous multi-master
Avalon switch fabric with an explanation about how it differs from
traditional arbitration schemes. It includes an in-depth explanation
of bus arbitration priorities and most commonly used configurations
for Nios embedded system design.

B Application Note 333: Developing Peripherals for SOPC Builder—This
application note describes the process for developing Avalon
peripherals that can be integrated into SOPC Builder-generated
systems. Topics include how to define an Avalon interface for a
custom peripheral, how to import HDL files into SOPC Builder, and
how to provide software drivers for the peripheral. Example designs
are provided for hands-on experience importing user designs into
SOPC Builder.

3-13

Quartus Il Handbook, Volume 1

3-14

Application Note 320: OpenCore Plus Evaluation of Megafunctions—
Altera MegaCore® functions and AMPP megafunctions are reusable
blocks of intellectual property that you can customize and use in a
design. With Altera’s free OpenCore® Plus evaluation feature you
can simulate the behavior of a megafunction, verify functionality,
and generate a time-limited device to verify your design.

Application Note 323: Using SignalTap II Logic Analyzer for Embedded
Designs using SOPC Builder—SignalTap® Il is a system-level
debugging tool that captures and displays real-time signals in a
SOPC design. By using a SignalTap II Embedded Logic Analyzer
(ELA) in SOPC Builder generated systems, you can observe the
behavior of peripherals in response to software execution.

Simultaneous Multi-Mastering with the Nios Processor Tutorial—This
tutorial describes how to optimize an embedded system’s
performance using the simultaneous multi-master bus architecture.
It describes the features in SOPC Builder that easily allow the
customization of a system architecture to define a new architecture
to improve the example design’s performance.

Using SOPC Builder with Excalibur Devices Tutorial—This tutorial
introduces the process of using SOPC Builder to generate systems
with Excalibur devices. It shows how to use SOPC Builder and the
Quartus II software to create and process Excalibur device system
modules to interfaces with components provided on the Excalibur
development board.

SOPC Builder PTF File Reference Manual—This reference manual is for
IP developers creating library components for SOPC Builder. This
manual contains reference material on the internal workings of the
peripheral template file (.ptf) structure and the generation phases of
SOPC Builder. This manual is recommended for advanced system
designers with basic familiarity of SOPC Builder.

Altera Corporation
June 2004

4, tus Il tf
A I:I-Igo A Quartus Il Support for

HardCopy Devices

®

(ii51004-2.0

Introduction

Altera Corporation
June 2004

The Altera® HardCopy® devices provide a comprehensive alternative to
ASICs. HardCopy structured ASICs offer a complete solution from
prototype to high-volume production, and maintain the powerful
features and high-performance architecture of their equivalent FPGAs
with the programmability removed. You can use the Quartus® II design
software to design HardCopy devices in a manner similar to the
traditional ASIC design flow or you can prototype with Altera's high
density Stratix®, APEX™ 20KC, and APEX 20KE FPGAs before migrating
to the corresponding HardCopy device for high-volume production.

HardCopy structured ASICs provide the following key benefits:

B Improves performance, on the average, 50% over the corresponding
FPGA

B Lowers power consumption, on the average, 40% over the
corresponding FPGA

B Preserves the FPGA architecture and features, and minimizes risk

B Guarantees first-silicon success through a proven, seamless
migration process from the FPGA to the equivalent HardCopy
device

B Offers a quick turnaround of the FPGA design to a structured ASIC
device—samples are available in less than eight weeks

Altera’s Quartus II software has built-in support for HardCopy Stratix
devices. The HardCopy design flow in Quartus II software offers the
following advantages:

B Unified design flow from prototype to production

B Performance and power estimation of the HardCopy Stratix device
allows you to design systems for maximum throughput

B Easy-to-use and inexpensive design tools from a single vendor

B Anintegrated design methodology that enables system-on-a-chip
designs

This chapter discusses the following areas:

B How to design HardCopy structured ASICs using the Quartus II
software

B Anexplanation of what the HARDCOPY_FPGA_PROTOTYPE
devices are and how to target designs to these devices

B Performance and power estimation of HardCopy Stratix devices

B How to generate the HardCopy design database

Quartus Il Handbook, Volume 1

Features The Quartus II software version 4.1 contains several powerful features that
facilitate design of HardCopy devices:

B HARDCOPY_FPGA_PROTOTYPE Devices
These are Stratix FPGA devices with features identical to HardCopy
Stratix devices. You can use these FPGA devices to prototype your
designs and evaluate the functionality in silicon.

B HardCopy Timing Optimization Wizard
Using this feature, you can target your designs to HardCopy Stratix
devices, providing an estimate of the design’s performance in a
HardCopy Stratix device.

B HardCopy Stratix Floorplans and Timing Models
The Quartus II software supports post-migration HardCopy Stratix
device floorplans and timing models and facilitates design
optimization for performance and power consumption.

B Placement Constraints
Location and LogicLock® constraints are supported at the HardCopy
floorplan level to improve overall performance.

B Improved Timing Estimation
The Quartus Il software version 4.1 determines routing and associated
buffer insertion for the design, and provides the Timing Analyzer
with more accurate information on the delays than was possible in
previous versions of the Quartus II software. The buffer insertion
information is exported in the Quartus Archive (.qar) file, so the
back-end design team can insert the buffers correctly.

B Design Assistant
This feature checks your design for compliance with HardCopy
design rules and establishes a seamless migration path in the quickest
time.

B HardCopy Files Wizard
This wizard enables you to deliver to Altera the design database and
all the deliverables required for migration with a “single click.”

B HardCopy Stratix Power Calculator
This calculator is launched from the Quartus II software to estimate
power consumed by the HardCopy Stratix devices.

4-2 Altera Corporation
June 2004

HARDCOPY_FPGA_PROTOTYPE, HardCopy Stratix, and Stratix Devices

HARDCOPY_FPGA
_PROTOTYPE,
HardCopy Stratix,
and Stratix

Devices

You can use the HARDCOPY_FPGA_PROTOTYPE devices available in
Quartus II software to quickly target your designs to the actual resources
and package options available in the equivalent post-migration
HardCopy Stratix device. You can also use the equivalent Stratix FPGAs
to verify the design's functionality in-system, then generate the design
database necessary to migrate to a HardCopy device. This process
ensures the seamless migration of the design from a prototyping device
to a high-volume production device. It also minimizes risk, assures
samples in about eight weeks, and guarantees first-silicon success.

Table 4-1 compares HARDCOPY_FPGA_PROTOTYPE devices, Stratix
devices, and HardCopy Stratix devices.

Table 4-1. Qualitative Comparison of HARDCOPY_FPGA_PROTOTYPE with Stratix and HardCopy Stratix

Devices
. . HARDCOPY_FPGA_ . .
Stratix Device PROTOTYPE Device HardCopy Stratix Device
FPGA Virtual FPGA Structured ASIC
(Reference) (1) Architecture identical to Stratix Architecture identical to Stratix

FPGA

FPGA

(Reference) (1)

Resources identical to HardCopy
Stratix device

M-RAM resources different than
Stratix FPGA in some devices

Number

Ordered through Altera Part

Cannot be ordered

Ordered by Altera part number

Note to Table 4-1:

(O]

Reference indicates that the HARDCOPY_FPGA_PROTOTYPE and HardCopy Stratix devices are compared with

the Stratix device for this attribute.

Table 4-2 lists the resources available in each of the HardCopy Stratix
devices.

Table 4-2. HardCopy Stratix Device Physical Resources (Part 1 of 2)

Altera Corporation

June 2004

Approx.
Device LEs E :\iﬂtl:ent M512 MaK M-RAM DSP PLLs Max.
qgates Blocks | Blocks | Blocks Blocks User 1/0s
(K)(1)
HC1S25F672 25,660 250 224 138 2 10 473
HC1S30F780 32,470 325 295 171 2(2) 12 597
HC1S40F780 41,250 410 384 183 2(2) 14 615
4-3

Quartus Il Handbook, Volume 1

Table 4-2. HardCopy Stratix Device Physical Resources (Part 2 of 2)

Approx.
Device LEs E :\is:]?ent M512 M4K M-RAM DSP PLLs Max.
“gates Blocks | Blocks | Blocks | Blocks User I/0s

(K)(7)
HC1S60F1020 | 57,120 570 574 292 6 18 12 773
HC1S80F1020 | 79,040 800 767 364 6(2) 22 12 773

Note to Table 4-2:
(1) Does not include DSP blocks, on-chip RAM, or PLLs.
(2) The M-RAM resources for these HardCopy devices differ from the corresponding Stratix FPGA.

HardCopy

Design Flow

4-4

For a given density, the number of available M-RAM blocks in HardCopy
Stratix devices is identical with the corresponding
HARDCOPY_FPGA_PROTOTYPE devices, but may be different from
the corresponding Stratix devices.

Maintaining the identical resources between
HARDCOPY_FPGA_PROTOTYPE and HardCopy Stratix devices
facilitates seamless migration from the FPGA to the structured ASIC
device.

The HARDCOPY_FPGA_PROTOTYPE device aids in designing the
structured ASIC, and provides a path to having an FPGA-proven design
prior to migration. The physical entity for the
HARDCOPY_FPGA_PROTOTYPE device is the equivalent Stratix
FPGA. Designs targeting HARDCOPY_FPGA_PROTOTYPE in the
Quartus II software configure the equivalent Stratix FPGAs with
HardCopy-structured ASIC resources. Therefore, it is normal to find
unused resources in the Stratix FPGAs. The three types of devices are tied
together with the same netlist, thus a single SRAM Object File (.sof) can
be used to achieve the various goals at each stage.

For more information on HardCopy Stratix devices, see the HardCopy
Stratix Device Family Data Sheet section of the HardCopy Device Handbook.

I’ HARDCOPY_FPGA_PROTOTYPE devices are not available for
the APEX 20K family.

Figure 4-1 shows a HardCopy design flow diagram. The design steps are
explained in detail in the following sections of this chapter.

For a detailed description of the HardCopy Timing Optimization wizard
and HardCopy Files wizard, see “HardCopy Timing Optimization
Wizard Summary Page” on page 4-9 and “Generating the HardCopy
Design Database” on page 4-16.

Altera Corporation
June 2004

HardCopy Design Flow

Figure 4-1. HardCopy Design Flow Diagram

Start Quartus HardCopy Flow

Stratix . APEX
FPGA Family
A 4 A 4
Select Stratix Select HardCopy
HARDCOPY _FPGA APEX 20KC or
_PROTOTYPE APEX 20KE
device Device
T One Step Process (3) i
Compile Compile Compile
Two Step Process (2) ¢
Mirgrate the Migrate the Mir
. 5 grate the
Compiled Project (1) Compiled Project Compiled Project
Close Quartus Close Quartus Close Quartus
FPGA Project FPGA Project FPGA Project
Open Quartus v Open Quartus Open Quartus
HardCopy Project HardCopy Project HardCopy Project
Compile to Compile to Compile to
HardCopy Stratix device HardCopy HardCopy
Stratix device i i
(Actual HardCopy ratix devi Stratix device
Floorplan)
A 4
A A Placement Run HardCopy
>/ Info for > Files Wizard
HardCopy (-qar file for delivery
to Altera)

Notes for Figure 4-1:

(1) Migrate Only: The displayed flow is completed manually.

(2) Two Step Process: Migration and Compilation are done automatically (shaded area).

(3) One Step Process: Full HardCopy Compilation. The entire process is completed automatically (shaded area).

Altera Corporation 4-5
June 2004

Quartus Il Handbook, Volume 1

How to Design
HardCopy
Devices

4-6

The Design Flow Steps of the One Step Process

Compile the Design for an FPGA

This step compiles the design for a HARDCOPY_ FPGA_PROTOTYPE
device and gives you the resource utilization and performance of the
FPGA.

Migrate the Compiled Project

This step generates the Quartus II Project File (.qpf) and the other files
required for HardCopy implementation. The Quartus II software also
assigns the appropriate HardCopy Stratix device for the design
migration.

Close the Quartus FPGA Project

Because you must compile the project for a HardCopy Stratix device, you
must close the existing project which you have targeted your design to a
HARDCOPY_FPGA_PROTOTYPE device.

Open the Quartus HardCopy Project

Open the Quartus Il project that you created in the "Migrate the Compiled
Project" step. The selected device is one of the devices from the HardCopy
Stratix family that was assigned during that step.

Compile for HardCopy Stratix Device

Compile the design for a HardCopy Stratix device. After successful
compilation, the Timing Analysis section of the compilation report shows
the performance of the design implemented in the HardCopy device.

Targeting Designs to HARDCOPY_ FPGA_PROTOTYPE Devices

To target a design to a HardCopy Stratix device in the Quartus II
software, follow these steps:

1. If you have not yet done so, create a new project or open an existing
project.

2. Select Device (Assignments menu), then select Stratix in the Family
list. Select the desired HARDCOPY_FPGA_PROTOTYPE device in
the Available Devices list. You should also select the package, pin
count, and speed grade, as shown in Figure 4-2.

Altera Corporation
June 2004

How to Design HardCopy Devices

By choosing the HARDCOPY_FPGA_PROTOTYPE device, all the
information necessary for the post-migration HardCopy Stratix device is
included. The resources, package option, pin assignments, and all other
data is produced. The netlist resulting from the compilation contains
information about the electrical connectivity, resources used, I/O
placements, and the resources unused in the FPGA device.

Figure 4-2. Selecting a HARDCOPY _FPGA_PROTOTYPE Device

Categorny:

Settings - stratix_filter x|

- General

- Files

- User Libraries

- Device

Timing Reguirements & Opt
: EDATUUISelllngs

- Simulation
- Timing &nalysiz

- Board-Level

- Formal Verffication

: Compl\atlon Process

Fitter Settings

Timing Analyzer

Design Assistant

SignalT ap || Logic Analyzer

SignalProbe Settings
Sirnulator

- Software Build Settings

- Toolzet Directories
Stratix G4 Registration
- HardCopy Settings

Analpsiz & Synthesis Settings

Device

Select the family and device you want to target for compilation.

iors ; " . " . = =
Eamily: IStratlx j Dewce&PlnDptlons...l Fouting D ptions. |

— Target device

€ Auto device selected by the Fitter from the ‘Available devices' list
¥ Specific device selected in ‘Available devices' list
€ [ither f/a

Liwailable devices:

EP1530BS5RCT ;l 1~ Show in ‘evailable devices' list
EP1530F780C5

EP1530F780CE Package: Ay -
EP1530F78016 .

EF1530F780CT Fin count: Ay -
EP1530F780C8

EP1530F1020C5 J Speed grade: |Any - I
EP1530F1020CE)

EF1530F 02016 Core voltage: 1.5

EF1530F1 I]ZI]E? ¥ Show &dvanced Devices
EF ARDCOPY F PROTOTYFE

EP1SSDF?SDCB HARDCDF’Y FPGA_PROTOTYPE
EF1530F780CY_HARDCOFY_FPGA_FROTOTYPE
EF1540B956C5 Pl

Migration compatibility: 0 migration devices selected Migration Devices... I

Altera Corporation
June 2004

3. Choose Settings (Assignments menuy). In the Category list select
HardCopy Settings and specify the external default clock jitter.

At this point, you are presented with the following three choices to target
the designs to HardCopy Stratix devices, as shown in Figure 4-3.

B Migration Only: You can select this option after compiling the
project to migrate the project to a HardCopy project.

4-7

Quartus Il Handbook, Volume 1

You can now perform the following tasks manually to target the
design to a HardCopy Stratix device. See “Performance Estimation”
on page 4-10 if you need more information on how to perform these
tasks.

a. Close the existing project.
b. Open the migrated HardCopy project.
c¢. Compile the HardCopy project for a HardCopy Stratix device.

Migration and Compilation: You can select this option after

compiling the project and it results in the following actions:

e Migrating the project to a HardCopy project

e Opening the migrated HardCopy project and compiling the
project for a HardCopy Stratix device

Full HardCopy Compilation: Selecting this option results in the

following actions:

e Compiling the existing HARDCOPY_FPGA_PROTOTYPE
project

e Migrating the project to a HardCopy Stratix project

e Opening the migrated HardCopy project and compiling it for a
HardCopy Stratix device

Figure 4-3. HardCopy Timing Optimization Wizard Options

HardCopy Timing Optimization Wizard: New Projeck [pag il

‘what iz the working directory for the migrated project? This directory will contain the wgm
design file and other related files aszociated with this project. If you type a directary name
that does not exist, Quartuz || can create it for pou.

C:/fpga_risc8/he_riscB_hardcopy_optimizatio, |

Which flow do you want this wizard to run?

" Migration Only: migrate the current project to a HardCopy project
" Migration and Compilation: migrate the curent project to a HardCopy project, and
then open and compile the new HardCopy project

¢ Full HardCopy Compilation: compile the current project. migrate the project to a
HardCopy project, and then open and compile the new HardCopy project

Back I Mext I Firish Cancel

After you make your selection, the HardCopy Timing Optimization
wizard Summary page shows you details about the settings you made in
the wizard, as shown in Figure 4-4.

4-8

Altera Corporation
June 2004

How to Design HardCopy Devices

Figure 4-4. HardCopy Timing Optimization Wizard Summary Page

HardCopy Timing Dptimization Wizard: Summary [pag x|

“when pou click Finish, a new project will be created based on the curent project with the
following settings:

Project name: he_rizc8

Project directony: c:/fpaa_riscB/he_rizcB_hardcopy_optimizatiol

Device family: HardCopy Strati=

T arget device: HC1S40F7E0

The wizard will compile the current project, migrate the current project to a new HardCopy
project, and then open and compile the new HardCopy project.

‘when the wizard has successfully compiled the HardCopy project. and you have finished
optimizing the timing of the project, uze the HardCopy Files wizard to generate the files
neceszary for a HardCopy device.

Back [t I Finish I Cancel

When either of the first two options in Figure 4-3 are selected (Migration
Only or Migration and Compilation), designs are targeted to HardCopy
Stratix devices and optimized using the HardCopy placement and timing
analysis to estimate performance. For details on the steps performed by
the Quartus II software during Full HardCopy Compilation and
Migration and Compilation, see “Performance Estimation” on

page 4-10. If the performance requirement is not met, you can modify
your RTL source, optimize the FPGA design, and estimate timing until
you reach timing closure.

Tcl Support for HardCopy Migration

To complement the GUI features for HardCopy migration, the Quartus II
software provides the following command-line executables (which
provide the Tcl shell to run the —Flow Tel command) to migrate the
HARDCOPY_FPGA_PROTOTYPE project to HardCopy Stratix devices:

B quartus_sh --flow migrate_to_hardcopy <project_name>
[-c <revision>] <

This command migrates the project compiled for the
HARDCOPY_FPGA_PROTOTYPE device to a HardCopy Stratix
device.

Altera Corporation 4-9
June 2004

Quartus Il Handbook, Volume 1

Design
Optimization &
Performance
Estimation

4-10

B quartus_sh -flow hardcopy_full_compile <project_name>
[-C <revision>]

This command performs the following tasks:

e Compiles the exsisting project for a
HARDCOPY_FPGA_PROTOTYPE device

e Migrates the project to a HardCopy Stratix project

e Opens the migrated HardCopy Stratix project and compiles it
for a HardCopy Stratix device

The HardCopy Timing Optimization wizard is a powerful feature that
helps you migrate designs from Stratix
HARDCOPY_FPGA_PROTOTYPE devices to HardCopy Stratix devices.

HardCopy Floorplans & Timing Models

The Quartus II software version 4.0 and later supports HardCopy Stratix
floorplans and HardCopy Stratix timing models. These features enable
you to estimate the design’s performance and power consumption in the
migrated device. They reflect the actual placement of the design in the
HardCopy Stratix device, and can be used to see the available resources,
and the location of the resources in the actual device.

Performance Estimation

Figure 4-5 illustrates the design flow for estimating performance and
optimizing your design. You can target your designs to
HARDCOPY_FPGA_PROTOTYPE devices, and pass the design
information to placement and timing analysis to estimate performance. In
the event that the required performance is not met, you can modify your
RTL source, optimize the FPGA design and estimate timing iteratively.

'~ Onaverage, HardCopy Stratix devices are 50% faster than their
equivalent Stratix device. These performance numbers are
highly design dependent, and final performance numbers must
be obtained from Altera.

Altera Corporation
June 2004

Design Optimization & Performance Estimation

Figure 4-5. Obtaining a HardCopy Performance Estimation

Stratix
FPGA

Proven
netlist,
pin assign-
ments, and
timing
constraints

Proven
netlist
and new
timing and
placement
ggz:icn?:r{t constraint
HardCopy
1 and timing » Stratix
analysis

Altera Corporation

June 2004

To perform Timing Analysis for a HardCopy Stratix device, follow these
steps:

1.

Open an existing project compiled for a
HARDCOPY_FPGA_PROTOYPE device.

Choose HardCopy Utilities > HardCopy Timing Optimization
Wizard (Project menu).

Select a destination directory for the migrated project.

On completion of the HardCopy Timing Optimization wizard, the
destination directory contains the Quartus II project file, and all files
required for HardCopy implementation. At this stage, the design is
copied from the HARDCOPY_FPGA_PROTOTYPE project directory
to a new directory to perform the timing analysis. This two-project
directory structure enables you to move back and forth between the
HARDCOPY_FPGA_PROTOTYPE design database and the
HardCopy Stratix design database. The Quartus II software creates
the <project name> _hardcopy _optimization directory.

You do not have to re-select the HardCopy Stratix devices while
performing performance estimation. When you run the HardCopy
Timing Optimization wizard, the Quartus II software selects the
HardCopy Stratix device corresponding to the specified
HARDCOPY_FPGA_PROTOTYPE FPGA. Thus, the information
necessary for the HardCopy Stratix device is available from the
earlier HARDCOPY_FPGA_PROTOTYPE device selection.

4-11

Quartus Il Handbook, Volume 1

All constraints related to the design are also transferred to the new
project directory. You can modify these constraints, if necessary, in
your optimized design environment to achieve the necessary timing
closure. However, if the design is optimized at the
HARDCOPY_FPGA_PROTOTYPE device level by modifying the
RTL code or the device constraints, you must migrate the project
with the HardCopy Timing Optimization wizard.

= If an existing project directory is selected when the
HardCopy Timing Optimization wizard is run, the existing
information is overwritten with the new timing analysis
results.

The project directory is the directory that you chose for the migrated
project.

Open the migrated Quartus II project created in the previous step.
Perform a full compilation.

After successful compilation, the Timing Analysis section of the
Compilation Report shows the performance of the design.

Performance estimation is not supported for HardCopy
APEX 20K devices in the Quartus II software. Your design can
be optimized by modifying the RTL code or the FPGA design
and the constraints. You can discuss with Altera any
performance improvement required with the HardCopy
APEX 20K device.

Placement Constraints

The Quartus II software version 4.0 and later supports placement

cons
Figu

traints and LogicLock regions for HardCopy Stratix devices.
re 4—6 shows an iterative process to modify the placement constraints

until the best placement for the HardCopy Stratix device is achieved.

4-12

Altera Corporation
June 2004

Location Constraints

Location

Constraints

Altera Corporation

June 2004

Figure 4-6. Placement Constraints Flow for HardCopy Stratix Devices

Compile the Design
for HARDCOPY_FPGA_|
PROTOTYPE

A
Migrate to HardCopy
using the HardCopy
Timing
Optimization Wizard

A
Add/Update
» Placement F—p
Constraints
Add/Update
LogicLock ——
Constraints
A4
Compile
for
HardCopy

Y

No Performance

Met?

Generate HardCopy Files

LAB Assignments

The Quartus II software supports location constraints for HardCopy
Stratix devices. You can make LAB-level assignments after migrating the
HARDCOPY_FPGA_ PROTOTYPE project, and before compiling the
design for a HardCopy Stratix device, to achieve better performance. One
important consideration for LAB reassignments is that the entire contents
of a LAB is moved to another empty LAB. If you want to move the logic
contents of LAB A to LAB B, the entire contents of LAB A are moved to
an empty LAB B. For example, the logic contents of LAB_X33_Y65 can be
moved to an empty LAB at LAB_X43_Y56.

4-13

Quartus Il Handbook, Volume 1

set_global_assignment
set_global_assignment
set_global_assignment
set_global_assignment

set_global_assignment
set_global_assignment
set_global_assignment
set_global_assignment

4-14

LogicLock Assignments

The LogicLock feature of the Quartus II software provides a block-based
design approach. Using this technique you can create and implement
each logic module independently, and integrate all optimized modules
into the top-level design.

To learn more about this methodology, see the LogicLock Design
Methodology chapter in Volume 2 of the Quartus II Handbook.

LogicLock constraints are supported when you migrate the project from
a HARDCOPY_FPGA_PROTOTYPE project to a HardCopy Stratix
project. If the LogicLock region was specified as “Size=Fixed” and
“Location=Locked” in the HARDCOPY_FPGA_PROTOTYPE project, itis
converted to have “Size=Auto” and “Location=Floating” as shown in “An
Example of Supported LogicLock Constraints” on page 4-14. This
modification is necessary because the floorplan of a HardCopy Stratix
device is different from that of the Stratix device. If this modification did
not occur, LogicLock assignments would lead to no-fit bad placements.
Making the regions auto-size and floating maintains your module or
entity LogicLock assignments, allowing you to easily adjust the
LogicLock regions as required.

An Example of Supported LogicLock Constraints

LogicLock Region Definition in the
HARDCOPY_FPGA_PROTOTYPE .gsf File

-name LL_HEIGHT 15 -entity risc8 -section_id test
-name LL_WIDTH 15 -entity risc8 -section_id test
-name LL_STATE LOCKED -entity risc8 -section_id test
-name LL_AUTO_SIZE OFF -entity risc8 -section_id test

LogicLock Region Definition in the Migrated HardCopy Stratix .qsf
File

-name LL_HEIGHT 15 -entity risc8 -section_id test
-name LL_WIDTH 15 -entity risc8 -section_id test
-name LL_STATE FLOATING -entity risc8 -section_id test
-name LL_AUTO_SIZE ON -entity risc8 -section_id test

Targeting Designs to HardCopy APEX 20KC and HardCopy
APEX 20KE Devices

The Quartus II software version 4.0 and later also supports targeting
designs to HardCopy APEX 20KC and HardCopy APEX 20KE device
families. After compiling your design for one of the APEX 20KC or
APEX 20KE devices supported by a HardCopy APEX device, run the
HardCopy Files wizard to generate the necessary set of files for
HardCopy migration.

Altera Corporation
June 2004

Checking Designs for HardCopy Design Guidelines

Checking
Designs for
HardCopy
Design
Guidelines

Altera Corporation
June 2004

When you develop a design with HardCopy migration in mind, follow
design practices that ensure a straightforward migration process. Prior to
starting migration of the design to a HardCopy device, you must review
the design and identify and address all the design issues. Any design
issues that have not been addressed can jeopardize silicon success. The
Quartus II software includes the Design Assistant feature to check your
design against the HardCopy design guidelines. Some of the design rule
checks performed by the Design Assistant include the following rules:

B Design should not contain combinational loops
B Design should not contain delay chains
B Design should not contain latches

The Design Assistant is run on a design in multiple ways. You must have
run Analysis and Synthesis on the design before running the Design
Assistant. Altera recommends that you run the Design Assistant to check
for compliance with the HardCopy design guidelines early in the design
process and after every compilation.

Design Assistant Settings

You must select the design rules in the Design Assistant page of the
Settings dialog box (Assignments menu) prior to running the design. In
this dialog box, you can choose whether to run the Design Assistant
during compilation.

Running Design Assistant

To run Design Assistant choose Start > Start Design Assistant
(Processing menu).

The Design Assistant runs automatically when the HardCopy Timing
Optimization wizard is launched. The design is checked before the
Quartus II software migrates the design and creates a new project
directory for performing timing analysis.

Also, the Design Assistant runs automatically whenever you generate the
HardCopy design database with the HardCopy Files wizard.

Reports and Summary

The results of running the Design Assistant on your design are available
in the Design Assistant Results section of the Compilation Report.
Reports include the settings, run summary, results summary, and details
of the results and messages. The Detailed Results report indicates the rule
name, severity of the violation and the circuit path where any violation
occurred.

4-15

Quartus Il Handbook, Volume 1

Generating the
HardCopy
Design
Database

4-16

To learn about the design rules and standard design practices to comply
with HardCopy design rules, see the Quartus II Help and the Design
Guidelines for HardCopy Migration chapter of the HardCopy Device Handbook.

You can use the HardCopy Files wizard to generate the complete set of
deliverables required for migrating the design to a HardCopy device in a
single click. The HardCopy Files wizard asks questions related to the design
and archives your design, settings, results, and database files for delivery to
Altera. Your responses to the design details are stored in

<project directory>\<project name>.hps.

You can generate the archive of the HardCopy design database only after
compiling the design to a HardCopy Stratix device. The Quartus II Archive
file (.qar) is generated at the same directory level as the targeted project,
either before or after optimization. The following are some of the files that
are part of the archived files.

B <project_name>vqm—This is a Verilog Quartus Mapping file.

B <project_name>_pt_hcpy_v.tcl—This is a set of PrimeTime scripts.

B <project_name>_hcpy_v.sdo—This is a standard delay file output (SDF)
file.

B <project_name>.sof—This is a bitstream file used for programming the
FPGA.

B <project_name>.qsf—This is the Quartus II assignments and settings
file.

In addition to the archived file, the HardCopy Files wizard also creates a
hardcopy directory that contains some of the important files that you can
review to ensure the correctness of the design database.

Ils~ The Design Assistant is run automatically when the HardCopy
Files wizard is started.

I After creating the migration database with the HardCopy Timing
Optimization wizard, you must compile the design before
generating the project archive. You will receive an error if you
create the archive before compiling the design.

Altera Corporation
June 2004

Static Timing Analysis (STA)

Static Timing

Analysis (STA)

Power
Estimation

Altera Corporation
June 2004

In addition to performing timing analysis, the Quartus II software also
provides all of the requisite netlists and Tcl scripts to perform static timing
analysis (STA) using the industry standard STA tool, PrimeTime. The
following files, necessary for timing analysis with the PrimeTime tool, are
generated by the HardCopy Files wizard:

B <settings name>_hcpy.vo—Verilog output format
B <settings name>_hpcy_v.sdo—standard delay file output (SDF) file
B <settings name>_pt_hcpy_v.tcl—Tcl script

These files are available in the <project name>\hardcopy directory.
PrimeTime libraries for the HardCopy Stratix and Stratix devices are
included with the Quartus II software.

s> Use the Stratix libraries to perform STA during timing analysis
of designs targeted to HARDCOPY_FPGA_PROTOTYPE
device.

For more information on static timing analysis, see the Quartus II Timing
Analysis and the Synopsys PrimeTime Support chapters in Volume 3 of the
Quartus II Handbook.

The Quartus II software has built-in capability for estimating HardCopy
device power consumption by evaluating the following design
components:

Target device and package
Temperature grade

Clock domain fyax
Device resources used

HardCopy Stratix Power Calculator

The HardCopy Stratix power calculator provides an initial estimate of I¢
for any HardCopy Stratix device based on typical conditions. This
calculation saves significant time and effort in gaining a quick
understanding of the power requirements for the device. No stimulus
vectors are necessary for power estimation, which is established by the
clock frequency and toggle rate in each clock domain.

This calculation should only be used as an estimation of power, not as a
specification. The actual Icc should be verified during operation because
this estimate is sensitive to the actual logic in the device and the
environmental operating conditions.

4-17

Quartus Il Handbook, Volume 1

4-18

For more information on simulation-based power estimation, see the
Simulation-Based Power Estimation chapter in Volume 3 of the
Quartus II Handbook.

Opening HardCopy Stratix Power Calculator

The HardCopy Stratix power calculator page on the Altera web site is
opened in the Quartus Il software. The Quartus II software automatically
fills in the necessary information when you open the page. You can
modify the values and calculate the estimated power consumed under
various conditions.

The calculator can also be opened independently of the Quartus II
software by clicking the HardCopy Stratix Power Calculator link on the
HardCopy Design Utilities web page on the Altera web site.

=" Youmustenter design-specific information manually if you run
the calculator directly.

To estimate HardCopy Stratix power consumption, follow these steps:

1. After compiling the design for a HardCopy Stratix device, choose
HardCopy Utilities> HardCopy Power Estimation (Project menu),
and click OK.

The Quartus II software exports all the necessary data and displays
the Power Calculator, a section of which is shown in Figure 4-7.

Altera Corporation
June 2004

Power Estimation

Figure 4-7. HardCopy Stratix Power Calculator

Hardcopy Stratix Power Calculator - Summary

0+0+@

Calculate | << Go back to Step 4 | Device &8 LEs&
ClockTree DSPs& Blocks
PLLs & HSDIs

Enter Logic Array Infermation
o Clock tree
n Global Clock Netwark
» Global Clock Region
» Global Clock Fast
o Logic element (LE)
o Digital Signal Processing (DSP) Blocks
o Phase-locked loops (PLL)
» Enhanced Phase-locked loops
» Fast Phage-locked loops
Enter RAM blocks, Highspeed differential interface
o RAM blocks
= M512
u MK
u h-RAM
o High-speed differential interface (HSDN)
n Receiver H3OI
» Transmitter HSDI
Enter General I/0 Infermation and Terminator Technelogy
o General VO power consumption
o Terminator Technology
Enter Thermal Analysis Information
o Total power
o Thermal analysis
= Without heat sink
= With heat sink

|Tabie 1. Device

Package Temperature T Pt
Grade (mWW) ()
[Ho1ses 7] [f72 Feca =] [coommeial = 12 [0 oo [

2. Enter values for the following variables in the spreadsheet and click
Calculate to get the total power (Prorar)-

Average number of logic elements
Average capacitive load

DC output power

Ambient temperature

For more information on power estimation, see the Quartus II Help.

Altera Corporation 4-19
June 2004

Quartus Il Handbook, Volume 1

Tcl Support for
HardCopy Stratix

Conclusion

4-20

=" The HardCopy Stratix Power Calculator is run from the
Quartus II software when the target is still
HARDCOPY_FPGA _PROTOTYPE device. However, power is
calculated for the HardCopy Stratix device, not for the FPGA.

Use the Stratix FPGA power calculator to estimate power
consumption for the HARDCOPY_FPGA_PROTOTYPE.

1= On average, HardCopy Stratix devices are expected to consume
40% less power than the equivalent FPGA.

HardCopy APEX 20K Power Calculator

The HardCopy APEX 20K power calculator is also a web-based calculator
that can be run from the Design Utilities section in the HardCopy

APEX 20K web pages. You cannot open this calculator in the Quartus II
software.

With the HardCopy APEX 20K power calculator, you can estimate the
power consumed by HardCopy APEX 20K devices and design systems
with the appropriate power budget.

'~ HardCopy APEX 20K devices are generally expected to
consume about 40% less power than the equivalent APEX 20K
FPGAs.

Power Calculators for FPGAs

Stratix, Stratix GX, and Cyclone devices have Excel-based power
calculators that are used to estimate the power consumed by the
respective FPGAs. For access to these power calculators, see the
respective Design Utilities web pages.

The Quartus II software also supports the HardCopy Stratix design flow
at the command prompt using Tcl scripts.

For details on Quartus II support for Tcl scripting, see the Tcl Scripting
chapter in Volume 2 of the Quartus Il Handbook.

The methodology for designing HardCopy Stratix devices using the
Quartus II software is the same as that for designing the Stratix FPGA
equivalent. You can use the familiar Quartus II software tools and design
flow, target designs to HardCopy Stratix devices, optimize designs for
higher performance and lower power consumption than the Stratix

Altera Corporation
June 2004

Related Documents

Related
Documents

Altera Corporation
June 2004

FPGAs, and deliver the design database for migration to a HardCopy
Stratix device. The same intellectual property cores and tools, including
the SOPC Builder and DSP Builder, are used for HardCopy Stratix,
HardCopy APEX 20KC, or HardCopy APEX 20KE devices.

For more information, refer to the following documentation:

B Design Guidelines for HardCopy Migration chapter of the HardCopy
Device Handbook

B Timing Closure in HardCopy Devices chapter in Volume 2 of the
Quartus II Handbook

4-21

Quartus Il Handbook, Volume 1

4-22 Altera Corporation
June 2004

. Engi ' h
A I:I-Ig D)/A 5. Engineering Change

® Management

(ii51005-2.0

Introduction

Impact of Last
Minute Design
Changes

Altera Corporation
June 2004

A major benefit of programmable logic is that it accommodates changes
to the system specification late in the design cycle. In a typical
engineering project development cycle, the specification for the
programmable logic portion is likely to change when engineering
development begins or when all system elements are being integrated.

These last-minute design changes are commonly referred to as
engineering change orders (ECOs). ECOs are defined as small changes to
the functionality of a design, after the design has been fully compiled, i.e.,
synthesis and place-and-route are completed.

ECOs are usually intended to correct errors found in the programmable
logic design during debugging, or after changes that are made to the
design specification to compensate for design problems in other areas of
the system design. The operation of the system design cannot easily be
changed in these areas.

As the project nears completion, a significant amount of time and effort
has been invested in achieving timing closure in the programmable logic
device (PLD). It is crucial that the programmable logic design flow is
optimized to support ECOs in an efficient manner.

ECOs have an impact on the following areas of a system design:

B Performance

m Compile time
B Verification

B Documentation
Performance

When a small change is made to the design functionality, it can result in
previous design optimizations being lost. Typical examples of design
optimizations are floorplan optimizations and physical synthesis. Ideally,
there should be a means to preserve the design optimizations that have
already been made. This will focus future optimizations that might be
made to the design on the areas of the design to which the ECO changes
were applied.

Quartus Il Handbook, Volume 1

ECO Support

5-2

Compile Time

In the traditional programmable logic design flow, a small change in the
design results in a complete recompilation of the design, i.e., synthesis
and place-and-route. Thus, the process of making small changes to the
design to reach the final implementation on a board can be a very long
process. Ideally, to reach the desired functionality and to reach timing
closure, a small change in functionality should result in a reduced
compilation time. This can be achieved using incremental compilation
technology that uses the previous fit information on the areas of the
design that have not been affected by the ECOs.

Verification

After any design change, the impact of the change on the design must be
verified. This verification is achieved through timing analysis and
simulation. You can choose to limit the verification to the area of the
design that is impacted by the ECOs. This is accomplished by running
timing analyses on select paths and having the option to perform
simulation on gate level and timing simulation netlists.

Documentation

Changes to the project files must be tracked. This helps other users
reproduce the results at a later date. Ideally, you should be able to have
multiple compilation revisions so that others can try out changes without
corrupting the results that have been previously obtained.

ECOs can be applied at either of two stages of a typical design flow:

B HDL level
B Netlist level

Traditionally in programmable logic design, ECOs have been applied at
the HDL level. This is because the tools to easily create ECOs and to
enable design sign-off at the netlist level have generally not been
available for PLDs.

Altera Corporation
June 2004

ECO Support

Altera Corporation
June 2004

ECO Support at the HDL Level

An ECO at the HDL level is a small incremental change to the design’s
Verilog or VHDL source. This change may range from a single line to
several lines of code modified within a module or entity. Typical
examples of such modifications are:

Changes to the state encoding of a finite state machine
Addition of pipeline registers to improve design performance
Signal duplication to reduce fan-out

Adding a term to a conditional expression

Changing the polarity of register control signals

A few changes to the source code can produce many changes to the netlist
produced by other EDA synthesis or tools such as the Quartus® II
software’s integrated synthesis. During the synthesis process, the
synthesis tools generally preserve the names of registers from the HDL
source code, but automatically generate names for the combinational
(look-up table level) nodes. This automatic name generation is necessary
to accommodate the synthesis optimization performed on the HDL
source to use the target device resources more efficiently.

Thus, a minor source code change can result in many changes to the
names in the synthesis netlist. The changes in the synthesis netlist can be
due to either of the following reasons:

B The node names in the new netlist implement different functionality
than in the previous netlist

B Thenode names in the new netlist implement the same functionality
as in the previous netlist, but have different names

To leverage the previous design optimizations and to reduce the
compilation time, there must be a means of performing an incremental
compilation on the nodes with the new functionality and preserving the
previous optimizations on the nodes that have not changed. Thus, a
means of identifying nodes that maintain the same functionality but have
different names is essential for providing an ECO flow that truly works.
Such a solution is provided with the incremental fitting feature available
in the Quartus II software.

The Quartus II software incremental fitting feature performs a
comparison between the original synthesis netlist and the new netlist
containing the ECO changes. It matches nodes based upon names,
functionality, fan-in, and fan-out. Those nodes that can be matched
inherit the assignments from the previous fit.

5-3

Quartus Il Handbook, Volume 1

5-4

Thus, the incremental fitting feature can preserve existing fitting
information and timing. This feature limits any timing and fitting
changes to the logic that has changed in functionality and reduces the
compilation time.

To limit the changes caused by ECOs, it is recommended that users adopt
a modular design flow. A modular design flow, combined with the
incremental compilation features mentioned previously, minimizes the
changes in performance caused by ECOs and reduces compilation time.
Partitioning the design to adopt a modular design flow facilitates the
placing of each module in the floorplan for performance. The Quartus II
software provides the LogicLock™ feature to optimize the floorplan of
modular designs. The LogicLock Design Methodology chapter in Volume 2
of the Quartus II Handbook describes how to apply the LogicLock
methodology to a modular design flow. Figure 5-1 details the
recommended design flow to support ECO changes at the HDL level.

Figure 5-1. Design Flow to Support ECO Changes

‘ Partition Design into Modules ‘

v v

Synthesize Design 3 Incremental Synthesis
(Modular Synthesis) i (Resynthesizes only the module
that has changed)

Incremental Fitter
(Optimize module
that has changed)

Optimize / Place & Route
Design

Verify Design
Verify Design (Verify area of design
that has changed)

v
Make Minor HDL Change to
Effected Module

Sign-Off Design

Altera Corporation
June 2004

ECO Support

ECO Support at the Netlist Level

For certain ECO changes, it can be quicker to make changes at the netlist
level rather than at the HDL level. This happens when you are debugging
the design on silicon and need a very fast turnaround in generating a
programming file for debugging the system.

A typical application occurs when you uncover a problem on the board
and isolate the problem to the appropriate nodes or I/O cells on the PLD.
You then need to be able to quickly correct the functionality of the
offending logic cell or the properties of the I/O cell and generate a new
programming file in minutes. In doing this, you can verify the operation
of the change without having to modify the HDL and perform a synthesis
and place-and-route operation. This minimizes the disruption to the
board verification procedure.

If this quick fix works, you do not need to change the HDL source code
and rerun place-and-route. You should have the option to:

Document the change that has been made

Easily recreate the steps taken to produce the changes to the design
Generate EDA simulation netlists for verification of the design
Perform timing analysis on the design

These capabilities are provided in the Chip Editor feature of the
Quartus II software.

The Quartus II Chip Editor allows you to make functional changes to
individual logic cells and to the I/O cell and phase-locked loop (PLL)
parameters. These changes are stored in the Quartus I Change Manager
log. This allows you to control the application of the changes, and
generate a tool command language (Tcl) file. This Tcl commands file
recreates the changes on the original netlist, documents the changes made
to the project, and enables you to recreate the changes on the original
design files at a later date, without having to change the HDL source. You
can regenerate an EDA simulation netlist for the modified design if it is
necessary to perform a gate-level simulation of the modified design. If the
designer needs to rerun timing analysis to sign-off the design, timing
analysis can be rerun on the netlist containing the ECO changes.

Figure 5-2 shows the flow for ECO changes at the netlist level.

Altera Corporation 5-5
June 2004

Quartus Il Handbook, Volume 1

Figure 5-2. Design Flow for ECO Changes at the Netlist Level

Change Manager

(Stores Netlist
Modification Details)

Synthesized, Placed
& Routed Design

File into Device)

(Download Programming

ECO Required

v

or PLL in Chip Editor

Modify Logic Cells, 1/0 Cells,

'

Perform DRC on Changes

!

Generate New
Programming File

Sign-Off Design

Conclusion

Support for ECOs requires a combination of a modular design

methodology and the appropriate software design tools.

The Quartus II software provides you with the software tools and the
design methodology to successfully perform ECOs at both the HDL and
netlist level for programmable logic designs. This reduces the design
cycle time and provides faster timing closure on designs that require last

minute changes.

5-6

Altera Corporation
June 2004

NiihERA

®

Section Il. Design
Guidelines

Revision History

Altera Corporation

Today's programmable logic device (PLD) applications have reached the
complexity and performance requirements of ASICs. In the development
of such complex system designs, good design practices have an
enormous impact on your device's timing performance, logic utilization,
and system reliability. Designs coded optimally will behave in a
predictable and reliable manner, even when re-targeted to different
device families or speed grades. This section presents design and coding
style recommendations for Altera® devices.

This section includes the following chapters:

B Chapter 6, Design Recommendations for Altera Devices

B Chapter 7, Recommended HDL Coding Styles

The table below shows the revision history for Chapters 6 and 7.

Chapter(s) | Date /Version Changes Made
6 June 2004 v.2.0 | ® Updates to tables, figures, and coding
examples.
o New functionality for Quartus 4.1.
Feb. 2004 v1.0 | Initial release.
7 June 2004 v2.0 |® Updates to tables and figures.
o Added and updated section for State
Machines.
e Update to Verilog HDL for State Machines.
e New functionality for Quartus 4.1.
Feb. 2004 v1.0 | Initial release.

Section II-1

Design Guidelines Quartus Il Handbook, Volume 1

Section 11-2 Altera Corporation

6. Design Recommendations
AIERA ° |

® for Altera Devices

(ii51006-2.0

Introduction

Synchronous
FPGA Design
Practices

Altera Corporation
June 2004

Today's FPGA applications have reached the complexity and
performance requirements of ASICs. In the development of such complex
system designs, good design practices have an enormous impact on your
device’s timing performance, logic utilization, and system reliability.
Well-coded designs behave in a predictable and reliable manner even
when re-targeted to different families or speed grades. Good design
practices also aid in successful design migration between FPGA and
HardCopy® or ASIC implementations for both prototyping and
production. For optimal performance and better time-to-market when
designing with Altera® devices, you should understand the impact of
synchronous design practices, follow recommended design techniques
including hierarchical design partitioning, and take advantage of the
architectural features in the targeted device.

For specific HDL coding examples and recommendations, refer to the
Recommended HDL Coding Styles chapter in Volume 1 of the Quartus II
Handbook.

The first step in a good design methodology is to understand the
implications of your design practices and techniques. This section
outlines some of the benefits of optimal synchronous design practices and
the hazards involved in other techniques. Good synchronous design
practices can help you consistently meet your design goals. Inherent
problems with other design techniques can include reliance on
propagation delays in a device, incomplete timing analysis, and possible
glitches.

The basic principle of synchronous design is that a clock signal triggers
all events. As long as all of the registers’ timing requirements are met, a
synchronous design behaves in a predictable and reliable manner for all
process, voltage, and temperature (PVT) conditions. You can easily target
synchronous designs to different device families or speed grades. In
addition, if you plan to migrate your design to a high-volume solution
such as Altera HardCopy devices, or if you are prototyping an ASIC, then
synchronous design practices help ensure successful migration.

For information about migrating designs to HardCopy devices, see the
Design Guidelines for HardCopy Migration chapter in the HardCopy
Handbook.

Quartus Il Handbook, Volume 1

6-2

Fundamentals of Synchronous Design

In a synchronous design, everything is related to the clock signal. On
every active edge of the clock (usually the rising edge), the data inputs of
registers are sampled and transferred to outputs. Following an active
clock edge, the outputs of combinational logic feeding the data inputs of
registers change values. This change triggers a period of instability due to
propagation delays through the logic as the signals go through a number
of transitions and finally settle to new values. Changes happening on data
inputs of registers do not affect the values of their outputs until the next
active clock edge.

Because the internal circuitry of registers isolates data outputs from
inputs, instability in the combinational logic does not affect the operation
of the design as long as the following timing requirements are met:

B Before an active clock edge, the data input has been stable for at least
the setup time of the register

B After an active clock edge, the data input remains stable for at least
the hold time of the register

In Altera devices, the Quartus® II Timing Analyzer issues actual
hardware requirements for the setup times (tsy) and hold times (ty) for
every pin of your design. By meeting these external pin requirements and
following synchronous design techniques, you ensure that you satisfy the
setup and hold times for all registers within the Altera device.

= Note that in order to meet setup and hold times requirements on
all input pins, any inputs to combinational logic that feeds a
register should have a synchronous relationship with the clock
of the register. If signals are asynchronous, you can register the
signals at the input of the Altera device to help prevent a
violation of the required setup and hold times.

When the setup or hold time of a register is violated, the output can be set
to an intermediate voltage level between the high and low levels, called a
metastable state. In this unstable state, small perturbations, like noise in
power rails, can cause the register to assume an unpredictable valid state.
Various undesirable effects can occur, including increased propagation
delays and incorrect output states. In some cases, the output can even
oscillate between the two valid states for a relatively long time.

Hazards of Asynchronous Design

In the past, designers have often used asynchronous techniques such as
ripple counters or pulse generators in PLD designs, enabling them to take
“short cuts” to save device resources. Asynchronous design techniques

Altera Corporation
June 2004

Recommended Design Techniques

Recommended
Design
Techniques

Altera Corporation
June 2004

have inherent problems such as relying on propagation delays in a
device, which can result in incomplete timing constraints and possible
glitches and spikes. Because today's FPGAs provide large quantities of
high-performance logic gates, registers, and memory, resource and
performance trade-offs have changed. Now it is much more important to
focus on design practices that help you meet design goals consistently
than to save device resources using problematic asynchronous
techniques.

Some asynchronous design structures rely on the relative propagation
delays of signals to function correctly. In these cases, race conditions can
arise where the ordering of signal changes can affect the output of the
logic. PLD designs can have varying timing delays, depending on how
the design is placed and routed in the device with each compilation.
Therefore, it is almost impossible to determine the timing delay
associated with a particular block of logic ahead of time. As devices
become faster because of device process improvements, the delays in an
asynchronous design may decrease, resulting in a design that does not
function as expected. Specific examples are provided in “Recommended
Design Techniques” on page 6-3. Relying on a particular delay also
makes asynchronous designs very difficult to migrate to different
architectures, devices, or speed grades.

The timing of asynchronous design structures is often difficult or
impossible to model with timing assignments and constraints. If you do
not have complete or accurate timing constraints, the timing-driven
algorithms used by your synthesis and place-and-route tools may not be
able to perform the best optimizations, and reported results may not be
complete.

Some asynchronous design structures can generate harmful glitches—
pulses that are very short compared with clock periods. Most glitches are
generated by combinational logic. When the inputs of combinational
logic change, the outputs exhibit a number of glitches before they settle to
their new values. These glitches can propagate through the combinational
logic, leading to incorrect values on the outputs in asynchronous designs.
In a synchronous design, glitches on the data inputs of registers are
normal events that have no negative consequences because the data is not
processed until the clock edge.

When designing with hardware description language (HDL) code, it is
important to understand how a synthesis tool interprets different HDL
coding styles and what results to expect. Your coding style can affect logic
utilization and timing performance. This section discusses some basic
design techniques that ensure optimal synthesis results for designs
targeted to Altera’s devices while avoiding several common causes of

6-3

Quartus Il Handbook, Volume 1

6-4

unreliability and instability. It is important to design your combinational
logic carefully to avoid potential problems, and pay attention to your
clocking schemes to maintain synchronous functionality.

Combinational Logic Structures

Combinational logic structures consist of logic functions that depend
only on the current state of the inputs. In Altera FPGAs, these functions
are implemented in the look-up tables (LUTs) of the device’s architecture
(logic elements or adaptive logic modules). In some cases when
combinational logic feeds registers, the register control signals can also be
used to implement part of the logic function to save LUT resources. By
following the recommendations in this section, you can improve the
reliability of your combinational design.

Combinational Loops

Combinational loops are among the most common causes of instability
and unreliability in digital designs, and should be avoided. In a
synchronous design, all feedback loops should include registers.
Combinational loops violate synchronous design principles by
establishing a direct feedback loop that contains no registers. For
example, a combinational loop occurs when the left-hand side of an
arithmetic expression also appears on the right-hand side in HDL code. A
combinational loop also occurs when you feed back the output of a
register to an asynchronous pin of the same register through
combinational logic, as shown in Figure 6-1.

Figure 6-1. Combinational Loop through Asynchronous Control Pin

———D Q
o

CLRN

Combinational loops are inherently high-risk design structures for the
following reasons:

B Combinational loop behavior generally depends on the relative
propagation delays through the logic involved in the loop. As
discussed, propagation delays can change which means the behavior
of the loop is unpredictable.

Altera Corporation
June 2004

Recommended Design Techniques

B Combinational loops can cause endless computation loops in many
design tools. Most tools break open combinational loops to process
the design. The various tools used in the design flow may open a
given loop in a different manner, processing it in a way that is
inconsistent with the original design intent.

Delay Chains

Delay chains occur when two or more consecutive nodes with a single
fan-in and a single fan-out are used to cause delay. Often inverters are
chained together to add delay. Delay chains are sometimes used to
resolve race conditions created by other asynchronous design practices.
As discussed above, delays in PLD designs can change with each place-
and-route cycle. See “Hazards of Asynchronous Design” on page 6-2 for
examples of the kinds of problems that delay chains can cause. Avoid
using delay chains to prevent these kind of problems.

In some ASIC designs, delays are used for buffering signals as they are
routed around the device. This functionality is not needed in FPGA
devices because the routing structure provides buffers throughout the
device.

Pulse Generators & Multivibrators

Some designs use delay chains to generate either one pulse (pulse
generators) or a series of pulses (multivibrators). There are two common
methods for pulse generation, as shown in Figure 6-2. These techniques
are purely asynchronous and should be avoided.

Figure 6-2. Asynchronous Pulse Generators

-

rigger
(@)

Trigger Pulse

Clock
CLRN
T

(b)

ol

In Figure 6-2, part (a), a trigger signal feeds both inputs of a 2-input AND
gate, but the design inverts or adds a delay chain to one of the inputs. The
width of the pulse depends on the relative delays of the path that feeds

Altera Corporation 6-5
June 2004

Quartus Il Handbook, Volume 1

the gate directly and the one that goes through the delay. This is the same
mechanism responsible for the generation of glitches in combinational
logic following a change of input values. This technique artificially
increases the width of the glitch by using a delay chain.

In Figure 6-2, part (b), a register's output drives the same register's
asynchronous reset signal through a delay chain. The register resets itself
asynchronously after a certain delay.

The width of pulses generated in this way are difficult for synthesis and
place-and-route software to determine, set, or verify. The actual pulse
width can only be determined after placement and routing, when routing
and propagation delays are known. It is difficult to reliably determine the
width of the pulse when creating HDL code, and it cannot be set by
electronic design automation (EDA) tools. The pulse may not be wide
enough for the application under all PVT conditions, and the pulse width
changes if you change to a different device. In addition, static timing
analysis cannot be used to verify the pulse width, so verification is very
difficult.

Multivibrators use a “glitch generator” to create pulses, together with a
combinational loop that turns the circuit into an oscillator. Multivibrators
cause even more problems than pulse generators because of the number
of pulses involved. In addition, when the structures generate multiple
pulses, they also create a new artificial clock in the design that has to be
analyzed by the design tools.

When you need to use a pulse generator, it should be implemented using
purely synchronous techniques, as shown in Figure 6-3.

Figure 6-3. Recommended Pulse-Generation Technigue

"V‘Dw

Trigger
Logic

In this design, the pulse width is always equal to the clock period. This
pulse generator is predictable, can be verified with timing analysis, and is
easily moved to other architectures, devices, or speed grades.

6-6 Altera Corporation
June 2004

Recommended Design Techniques

Altera Corporation
June 2004

Latches

In digital logic, a latch holds the value of a signal until a new value is
assigned. Latches can also be inferred from HDL code when you did not
intend to use a latch. In some device architectures, latches add less delay
and can be implemented using less silicon area than registers. However,
FPGA architectures are based on registers. In FPGA devices, latches
actually use more logic resources and lead to lower performance than
registers.

Latches can cause various difficulties in the design. Although latches are
memory elements, they are fundamentally different from registers. When
a latch is in feed-through or transparent mode, there is a direct path
between the data input and the output. Glitches on the data input can
pass through the output. The timing for latches is also inherently
ambiguous. When analyzing a design with a D latch, for example, the
software cannot determine whether you intended to transfer data to the
output on the leading edge of the clock or on the trailing edge. In many
cases, only the original designer knows the full intent of the design,
meaning another designer cannot easily modify the design or reuse the
code.

Clocking Schemes

Like combinational logic, clocking schemes have a large effect on your
design's performance and reliability. Avoid using internally generated
clocks where possible because they can cause functional and timing
problems in the design. Clocks generated with combinational logic can
introduce glitches that create functional problems, and the delay inherent
in combinational logic can lead to timing problems. The following
sections provide some specific examples and recommendations for
avoiding these problems.

Internally-Generated Clocks

If you use the output from combinational logic as a clock signal or as an
asynchronous reset signal, you should expect to see glitches in your
design. In a synchronous design, glitches on data inputs of registers are
normal events that have no consequences. However, a glitch or a spike on
the clock input (or an asynchronous input) to a register can have
significant consequences. Narrow glitches can violate the register's
minimum pulse width requirements. Setup and hold times may also be
violated if the data input of the register is changing when a glitch reaches
the clock input. Even if the design does not violate timing requirements,
the register output can change value unexpectedly and cause functional
hazards elsewhere in the design.

6-7

Quartus Il Handbook, Volume 1

Because of these problems, always register the output of combinational
logic before you use it as a clock signal. See Figure 6—4.

Figure 6-4. Recommended Clock-Generation Technique

Clock

Logic

Gating d

u

D Q
Enable Gated Clock

6-8

Registering the output of combinational logic ensures that the glitches
generated by the combinational logic are blocked at the data input of the
register.

The combinational logic used to generate an internal clock also adds
delays on the clock line. In some cases, logic delay on a clock line can
result in a clock skew greater than the data path length between two
registers. If the clock skew is greater than the data delay, the timing
parameters of the register will be violated and the design will not
function correctly. To reduce the clock skew within the clock domain,
assign the generated clock signal to one of the global high-fan-out and
low-skew clock networks in the FPGA device (if available). The
Quartus® II software will automatically use global routing for high-fan-
out control signals. You can make explicit Global Signal logic option
settings using the Assignment Editor (Assignment Menu) when
necessary to force the software to use the global routing for particular
signals.

Divided Clocks

Designs often require clocks created by dividing a master clock. Most
Altera FPGAs provide dedicated phase-locked loop (PLL) circuitry for
clock division. Using dedicated PLL circuitry can help you to avoid many
of the problems that can be introduced by asynchronous clock division
logic.

When you need to use logic to divide a master clock, always use
synchronous counters or state machines. In addition, create your design
so that registers always directly generate divided clock signals, as

Altera Corporation
June 2004

Recommended Design Techniques

Altera Corporation
June 2004

described in “Internally-Generated Clocks” on page 6-7. To avoid
glitches, you should not decode the outputs of a counter or a state
machine to generate clock signals.

Ripple Counters

In the past, FPGA designers implemented ripple counters to divide clocks
by a power of two because the counters are easy to design and may use
fewer gates than their synchronous counterparts. Ripple counters use
cascaded registers, in which the output pin of each register feeds the clock
pin of the register in the next stage. This cascading can cause problems
because the counter creates a ripple clock at each stage. These ripple
clocks have to be handled properly during timing analysis, which can be
difficult and may require you to make complicated timing assignments in
your synthesis and place-and-route tools. To make verification easier,
avoid these types of structures.

Multiplexed Clocks

Clock multiplexing can be used to operate the same logic function with
different clock sources. Multiplexing logic of some kind selects a clock
source, as in Figure 6-5. For example, telecommunications applications
that deal with multiple frequency standards often use multiplexed clocks.

Figure 6-5. Multiplexing Logic & Clock Sources

Multiplexed
Clock —D Q—

Clock 1 >

Clock 2 >

Multiplexing
Logic

Adding multiplexing logic to the clock signal can lead to some of the
problems discussed in the previous sections, but requirements for
multiplexed clocks vary widely depending on the application. Clock
multiplexing is acceptable if the following criteria are met:

6-9

Quartus Il Handbook, Volume 1

B The clock multiplexing logic does not change after initial
configuration

B The design uses multiplexing logic to select a clock for testing
purposes

B Registers are always reset when the clock switches

B A temporarily incorrect response following clock switching has no
negative consequences

If the design switches clocks in real time with no reset signal, and your
design cannot tolerate a temporarily incorrect response, then you must
use a synchronous design so that there are no timing violations on the
registers, no glitches on clock signals, and no race conditions or other
logical problems.

Gated Clocks

Gated clocks turn a clock signal on and off using an enable signal that

controls some sort of gating circuitry, as in Figure 6-6. When a clock is

turned off, the corresponding clock domain is shut down and becomes
functionally inactive.

Figure 6-6. Gated Clock

Clock

u

Enable Gated Clock

Gating

Logic

6-10

Gated clocks can be a powerful technique to reduce power consumption.
When a clock is gated both the clock network and the registers driven by
it stop toggling, thereby eliminating their contributions to power
consumption. However, gated clocks are not part of a synchronous
scheme and therefore can significantly increase the effort required for
design implementation and verification. Gated clocks contribute to clock
skew and make device migration difficult. These clocks are also sensitive
to glitches, which can cause design failure.

From a functional point of view, you can shut down a clock domain in a
purely synchronous manner using a synchronous clock enable signal.
However, when using a synchronous clock enable scheme, the clock
network continues toggling. This practice does not reduce power

Altera Corporation
June 2004

Recommended Design Techniques

consumption as much as gating the clock at the source does. In most
cases, you should use a synchronous scheme such as those described in
the “Synchronous Clock Enables” section. However, for improved power
reduction, see “Recommended Clock-Gating Method” on page 6-11.

Synchronous Clock Enables

To turn off a clock domain in a synchronous manner, use a synchronous
clock enable signal. Clock enable signals are efficiently supported in most
FPGAs because there is a dedicated clock enable signal available on all
device registers. This scheme does not reduce power consumption as
much as gating the clock at the source because the clock network keeps
toggling, but it will perform the same function as a gated clock by
disabling a set of registers. Insert a multiplexer in front of the data input
of every register to either load new data or copy the output of the register.
See Figure 6-7.

Figure 6-7. Synchronous Clock Enable

Enable

Recommended Clock-Gating Method

Use gated clocks only when your target application requires substantial
power reduction. If you must use gated clocks, implement them using the
robust clock-gating technique shown in Figure 6-8.

You can gate a clock signal at the source of the clock network, at each
register, or somewhere in between. Because the clock network contributes
to switching power consumption, whenever possible gate the clock at the
source so that you can shut down the entire clock network, instead of
gating it further along the clock network at the registers.

Altera Corporation 6-11
June 2004

Quartus Il Handbook, Volume 1

Figure 6-8. Recommended Clock Gating Technigue

Clock

Gating

Logic

@

T

D Q
Enable Gated Clock

J

Hierarchical
Design
Partitioning

6-12

In the technique shown in Figure 6-8, a register generates the enable
command to ensure that it is free of glitches and spikes. The register that
generates the enable signal is triggered on the inactive edge of the clock
to be gated (use the falling edge when gating a clock that is active on the
rising edge as shown in Figure 6-8). Using this technique, only one input
of the gate that turns the clock on and off changes at a time, which does
not generate glitches or spikes on the output. Use an AND gate to gate a
clock that is active on the rising edge. For a clock that is active on the
falling edge, use an OR gate to gate the clock and register the enable
command with a positive edge-triggered register.

When using this technique, pay attention to the duty cycle of the clock
and the delay through the logic that generates the enable signal, because
the enable signal must be generated in half the clock cycle. This situation
might cause problems if the logic that generates the enable command is
particularly complex, or if the duty cycle of the clock is severely
unbalanced. However, being careful with the duty cycle and logic delay
may be acceptable compared with the problems created by other methods
of gating clocks.

A hierarchical design consists of multiple design blocks linked together
in a hierarchy. When a design is partitioned hierarchically, you can
optimize and simulate the individual design blocks separately. You can

use the LogicLockTM design flow to follow a block-based design
methodology where each block is placed and routed independently, then
all blocks in the hierarchy are combined at the top level. Some synthesis
tools have features to help you create separate netlist files or maintain
separate parts of a netlist file for different parts of your design, to support
block-based design techniques.

Altera Corporation
June 2004

Hierarchical Design Partitioning

«® For more information on the LogicLock design methodology, refer to the

LogicLock Design Methodology chapter in Volume 2 of the Quartus II
Handbook.

«® For more information on hierarchical design flows, refer to the

Hierarchical Block-Based & Team-Based Design Flows chapter in Volume 2 of
the Quartus Il Handbook.

When using a hierarchical design methodology, it is important to
consider how the design is partitioned. Altera recommends the following
practices for partitioning designs:

Altera Corporation
June 2004

Partition the design at functional boundaries

Minimize the I/O connections between different partitions

Do not use “glue logic” or connection logic between hierarchical
blocks. If you preserve hierarchy boundaries, glue logic is not
merged with hierarchical blocks. Your synthesis software may
optimize glue logic separately, which can degrade synthesis results
and is not efficient when used with the LogicLock design
methodology.

Do not use tri-state signals or bidirectional ports on hierarchical
boundaries. If you use boundary tri-states in a lower-level block,
synthesis pushes the tri-states through the hierarchy to the top-level
to take advantage of the tri-state drivers on the output pins of Altera
device. Because this requires optimizing through hierarchies, lower-
level boundary tri-state signals are not supported with a block-level
design methodology.

Limit clocks to one per block. Partitioning the design into clock
domains makes synthesis and timing analysis easier.

Place state machines in separate blocks to speed optimization and
provide greater encoding control.

Separate timing-critical functions from non-timing-critical functions.
Limit the critical timing path to one hierarchical block. You can group
the logic from several design blocks to ensure the critical path resides
in one block.

Register all inputs and outputs of each block, which makes logic
synchronous and avoids glitches. Also, registering outputs may
eliminate the need to specify timing requirements for signals that
connect between different blocks.

6-13

Quartus Il Handbook, Volume 1

Targeting Clock
& Register-
Control
Architectural
Features

6-14

In addition to following general design guidelines, it is important to code
your design with the target technology in mind. FPGAs provide
device-wide clocks and register control signals that can improve
performance.

Clock Network Resources

In ASIC design, balancing the clock delay as it is distributed across the
device can be important. Altera FPGAs provide device-wide global clock
routing resources and dedicated inputs, so there is no need to manually
balance delays on the clock network. You should use the FPGA's low-
skew, high-fan-out, dedicated routing where available. By assigning a
clock input to one of these dedicated clock pins or using a Quartus I logic
option to assign global routing, you can take advantage of the dedicated
routing available for clock signals.

For best performance, limit the number of global clocks in your design to
the number of dedicated global clock resources available in your FPGA.
Today s FPGAs offer increasing numbers of global clocks to address large
designs with many clock domains. Many large FPGA devices provide
dedicated global clock networks, regional clock networks, and dedicated
fast regional clock networks. These clocks are typically organized into a
hierarchical clock structure that allows many clocks in each device region
with low skew and delay. There are typically a number of dedicated clock
pins to drive either the global or regional clock networks. PLL outputs
can also drive the global and regional clock networks, and internal signals
in the design can be routed onto the clock networks using the Global
Signal logic option assignments in the Quartus II software.

To take full advantage of these routing resources, the sources of clock
signals in a design (input clock pins or internally generated clocks)
should drive only the clock input ports of registers. In certain devices, if
a clock signal feeds the data ports of a register, the signal may not be able
to use the dedicated routing, which can lead to decreased performance. In
general, allowing clock signals to drive the data ports of registers is not
considered synchronous design, and it can complicate timing analysis; it
is not a recommended practice.

Reset Resources

ASIC designs may use local resets to avoid long routing delays on the
signal. You should take advantage of the device-wide asynchronous reset
pin available on most FPGAs to eliminate these problems. This reset
signal provides low-skew routing across the device.

Altera Corporation
June 2004

Conclusion

Conclusion

Altera Corporation
June 2004

Register Control Signals

Avoid using an asynchronous load signal if the design's target device
architecture does not include registers with dedicated circuitry for
asynchronous loads. Also, avoid using both asynchronous clear and
preset if the architecture provides only one of those control signals.
APEX™devices, for example, directly support an asynchronous clear
function, but not a preset or load function. When the target device does
not directly support the signals, the place-and-route software must use
combinational logic to implement the same functionality. The
combinational logic is less efficient and can cause glitches and other
problems; it is best to avoid these implementations.

For Verilog HDL and HHDL examples of registers with various control
signals, and information on the inherent priority order of register control
signals in Altera device architecture, refer to the Recommended HDL.
Coding Styles chapter in Volume 1 of the Quartus II Handbook.

Following the design practices outlined in this chapter can help you
consistently meet your design goals. Asynchronous design techniques
may result in incomplete timing analysis, may clause glitches on data
signals, and may rely on propagation delays in a device leading to race
conditions and unpredictable results. Taking advantage of the
architectural features in your FPGA device can also improve your quality
of results.

6-15

Quartus Il Handbook, Volume 1

6-16 Altera Corporation
June 2004

A I:I —1— o 7. Recommended HDL

Coding Styles

(ii51007-2.0

Introduction

Instantiating and
Inferring Altera
Megafunctions

Altera Corporation
June 2004

Your hardware description language (HDL) coding style can have a big
effect on the quality of results that you achieve for your Altera® design.
Synthesis tools optimize HDL code for both logic utilization and
performance, however, sometimes the best optimizations require human
knowledge of the design, and synthesis tools cannot always know the
design intent. Designers are often in the best position to improve their
quality of results.

This chapter discusses coding style recommendations to ensure optimal
synthesis results when targeting Altera devices. This chapter provides
code examples for inferring Altera megafunctions from HDL code and
targeting certain functions in Altera device architectures, along with
device-specific coding recommendations for certain types of logic, and
some general coding guidelines.

For more general guidelines on structuring your design, refer to the
Design Recommendations for Altera Devices chapter in Volume 1 of the
Quartus II Handbook.

Altera provides parameterizable megafunctions that are optimized for
Altera device architectures. Using megafunctions instead of coding your
own logic saves valuable design time. Additionally, the Altera-provided
functions may offer more efficient logic synthesis and device
implementation. You can scale the megafunction’s size by simply setting
parameters.

Megafunctions include the library of parameterized modules (LPM) and
Altera device-specific megafunctions.

I You must use megafunctions to access some Altera device-
specific features, such as memory, digital signal processing
(DSP) blocks, low-voltage differential signal (LVDS) drivers,
phase-locked loops (PLLs), transceivers, and double data rate
input/output (DDIO) circuitry.

Altera megafunctions are easy to instantiate and offer efficient device
implementation. Some designers, however, prefer to make their code
independent of device family or vendor, and prefer not to instantiate
megafunctions directly. In these cases, follow the guidelines in this
chapter to ensure your HDL code infers the appropriate Altera

Quartus Il Handbook, Volume 1

7-2

megafunction. In addition, for some designs, generic HDL code may
provide better results. The following general guidelines provide some
examples:

B For simple addition or subtraction functions, use the + or - symbol
instead of an LPM function. Instantiating an LPM function for simple
arithmetic operations may result in a less efficient result because the
function will be hard-coded and the synthesis algorithms cannot take
advantage of basic logic optimizations. For more complicated
arithmetic such as synchronous loadable counters, LPM functions
can give you access to detailed architecture-specific functionality
that is not easy to infer from HDL code.

B For simple multiplexers and decoders, use array notation (such as
out = data [sel]) instead of an LPM function. Array notation
works very well and has simple syntax. You may want to use the
LPM_MUX function to take advantage of architectural features such as
cascade chains in APEX™ devices, but use the LPM function only if
you want to force a specific implementation.

B Avoid division operations where possible. Division is an inherently
slow operation. Many designers use multiplications creatively to
produce division results. If you must divide, the LPM_DI1VIDE
function provides the best results possible.

The following sections describe how to use megafunctions by
instantiating them in your HDL code or inferring them from generic HDL
code.

Instantiating Altera Megafunctions in HDL Code

If you decide to instantiate a megafunction in your HDL code, use one of
the following methods:

B Use the Quartus® II software MegaWizard® Plug-In Manager to
parameterize the function and create a wrapper file.

B Instantiate the function directly using the port and parameter
definitions.

Instantiating Megafunctions Using the MegaWizard Plug-In Manager

Altera recommends that you use the MegaWizard Plug-In Manager to
instantiate megafunctions. The wizard provides a graphical interface to
customize and parameterize megafunctions, and ensures that you set all
megafunction parameters properly. When you finish setting parameters
you can specify which files should be generated. The wizard generates an
Altera HDL (AHDL), Verilog HDL, or VHDL wrapper file (depending on
which language you chose on the first page of the wizard) that
instantiates the megafunction with the correct parameters, as well as

Altera Corporation
June 2004

Recommended HDL Coding Styles

other files including a Component Declaration File (.cmp) for VHDL and
an Include File (.inc) for AHDL. You can then instantiate the wrapper file
in your HDL code using the sample instantiation file <output
file>_inst.tdf/v/ivhd. See Table 7-1 for a list of generated files.

1= Altera strongly recommends that you use the wizard for
complex megafunctions such as PLLs, transceivers, and LVDS
drivers.

When using certain megafunctions with synthesis tools outside the
Quartus II software, you have the option of creating a clear box body
instead of a wrapper file. The clear box netlist file is a fully synthesizeable
Altera megafunction, or LPM function, for use with electronic design
automation (EDA) synthesis tools. When implementing a megafunction
with the clear box model, you provide the EDA synthesis tool with
information about the architectural details used in the Quartus II
software. This enables certain synthesis tools to better report timing and
resource utilization estimates.

To generate a clear box model, turn on the Generate a clear box body (for
EDA tools only) option on the first page of the MegaWizard Plug-in
Manager.

Table 7-1 lists and describes the MegaWizard Plug-In
Manager-generated files.

Table 7-1. MegaWizard Plug-In Manager Generated Files (Part 1 of 2)

File

Description

<output file>.bsf

Block Symbol File used in the Quartus Il schematic editor

<output file>.cmp

Component Declaration File used in VHDL designs.

<output file>.inc

Include File used in AHDL designs.

<output file>.tdf (1)

Megafunction wrapper file for instantiation in an AHDL design.

<output file>.vhd (2) (4)

Megafunction wrapper file, or clear box netlist file, for instantiation in a
VHDL design.

<output file>.v (3) (4)

Megafunction wrapper file, or clear box netlist file, for instantiation in a
Verilog HDL design.

<output file>_bb.v (3)

Hollow-body declaration used in Verilog HDL designs to specify port
directions when black-boxing in third-party synthesis tools.

<output file>_inst.tdf (2)

Sample AHDL instantiation of the subdesign in the megafunction
wrapper file.

<output file>_inst.vhd (2)

Sample VHDL instantiation of the entity in the megafunction wrapper
file.

Altera Corporation
June 2004

7-3

Quartus Il Handbook, Volume 1

Table 7-1. MegaWizard Plug-In Manager Generated Files (Part 2 of 2)

File

Description

<output file>_inst.v (3)

Sample Verilog HDL instantiation of the module in the megafunction
wrapper file.

Notes to Table 2-1:

(1) The wizard generates this file only if you select AHDL output files.

(2) The wizard generates this file only if you select VHDL output files.

(3) The wizard generates this file only if you select Verilog HDL output files.

(4) A megafunction wrapper file will be created by default for most megafunctions. If you turn on the Generate a clear
boxbody (for EDA tools only) option, the wizard will create a clear box netlist file to be used with third-party EDA
synthesis tools. For more information about how to use the MegaWizard Plug-In Manager, see Quartus II Help.

7-4

Instantiating Megafunctions Using the Port & Parameter Definition

You can instantiate the megafunction directly in your AHDL, Verilog
HDL, or VHDL code by calling the function like any other subdesign,
module, or component.

See Quartus II Help for a list of the megafunction’s ports and
parameters. Quartus II Help also provides a sample VHDL component
declaration and AHDL function prototype for each megafunction.

Inferring Megafunctions from HDL Code

Synthesis tools, including Quartus II integrated synthesis, recognize
certain types of HDL code and automatically infer the appropriate
megafunction when a megafunction will provide optimal results. That is,
the software uses the Altera megafunction code when compiling your
design—even though you did not specifically instantiate the
megafunction. The software infers megafunctions resulting in logic that
is optimized for Altera devices. The area and/or performance of such
logic may be better than the results obtained by inferring generic logic
from the same HDL code. Additionally, you must use megafunctions to
access certain architecture-specific features—such as memory, DSP
blocks, and shift registers—that generally provide improved
performance compared with regular logic.

This section describes the types of logic that standard synthesis tools
recognize and map to megafunctions. Synthesis software infers only the
specific functions listed in this section that are described by HDL code.
The software cannot infer other functions, such as PLLs, LVDS drivers,
transceivers, or DDIO circuitry from HDL code because these functions
cannot be fully or efficiently described in HDL code. In some cases,
synthesis tools provide options to turn off the inference of certain
megafunctions.

Altera Corporation
June 2004

Recommended HDL Coding Styles

Altera Corporation
June 2004

For features and options specific to a certain synthesis tool, see the
appropriate chapter in the Synthesis section in Volume 1 of the Quartus II
Handbook. Also refer to your synthesis tool’s documentation.

Counters

To infer counter functions, synthesis tools look for a set of registers that
feed through a plus-one adder, a minus-one adder, or both, and then
convert the registers and logic to an Ipm_counter megafunction. If a
design also has logic that implements control signals, the synthesis tool
can recognize them as well. For example, the Quartus II software
recognizes the following signals:

Asynchronous clear

Asynchronous set (only to all logic value 1s)
Asynchronous load

Count enable

Synchronous clear

Synchronous set (only to all logic value 1s)
Synchronous load

Clock enable

Up/down

The following code samples show simple Verilog HDL and VHDL
counter function examples with different control signals.

Verilog HDL Counter with Count Enable & Asynchronous Clear

module counter (clk, reset, results, ena);
input clk;
input reset;
input ena;
output [7:0] result;

reg [7:0] result;

always @ (posedge clk or posedge reset)
begin
if (reset)
result = 0;
else it (ena)
result = result + 1;
end
endmodule

VHDL Counter with Synchronous Load

LIBRARY ieee;
USE ieee.std_logic_1164_ALL;
USE ieee.std_logic_arth.ALL;

7-5

Quartus Il Handbook, Volume 1

7-6

ENTITY count IS
PORT (
clock: IN STD_LOGIC;
sload: IN STD LOGIC;
data: IN STD_LOGIC_VECTOR (4 DOWNTO 0);
result: OUT STD_LOGIC_VECTOR (4 DOWNTO 0)

END count:

ARCHITECTURE rtl OF count IS
SIGNAL result_reg : STD_LOGIC_VECTOR (4 DOWNTO 0);
BEGIN
PROCESS (clock)
BEGIN
IF (clock®event AND clock = "1%) THEN
IF (sload = "1%) THEN
result_reg <= data;
ELSE
result_reg <= UNSIGNED(result_reg) + 1;
END IF;
END IF;
END PROCESS;

result <= result_reg;
END rtl;

Adder/Subtractors

To infer adder/subtractor functions, synthesis tools look for adders and
subtractors that have the same set of inputs and outputs that are
multiplexed by a common signal. The software may then merge the
adders and subtractors and convert them to an 1pm_addsub
megafunction.

The following code samples show Verilog HDL and VHDL examples of
simple adder/subtractors. The VHDL example includes a small user-
defined package to configure the widths.

Verilog HDL Adder/Subtractor

module addsub (a, b, addnsub, result);
input [7:0] a;
input [7:0] b;
input addnsub;
output [8:0] result;

reg [8:0] result;
always @ (a or b or addnsub)

begin

Altera Corporation
June 2004

Recommended HDL Coding Styles

if (addnsub)
result = a + b;
else
result = a - b;
end
endmodule

VHDL Adder/Subtractor

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

PACKAGE my_package 1S
CONSTANT ADDER_WIDTH : integer := 5;
CONSTANT RESULT_WIDTH : integer := 6;

SUBTYPE ADDER_VALUE 1S integer RANGE O TO 2 ** ADDER_WIDTH - 1;
SUBTYPE RESULT_VALUE 1S integer RANGE O TO 2 ** RESULT_WIDTH - 1;
END my_package;

LIBRARY ieee;
USE ieee.std_logic_1164_ALL;
USE work.my_ package.ALL;

ENTITY addsub 1S
PORT (
a: IN ADDER_VALUE;
b: IN ADDER_VALUE;
addnsub: IN STD_LOGIC;
result: OUT RESULT_ VALUE
);
END addsub;

ARCHITECTURE rtl OF addsub 1S

BEGIN
PROCESS (a, b, addnsub)
BEGIN
IF (addnsub = "1") THEN
result <= a + b;
ELSE
result <= a - b;
END IF;
END PROCESS;
END rtl;
Altera Corporation -7

June 2004

Quartus Il Handbook, Volume 1

7-8

Multipliers

To infer multiplier functions, synthesis tools look for multipliers and
convert them to Ipm_mu 't megafunctions. For devices with DSP blocks,
the software may implement the Ipm_mult function in a DSP block
instead of logic, depending on device utilization. The Quartus II Fitter
may also place input and output registers in DSP blocks (i.e., perform
register packing) to improve performance and area utilization.

For more information on the DSP block and which functions it can
implement, see the appropriate Altera device family data sheet and the
DSP Solution Center on the Altera website.

The following four code samples show Verilog HDL and VHDL examples
for unsigned and signed multipliers that synthesis tools infer as an
Ipm_mul't megafunction. Each example fits into one DSP block 9-bit
element (using no extra logic cells for registers when register packing
occurs).

L=~ The signed declaration in Verilog HDL is a feature of the
Verilog-2001 Standard.

Verilog HDL Unsigned Multiplier

module unsigned_mult (out, a, b);
output [15:0] out;
input [7:0] a;
input [7:0] b;

assign out = a * b;
endmodule

Verilog HDL Signed Multiplier with Input & Output Registers
(Pipelining = 2)

module signed_mult (out, clk, a, b);
output [15:0] out;
input clk;
input signed [7:0] a;
input signed [7:0] b;

reg signed [7:0] a_reg;
reg signed [7:0] b_reg;
reg signed [15:0] out;
wire signed [15:0] mult_out;

assign mult_out = a_reg * b_reg;

Altera Corporation
June 2004

Recommended HDL Coding Styles

always@(posedge clk)
begin
a_reg <= a;
b_reg <= b;
out <= mult_out;
end
endmodule

VHDL Unsigned Multiplier with Input & Output Registers (Pipelining = 2)

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

USE ieee.std_logic_arith_ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY unsigned_mult IS
PORT (
a: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
b: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
clk: IN STD_LOGIC;
aclr: IN STD _LOGIC;
result: OUT STD_LOGIC_VECTOR (15 DOWNTO 0)
);
END unsigned_mult;

ARCHITECTURE rtl OF unsigned_mult 1S
SIGNAL a_reg, b_reg: STD_LOGIC_VECTOR (7 DOWNTO 0);
BEGIN
PROCESS (clk, aclr)
BEGIN
IF (aclr ="1") THEN
a_reg <= (OTHERS => "0%);
b_reg <= (OTHERS => "0%);
result <= (OTHERS => "0%);

ELSIF (clk"event AND clk = "1%) THEN
a_reg <= a;

b_reg <= b;
result <= UNSIGNED(a_reg) * UNSIGNED(b_reg);
END IF;
END PROCESS;
END rtl;

VHDL Signed Multiplier

LIBRARY ieee;

USE ieee.std_logic_1164_ALL;

USE ieee.std_logic_arith_ALL;
USE ieee.std_logic_signed.ALL;
USE ieee.std_logic_unsigned.ALL;

Altera Corporation 7-9
June 2004

Quartus Il Handbook, Volume 1

ENTITY signed_mult 1S

PORT (
a: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
b: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
result: OUT STD_LOGIC_VECTOR (15 DOWNTO 0)
):

END signed_mult;

ARCHITECTURE rtl OF signed_mult IS
SIGNAL a_int, b_int: SIGNED (7 downto 0O);
SIGNAL pdt_int: SIGNED (15 downto 0);

BEGIN

a_int <= SIGNED (a);

b_int <= SIGNED (b);

pdt_int <= a_int * b_int;

result <= STD_LOGIC_VECTOR(pdt_int);
END rtl;

Multiply-Accumulators & Multiply-Adders

Synthesis tools detect multiply-accumulators or multiply-adders and
convert them to altmult_accum or altmult_add megafunctions,
respectively. The software then places these functions in DSP blocks.

I = Synthesis software only infers multiply-accumulator and
multiply-adder functions if the Altera device family has
dedicated DSP blocks.

A multiply-accumulator consists of a multiply operator feeding an
addition operator. The addition operator feeds a set of registers that then
feed the second input to the addition operator. A multiply-adder consists
of two- to four-multiply operators feeding one- or two-levels of addition,
subtraction, or addition/subtraction operators. The second-level
operator, if used, is always addition. In addition to the multiply-
accumulator and multiply-adder, the Quartus II Fitter can also place
input and output registers into the DSP block (i.e., perform register
packing) to improve performance and area utilization.

The following code samples show Verilog HDL and VHDL examples of
inference for specific multiply-accumulators and multiply-adders.

7-10 Altera Corporation
June 2004

Recommended HDL Coding Styles

Verilog HDL Unsigned Multiply-Accumulator with Input, Output &
Pipeline Registers (Latency = 3)

module unsig_altmult_accum (dataout, dataa, datab, clk, aclr, clken);
input [7:0] dataa;
input [7:0] datab;
input clk;
input aclr;
input clken;

output [31:0] dataout;

reg [31:0] dataout;
reg [7:0] dataa_reg;
reg [7:0] datab_reg;
reg [15:0] multa_reg;

wire [15:0] multa;
wire [31:0] adder_out;

assign multa = dataa_reg * datab_reg;
assign adder_out = multa_reg + dataout;

always @ (posedge clk or posedge aclr)
begin
it (aclr)
begin
dataa_reg <= 0;
datab_reg <= 0;

multa_reg <= 0;

dataout <= 0;
end

else if (clken)

begin
dataa_reg <= dataa;
datab_reg <= datab;

multa_reg <= multa;

dataout <= adder_out;
end
end
endmodule

Altera Corporation 7-11
June 2004

Quartus Il Handbook, Volume 1

Verilog HDL Signed Multiply-Adder (Latency = 0)

module sig_altmult_add (dataa, datab, datac, datad, result);
input SIGNED [15:0] dataa;
input SIGNED [15:0] datab;
input SIGNED [15:0] datac;
input SIGNED [15:0] datad;
output [32:0] result;

wire SIGNED [31:0] multO_result;
wire SIGNED [31:0] multl_result;

dataa * datab;
datac * datad;

assign multO_result =
assign multl_result =

assign result = (multO_result + multl_result);
endmodule

VHDL Unsigned Multiply-Adder with Input, Output & Pipeline Registers
(Latency = 3)

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

USE ieee.std_logic_arith_ALL;
USE ieee.std_logic_signed.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY unsignedmult_add IS
PORT (

a: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
b: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
c: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
d: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
clk: IN STD_LOGIC;
aclr: IN STD _LOGIC;
result: OUT STD_LOGIC_VECTOR (15 DOWNTO 0)

);
END unsignedmult_add;

ARCHITECTURE rtl OF unsignedmult_add IS
SIGNAL a_int, b_int, c_int, d_int: STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL pdt_int, pdt2_int: UNSIGNED (15 DOWNTO 0);
SIGNAL result_int: UNSIGNED (15 DOWNTO 0);

BEGIN
PROCESS (clk, aclr)
BEGIN
IF (aclr = "1%) THEN
a_int <= (OTHERS => "0%);
b_int <= (OTHERS => "0%);
c_int <= (OTHERS => "0%);
d_int <= (OTHERS => "0%);
7-12 Altera Corporation

June 2004

Recommended HDL Coding Styles

pdt_int <= (OTHERS => "07);
pdt2_int <= (OTHERS => "0");
result_int <= (OTHERS => "0%);

ELSIF (clk"event AND clk = "1%) THEN
a_int <= a;

b_iInt <= b;
c_int <= c;
d_int <= d;

pdt_int <= UNSIGNED(a_int) * UNSIGNED(b_int);
pdt2_int <= UNSIGNED(c_int) * UNSIGNED(d_int);
result_int <= pdt_int + pdt2_int;
END IF;
END PROCESS;

result <= STD_LOGIC_VECTOR(result_int);
END rtli;

VHDL Signed Multiply-Accumulator with Input, Outout & Pipeline
Registers (Latency = 3)

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

USE ieee.std_logic_arith_ALL;
USE ieee.std_logic_signed.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY sig_altmult_accum IS
PORT (
a: IN STD_LOGIC_VECTOR (7 DOWNTO O0);
b: IN STD_LOGIC_VECTOR (7 DOWNTO O0) ;
clk: IN STD_LOGIC;
accum_out: OUT STD_LOGIC_VECTOR (15 DOWNTO 0)
)
END sig_altmult_accum;

ARCHITECTURE rtl OF sig_altmult_accum IS
SIGNAL a_reg, b_reg : SIGNED (7 DOWNTO 0) ;
SIGNAL pdt_reg : SIGNED (15 DOWNTO O0) ;
SIGNAL adder_out : SIGNED (15 DOWNTO O0) ;

BEGIN
PROCESS (clk)
BEGIN
IF (clk'event and clk = '1l') THEN

a_reg <= SIGNED (a);
b_reg <= SIGNED (b);

pdt_reg <= a_reg * b_reg;
adder_out <= adder_out + pdt_reg ;
END IF;
END process;

Altera Corporation 7-13
June 2004

Quartus Il Handbook, Volume 1

accum_out <= std_logic_vector (adder_out) ;

END rtl;

7-14

RAM

To infer RAM functions, synthesis tools detect sets of registers and logic
that can be replaced with the altsyncramor Ipm_ram_dp
megafunctions, depending on the targeted device family.

L=~ Synthesis software only recognizes RAM blocks for device
families that have dedicated RAM blocks.

Synthesis tools recognize single port and simple dual-port (one read and
one write port) RAM blocks. The software may not infer very small RAM
blocks because very small RAM blocks can typically be implemented
more efficiently by using the registers in regular logic.

I If your design contains a RAM block that the synthesis tool does
not recognize and infer, it may use a large amount of memory
and could potentially cause runtime compilation problems.

= For certain RAM configurations in certain device families, using
a RAM megafunction may slightly change the design
functionality if the RAM reads from and writes to the same
location. In this scenario, the software generally issues a
warning. If you are using Quartus II integrated synthesis, the
Quartus II Help explains the condition under which the
functionality changes.

The following code samples show Verilog HDL and VHDL examples that
infer single- and dual-clock synchronous RAM. Depending on the device
family’s dedicated RAM architecture, the RAM may need to be
synchronous.

Refer to the appropriate Altera device family data sheet or handbook for
more information about your specific device at
www.altera.com/literature.

For the dual-clock examples—if you are reading and writing to the same
address—the functionality of the inferred megafunction may differ from
the original HDL code. (Synthesis tools issues a warning to inform you of
this functional difference.)

Altera Corporation
June 2004

Recommended HDL Coding Styles

Verilog HDL Single-Clock Synchronous RAM

module ram_infer (q, a, d, we, clk);
output [7:0] q;:
input [7:0] d;
input [6:0] a;
input we, clk;
reg [6:0] read_add;
reg [7:0] mem [127:0];

always @ (posedge clk) begin
it (we)
mem[a] <= d;
read_add <= a;
end

assign q = mem[read_add];
endmodule

Verilog HDL Dual-Clock Synchronous RAM

module ram_dual (q, addr_in, addr_out, d, we, clki,
clk2);

output [7:0] q;

input [7:0] d;

input [6:0] addr_in;

input [6:0] addr_out;

input we, clkl, clk2;

reg [6:0] addr_out_reg;

reg [7:0] q;
reg [7:0] mem [127:0];

always @ (posedge clkl)
begin
if (we)
mem[addr_in] <= d;
end

always @ (posedge clk2) begin
q <= mem[addr_out_reg];
addr_out_reg <= addr_out;
end
endmodule

Altera Corporation 7-15
June 2004

Quartus Il Handbook, Volume 1

VHDL Single-Clock Synchronous RAM

LIBRARY ieee;
USE ieee.std_logic_1164_ALL;

ENTITY ram IS
PORT (
clock: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
write_address: IN INTEGER RANGE O to 31;
read_address: IN INTEGER RANGE O to 31;
we: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0)
);
END ram;

ARCHITECTURE rtl OF ram IS
TYPE MEM IS ARRAY(O TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL ram_block : MEM;
SIGNAL read_address_reg : INTEGER RANGE O to 31;
BEGIN
PROCESS (clock)
BEGIN
IF (clock®event AND clock = "1%) THEN
IF (we = "1") THEN
ram_block(write_address) <= data;
END IF;

read_address_reg <= read_address;

END IF;
END PROCESS;

g <= ram_block(read_address_reQg);
END rtl;

7-16 Altera Corporation
June 2004

Recommended HDL Coding Styles

VHDL Dual-Clock Synchronous RAM

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY ram_dual IS
PORT (

clockl, clock2: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (3 DOWNTO 0);
write_address: IN INTEGER RANGE O to 31;
read_address: IN INTEGER RANGE O to 31;
we: IN STD_LOGIC;
gq: OUT STD_LOGIC_VECTOR (3 DOWNTO 0)

END Fam_dual;

ARCHITECTURE rtl OF ram_dual IS
TYPE MEM IS ARRAY(O TO 31) OF STD_LOGIC_VECTOR(3 DOWNTO 0);

SIGNAL ram_block : MEM;
SIGNAL read_address_reg : INTEGER RANGE O to 31;
BEGIN
PROCESS (clockl)
BEGIN
IF (clockl®event AND clockl = "1") THEN
IF (we = "17) THEN
ram_block(write_address) <= data;
END IF;
END IF;
END PROCESS;

PROCESS (clock2)
BEGIN
IF (clock2"event AND clock2 = "1") THEN
q <= ram_block(read_address_reqg);
read_address_reg <= read_address;
END IF;
END PROCESS;
END rtl;

The following code samples show Verilog HDL and VHDL code
examples of RAM with asynchronous read addresses and registered
outputs.

The implementation of RAM example code in the following samples
varies depending on the dedicated RAM architecture of the appropriate
device family. For example, implementing asynchronous read addresses
in an APEX device’s RAM block is straightforward because the APEX
architecture supports asynchronous read addresses. However, read
addresses in Stratix® devices must be registered; therefore, you cannot

Altera Corporation 7-17
June 2004

Quartus Il Handbook, Volume 1

directly implement the asynchronous RAM example code in the
following samples. To implement the asynchronous RAM example from
the Stratix architecture by inferring an altsyncram megafunction,
synthesis tools may move the output registers to the inputs of the RAM
block. If the read and write clocks are not the same, moving the output
registers to the inputs of the RAM block may slightly change the
functionality. In these circumstances, the software issues a warning.
When using Quartus Il integrated synthesis, Quartus II Help explains the
differences.

Verilog HDL Single-Clock Synchronous RAM with Asynchronous Read
Address

module ram (clock, data, write_address, read_address, we, Q);

parameter ADDRESS WIDTH
parameter DATA_WIDTH

input clock;

4;
8;

input [DATA_WIDTH-1:0] data;
input [ADDRESS_WIDTH-1:0] write_address;
input [ADDRESS WIDTH-1:0] read_address;

input we;

output [DATA WIDTH-1:0] q;

reg [DATA_WIDTH-1:0] q;
reg [DATA WIDTH-1:0] ram block [2**ADDRESS_WIDTH-1:0];

always @ (posedge clock)

begin

it (we)
ram_block[write_address] <= data;

q <= ram_block[read_address];

end
endmodule

7-18

Altera Corporation
June 2004

Recommended HDL Coding Styles

VHDL Single-Clock Synchronous RAM with Asynchronous Read Address

LIBRARY ieee;
USE ieee.std_logic_1164_ALL;
USE ieee.numeric_std._ALL;

ENTITY ram IS
GENERIC (
ADDRESS_WIDTH : integer := 4;
DATA_WIDTH : integer := 8
);
PORT (
clock : IN std_logic;
data : IN STD_LOGIC_VECTOR(DATA_WIDTH - 1 DOWNTO 0);
write_address IN STD_LOGIC_VECTOR (ADDRESS WIDTH - 1 DOWNTO 0);
read_address IN STD_LOGIC_VECTOR(ADDRESS WIDTH - 1 DOWNTO 0);
we - IN STD_LOGIC;
g : OUT STD_LOGIC_VECTOR(DATA_WIDTH - 1 DOWNTO 0)
);
END ram;

ARCHITECTURE rtl OF ram IS
TYPE RAM IS ARRAY(O TO 2 ** ADDRESS_WIDTH - 1) OF
std_logic_vector(DATA_WIDTH - 1 DOWNTO 0);
SIGNAL ram _block : RAM;
BEGIN
PROCESS (clock)
BEGIN
IF (clock®event AND clock = "1%) THEN
IF (we = "1%) THEN
ram_block(TO_INTEGER(UNSIGNED(write_address))) <= data;
END IF;

q <= ram_block(TO_INTEGER(UNSIGNED(read_address)));
END IF;
END PROCESS;
END rtl;

Altera Corporation 7-19
June 2004

Quartus Il Handbook, Volume 1

ROM

To infer ROM functions, synthesis tools detect sets of registers and logic
that can be replaced with the altsyncram or Ipm_rom megafunctions,
depending on the target device family.

Il=~ Synthesis software only recognizes ROM functions for device
families that have dedicated memory blocks.

ROMs are inferred when you have a case statement where a value is being
set to a constant for every choice in the case statement. Because small
ROMs typically achieve the best performance when they are
implemented using the registers in regular logic, each ROM function has
to meet a minimum size requirement to be inferred and placed into
memory.

The following code samples show Verilog HDL and VHDL examples that
infer synchronous ROM. Depending on the device family’s dedicated
RAM architecture, the ROM may need to be synchronous; consult the
device family data sheet for details. For device architectures with
synchronous RAM blocks, such as Stratix devices, either the address or
the output has to be registered for ROM code to be inferred. When output
registers are used, the registers are implemented using the input registers
of the Stratix RAM block, but the functionality of the ROM is not changed.
If you register the address, the power-up state of the inferred ROM can be
different from the HDL design. In this scenario, the software generally
issues a warning. When using Quartus Il integrated synthesis, Quartus II
Help explains the condition under which the functionality changes.

Verilog HDL Synchronous ROM

module sync_rom (clock, address, data_out);
input clock;
input [7:0] address;
output [5:0] data_out;
reg [5:0] data_out;

always @ (posedge clock)
begin
case (address)

8"b00000000: data_out = 6"b101111;
8"b00000001: data _out = 6"b110110;
8°b11111110: data out = 6°b000001;
8"b11111111: data_out = 6"b101010;
endcase
end
endmodule
7-20 Altera Corporation

June 2004

Recommended HDL Coding Styles

LIBRARY ieee;

VHDL Synchronous ROM

USE ieee.std_logic_1164.ALL;

ENTITY sync_rom IS

PORT (
clock:

address:
data_out:

)i
END sync_rom;

IN STD-LOGIC;
IN STD_LOGIC_VECTOR (7 downto 0);
OUT STD_LOGIC_VECTOR(5 downto 0)

ARCHITECTURE rtl OF sync_rom IS

CASE address IS

BEGIN
PROCESS (clock)
BEGIN
WHEN
WHEN

WHEN
WHEN

"00000000" => data_out <= "101111";
"00000001" => data_out <= "110110";

"11111110" => data_out <= "000001";
"11111111" => data_out <= "101010";

WHEN OTHERS => data_out <= "101111";

END CASE;
END PROCESS;

END rtl;

Altera Corporation
June 2004

Shift Registers

To infer shift registers, synthesis tools detect a group of shift registers of
the same length and convert them to an altshift_taps megafunction.
To be detected, all the shift registers must have the following
characteristics:

B Use the same clock and clock enable
B Do not have any other secondary signals
B Have equally spaced taps that are at least three registers apart

Synthesis software recognizes shift registers only for device families that
have dedicated RAM blocks and use certain guidelines to determine the
best implementation. The following guidelines are followed in Quartus II
integrated synthesis and are generally followed by third-party EDA tools
as well:

B For FLEX® 10K and ACEX® 1K devices, the software does not infer

altshift_taps megafunctions because FLEX 10K and ACEX 1K
devices have a relatively small amount of dedicated memory.

7-21

Quartus Il Handbook, Volume 1

7-22

For APEX 20K and APEX II devices, the software infers
altshift_taps megafunctions if the shift register has more than a
total of 128 bits. Smaller shift registers typically do not benefit from
implementation in dedicated memory.

For Stratix II, Stratix, Cyclone™II, and Cyclone devices, the software
determines whether to infer altshift_taps megafunctions based
on the width of the registered bus (W), the length between each tap
(L), and the number of taps (N).

If the registered bus width is one (W = 1), the software infers
altshift_taps if the number of taps times the length
between each tap is greater than or equal to 64 (N x L >64).

If the registered bus width is greater than one (W > 1), the
software infers al tshift_taps if the registered bus width
times the number of taps times the length between each tap is
greater than or equal to 32 (W x N x L >32).

If the length between each tap (L) is not a power of two, the
software uses more logic to decode the read and write counters.
This situation occurs because for different sizes of shift registers,
external decode logic (using LEs or ALMs) is required to
implement the function, which eliminates the advantage of
implementing shift registers in memory:.

The registers that the software maps to the altshift_taps
megafunction and places in RAM are not available in simulation
tools because their node names do not exist after synthesis.

The following code sample shows a Verilog HDL example of a simple,
single-bit wide, 64-bit long shift register. The software implements the
register (W=1and M = 64) in an altshift_taps megafunction for
supported devices. If the length of the register is less than 64 bits, the
software implements the shift register in logic.

Verilog HDL Single-Bit Wide, 64-Bit Long Shift Register

module shift_1x64 (clk, shift, sr_in, sr_out ;
input clk, shift;

input sr_in;

output sr_out;

reg [63:0] sr;

always @ (posedge clk)
begin

if (shift == 1"bl)

begin
sr[63:1] <= sr[62:0];
sr[0] <= sr_in;

Altera Corporation
June 2004

Recommended HDL Coding Styles

end
end

assign sr_out = sr[63];
endmodule

The following code sample shows a Verilog HDL example of an 8-bit
wide, 64-bit long shift register (W > 1 and M = 64) with evenly spaced taps
at 15, 31, and 47. The software implements this function in a single
altshift_taps megafunction and maps it to RAM in supported
devices.

Verilog HDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced
Taps

module shift_8x64 taps (clk, shift, sr_in, sr_out, sr_tap_one, sr_tap_two,
sr_tap_three);

input clk, shift;

input [7:0] sr_in;

output [7:0] sr_tap_one, sr_tap_two, sr_tap_three, sr_out;

reg [7:0] sr [63:0];
integer n;

always @ (posedge clk)

begin
if (shift == 1"bl)
begin
for (n = 63; n>0; n = n-1)
begin
sr[n] <= sr[n-1];
end

sr[0] <= sr_in;
end
end

assign sr_tap_one = sr[15];

assign sr_tap_two = sr[31];

assign sr_tap_three = sr[47];

assign sr_out = sr[63];
endmodule

Altera Corporation 7-23
June 2004

Quartus Il Handbook, Volume 1

The following code sample shows a VHDL example of a 8-bit wide, 64-bit
long shift register with evenly spaced taps at 15, 31, and 47.

VHDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps

LIBRARY I1EEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY shift_8x64 taps IS

PORT (
clk : IN STD_LOGIC;
shift : IN STD_LOGIC;
sr_in : N STD_LOGIC_VECTOR(? DOWNTO 0);

sr_tap_one : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
sr_tap_two : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
sr_tap_three : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
sr_out : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)

)

END shift_8x64_taps;

ARCHITECTURE arch OF shift_8x64_taps IS

SUBTYPE sr_width IS STD_LOGIC_VECTOR(7 DOWNTO 0);
TYPE sr_length IS ARRAY (63 DOWNTO 0) OF sr_width;

SIGNAL sr : sr_length;
BEGIN
PROCESS (clk)
BEGIN
IF (clk"EVENT and clk = "1") THEN
IF (shift = "1") THEN
sr(63 DOWNTO 1) <= sr(62 DOWNTO 0);
sr(0) <= sr_in;
END IF;
END IF;
END PROCESS;

sr_tap_one <= sr(15);
sr_tap_two <= sr(31);
sr_tap_three <= sr(47);
sr_out <= sr(63);

END arch;

7-24

Altera Corporation
June 2004

Recommended HDL Coding Styles

Device-Specific
Coding
Recommenda-
tions

Altera Corporation
June 2004

This section provides device-specific coding recommendations for Altera
device architectures. Designing specific logic structures to match the
appropriate Altera device architecture can provide significant
improvements in quality of results.

Secondary Control Signals in Registers or Flip-Flops

FPGA device architectures are based on registers, or flip-flops. The
registers in Altera FPGAs provide a number of secondary control signals
that you can use to implement control logic for each register without
using extra logic cells. Device families vary in their support for secondary
signals, so consult your device family data sheet or handbook to verify
which signals are available in your target device.

To make the most efficient use of the signals in the device, your HDL code
should match the device architecture as closely as possible. The control
signals have a certain priority due to the nature of the architecture, so
your HDL code should follow that priority where possible.

Your synthesis tool can emulate any control signals using regular logic, so
it is always possible to get functionally correct results. However, if your
design requirements are flexible in terms of which control signals are
used and in what priority, you can achieve the most efficient results by
matching the device architecture. If the priority of the signals in your
design is not the same as the target architecture, then extra logic may be
required to implement the control signals.

I Note that the priority order for secondary control signals in
Altera devices may be different than the order for other vendors’
devices, so if your design requirements are flexible in this area,
itis a good idea to check your secondary control signals when
migrating designs between FPGA vendors.

The signal order is the same for all Altera device families, although as
noted above, not all device families provide every signal. The priority
order is shown here:

1. Asynchronous Clear, aclr

2. Preset

3. Asynchronous Load, aload

4. Enable, ena

5. Synchronous Clear, sclr

7-25

Quartus Il Handbook, Volume 1

6. Synchronous Load, sload
7. Dataln

The examples below provide Verilog HDL and VHDL code that create a
register with the aclr, aload, and ena control signals listed above.

The preset signal is not available on recent device families, because it has
been replaced with the more flexible aload signal, so it is not included in
the examples. Creating many registers with different sload and sclr
signals can make it difficult for the Quartus II Fitter to pack the registers
into logic array blocks (LABs), since the sclr and sload signals are LAB-
wide signals. Therefore, synthesis tools typically restrict their use to
certain examples such as arithmetic chains (e.g. counters) or wide
multiplexers where there are enough registers with common signals to
allow good LAB packing. If you do use these additional control signals,
use them in the priority order that matches the device architecture. To
ensure that you can achieve the most efficient results, the sclr signal
should have a higher priority than the sload signal in the same way that
aclr has higher priority than aload in the following examples.

Note that dff_all.v does not have adata on the sensitivity list, but
dff_all.vhd does. This is a limitation of the Verilog HDL language —there
is no way to describe an asynchronous load signal (where q toggles if
adata toggles while aload is high). All synthesis tools should infer an
aload signal from this construct despite this limitation, although you may
see information or warning messages from the synthesis tool.

Verilog HDL D-Flip-Flop (Register) with Control Signals

module dff_control(clk, aclr, aload, ena, data, adata,
a:
input clk, aclr, aload, ena, data, adata;
output q;
reg q;
always @ (posedge clk or posedge aclr or posedge
aload)
begin
it (aclr)
q <= 1"b0;
else if (aload)
q <= adata;
else
if (ena)
q <= data;
end
endmodule

7-26 Altera Corporation
June 2004

Recommended HDL Coding Styles

Altera Corporation
June 2004

VHDL D-Flip-Flop (Register) with Control Signals

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY dff_control 1S
PORT (

clk - IN STD_LOGIC;
aclr - IN STD_LOGIC;
aload : IN STD_LOGIC;
adata : IN STD_LOGIC;
ena : IN STD_LOGIC;
data : IN STD_LOGIC;
q - OUT STD_LOGIC

END dff:control;

ARCHITECTURE rtl OF dff_control IS
BEGIN
PROCESS (clk, aclr, ena, aload, adata)
BEGIN
IF (aclr = "17) THEN
q <= "0";
ELSIF (aload = "1") THEN
q <= adata;
ELSE
IF (clk = "1 AND clk"event) THEN
IF(ena =“1)THEN
q <= data;
END IF;
END IF;
END IF;
END PROCESS;
END rtl;

Tri-State Signals

When targeting Altera devices, you should only use tri-state signals when
they are attached to top-level bidirectional or output pins. Avoid lower-
level bidirectional pins, and avoid using the Z logic value unless it is
driving an output or bidirectional pin.

Synthesis tools implement designs with internal tri-state signals correctly
in Altera devices using multiplexing logic, but Altera does not

recommend this coding practice.

= Note that in hierarchical or block-based designs, a hierarchical
boundary can not contain any bidirectional ports.

7-27

Quartus Il Handbook, Volume 1

The following code samples are simple examples for creating tri-state
bidirectional signals.

Tri-State Signal in Verilog HDL

module tristate (myinput, myenable, mybidir);
input myinput, myenable;
inout mybidir;

assign mybidir = (myenable ? myinput : 1°"bZ);
endmodule

Tri-State Signal in VHDL

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith_ALL;

ENTITY tristate 1S

PORT (
mybidir INOUT STD_LOGIC;
myinput IN STD_LOGIC;
myenable : IN STD_LOGIC

END tristate;

ARCHITECTURE rtl OF tristate IS
BEGIN

mybidir <= "Z" WHEN (myenable = "0") ELSE myinput;
END rtl;

Adder Trees

Structuring adder trees appropriately to match your targeted Altera
device architecture can result in significant performance and density
improvements. A good example of an application that uses a large adder
tree is a finite impulse response (FIR) correlator; using a pipelined binary
or ternary adder tree appropriately can greatly improve your quality of
results.

This section explains why coding recommendations are different for
Altera four-input lookup table (LUT) devices (e.g., Stratix, APEX 20K,
and FLEX 10K devices) and the six-input LUT logic structures available
in Stratix II devices.

7-28 Altera Corporation
June 2004

Recommended HDL Coding Styles

Architectures With Four-Input LUTs in Logic Elements (LES)

Architectures such as Stratix, APEX 20K, and FLEX 10K devices contain
four-input LUTs as the standard combinational structure in the logic
element (LE).

If your design can tolerate pipelining, the fastest way to add three
numbers A, B, and C, in Stratix, APEX 20K, or FLEX 10K devices is to add
A + B, register the output, and then add the registered output to C.
Adding A + B takes one level of logic (i.e., one bit is added in one LE), so
this runs at full clock speed. This can be extended to as many numbers as
desired.

In the example that follows, five numbers A, B, C, D, and E are added.
Adding five numbers in Stratix, APEX 20K, or FLEX 10K devices requires
four adders and three levels of registers for a total of 64 LEs (for 16-bit
numbers).

Verilog HDL Pipelined Binary Tree

module binary_adder_tree (A, B, C, D, E, CLK, 0OUT);

parameter WI
input [WIDTH
input CLK;

output [WIDT
wire [WIDTH-
reg [WIDTH-1
// Registers

always @ (po
begin

DTH = 16;

-1:0] A, B, C, D, E;

H-1:0] OUT;

1:0] suml, sum2, sum3, sum4;

:0] sumregl, sumreg2, sumreg3, sumreg4;

sedge CLK)

sumregl <= sumil;
sumreg2 <= sum2;
sumreg3 <= sum3;
sumreg4 <= sum4;

end

// 2-bit add
assign suml
assign sum2
assign sum3
assign sum4

assign OUT =

endmodule

Altera Corporation
June 2004

itions

A + B;

C + D;

sumregl + sumreg2;
sumreg3 + E;

sumreg4;

7-29

Quartus Il Handbook, Volume 1

7-30

Architectures With Six-Input LUTs in Adaptive Logic Modules (ALMs)

Because the Stratix II architecture uses a six-input LUT in its basic logic
structure, the adaptive logic module (ALM), Stratix II devices benefit
from a more streamlined coding style. Specifically, Stratix II device ALMs
can simultaneously add three bits. Thus, the tree in the previous example
need be only two levels deep and contain just two add-by-three inputs
instead of four add-by-two inputs.

Again, although the code in the previous example successfully compiles
for Stratix II devices, it is not efficient and does not take advantage of the
six-input Adaptive LUT (ALUT). By restructuring the tree as a ternary
tree the design becomes much more efficient, significantly improving
density utilization. Therefore, when targeting Stratix II devices, large
pipelined binary adder trees designed for four-input LUT architectures
should be rewritten to take advantage of the Stratix II device architecture.

The following example uses just 32 ALUTs in a Stratix I device—more
than a four-to-one advantage over the number of LUTs in the prior
example implemented in a Stratix device.

I'=" You cannot pack a Stratix IT LAB full when using this type of
coding style, because of the number of LAB inputs. While
Quartus II integrated synthesis reports that 32 ALUTs are used
to implement the function, the Quartus II Fitter may report a
slightly higher number. However, in a typical design, the
Quartus II Fitter can pack other logic into the LAB to take
advantage of the unused ALUTs.

Verilog HDL Pipelined Ternary Tree
module ternary_adder_tree (A, B, C, D, E, CLK, 0OUT);
parameter WIDTH = 16;

input [WIDTH-1:0] A, B, C, D, E;
input CLK;
output [WIDTH-1:0] OUT;

wire [WIDTH-1:0] suml, sum2;
reg [WIDTH-1:0] sumregl, sumreg2;

// Registers
always @ (posedge CLK)
begin
sumregl <= suml;
sumreg2 <= sum2;
end

// 3-bit additions

Altera Corporation
June 2004

Recommended HDL Coding Styles

General Coding

Recommenda-
tions

Altera Corporation
June 2004

A+ B + C;
sumregl + D + E;

assign suml
assign sum2

assign OUT = sumreg2;
endmodule

These examples apply to pipelined adders, but partitioning your addition
operations can help you achieve better results in non-pipelined adders as
well. If your design is not pipelined, a ternary tree provides much better
performance than a binary tree. For example, depending on your
synthesis tool, the HDL codesum = (A + B + C) + (D + E) ismore
likely to create the optimal implementation of a 3-input adder for A + B +
C followed by a 3-input adder for sum1 + D + E than the code without the
parenthesis. If you don’t add the parenthesis, the synthesis tool may
partition the addition in a way that is not optimal for the architecture.

This section provides general coding recommendations, specifically
regarding latches, state machines, and multiplexers.

Latches

When designing combinational logic, certain coding styles can create an
unintentional latch. For example, when CASE or IF statements do not
cover all possible input conditions, latches may be required to hold the
output if a new output value is not assigned. Check your synthesis tool
messages for references to latches being inferred.

The full_case attribute can be used in Verilog HDL designs to indicate
that non-specified cases can be treated as “don’t care.” However, using
the full_case attribute may lead to simulation mismatches because it is
a synthesis-only attribute.

See the appropriate chapter in the Synthesis section in Volume 1 of the
Quartus I handbook for more information about using attributes in your
synthesis tool. The Quartus II Integrated Synthesis chapter provides an
example explaining possible simulation mismatches.

Omitting the final ELSE or WHEN OTHERS clause in an IF or CASE
statement can also generate a latch. “Don’t care” assignments on the
default conditions tend to prevent latch generation. Synthesis software
generally treats unknowns as “don’t care” conditions to optimize logic.
For the best logic optimization, assign the default CASE or final ELSE
value to “don’t care” instead of a logic value.

The following shows example VHDL code that prevents an unintentional

latch. Without the final ELSE clause, the code creates unintentional
latches to cover the remaining combinations of the sel inputs. When

7-31

Quartus Il Handbook, Volume 1

7-32

targeting a Stratix device with the following code, omitting the final ELSE
condition may cause the synthesis software to use up to six LEs instead of
the three it uses with the ELSE statement. Also, assigning the final ELSE
value to 1 instead of X may result in slightly more LEs.

VHDL Code Preventing Unintentional Latch Creation

LIBRARY ieee;
USE IEEE.std_logic_1164.all;

ENTITY nolatch IS
PORT (a,b,c : IN STD_LOGIC;
sel: IN STD_LOGIC_VECTOR (4 DOWNTO O0) ;
oput: OUT STD_LOGIC) ;
END nolatch;

ARCHITECTURE rtl OF nolatch IS

BEGIN
PROCESS (a,b,c,sel) BEGIN
IF sel = "00000" THEN
oput <= a;
ELSIF sel = "00001" THEN
oput <= b;
ELSIF sel = "00010" THEN
oput <= c;
ELSE --- Prevents latch inference
oput <= 'X'; --/
END IF;
END PROCESS;
END rtl;

State Machines

Synthesis tools can recognize and encode Verilog HDL and VHDL state
machines during synthesis. This section presents guidelines to ensure the
best results when using state machines.

To achieve the best results on average, synthesis tools often use one-hot
encoding for FPGA devices and minimal-bits encoding for CPLD devices,
although the choice of implementation may vary for different state
machines. See your synthesis tool’s documentation for tool-specific ways
to control how state machines are encoded.

For information about state machine encoding in Quartus II integrated
synthesis, refer to the State Machine Processing section in Quartus II
Integrated Synthesis chapter in Volume 1 of the Quartus II Handbook.

Altera Corporation
June 2004

Recommended HDL Coding Styles

To ensure proper recognition and inference of state machines and to
improve performance, Altera recommends that you observe the
following guidelines (which apply to both Verilog HDL and VHDL):

B Assign default values to outputs derived from the state machine to
avoid generation of unwanted latches during synthesis.

B Assign a default clause to direct the state machine in case it
accidentally reaches an unused state.

B Separate the state machine logic from all arithmetic functions and
data paths, including assigning output values.

B If your design contains an operation that is used by more than one
state, define the operation outside the state machine and make the
output logic of the state machine use this value.

B Use a simple asynchronous or synchronous reset to ensure a defined
power-up state. If your state machine design contains more elaborate
reset logic, such as an asynchronous reset and an asynchronous load
at the same time, the Quartus II software, for example, generates
regular logic rather than inferring a state machine.

e See the following sections for additional guidelines and coding examples
using “Verilog HDL State Machines” on page 7-33 and “VHDL State
Machines” on page 7-36.

Verilog HDL State Machines

To ensure proper recognition and inference of Verilog HDL state
machines, observe the following additional Verilog-specific guidelines.
The enforcement of some of these guidelines may be specific to the
Quartus II integrated synthesis tool. See your synthesis tool’s document
for more tool-specific coding recommendations.

B Represent the status in a state machine with the parameter data
types and use the parameters to make state assignments. This
implementation makes the state machine easier to read and reduces
the risks of errors during coding.

Il Altera recommends against the direct use of integer values for
state variables such as next_state <=0. However, integer use
does not prevent inference in the Quartus II software.

B No state machine is inferred in the Quartus II software if the state
transition logic uses arithmetic such as the following example:

case (state)
0: begin
if (ena) next_state <= state + 2;
else next_state <= state + 1;
end

Altera Corporation 7-33
June 2004

Quartus Il Handbook, Volume 1

7-34

1: begin

endcase

B No state machine is inferred in the Quartus II software if the state
variable is used to create an output as follows:

output outl
case (state)
state_0: begin
if (ena) outl <= state_1;
else outl <= state 2;
next_state <= state 2;
end
state_1: begin

endcase

Verilog HDL State Machine Coding Example

The module veri log_fsm that follows is an example of a typical Verilog
HDL state machine implementation.

This machine has five states. The asynchronous reset sets the variables
state to state_0. The sum of in_1 and in_2 is used as an output of the
state machine in the state state_1 and state_2. The differenceof in_1
and in_2 is used in the state state_1 and state_3. The temporary
variables tmp_out_0 and tmp_out_1 are used to store the sum and the
difference of in_1 and in_2. The use of these temporary variables in the
various states of the state machine ensures proper resource sharing
between these mutually exclusive states.

Example State Machine in Verilog HDL
module verilog_fsm (clk, reset, in_1, in_2, out);
input clk;
input reset;
input [3:0] in_1;
input [3:0] in_2;

parameter state 0O = 3”b000;
parameter state_1 = 37b001;
parameter state 2 = 3°b010;
parameter state 3 = 37b011;
parameter state 4 = 37b100;

reg [4:0] tmp_out O, tmp_out 1, tmp_out 2;
reg [2:0] state, next_state;

always @ (posedge clk or posedge reset)

Altera Corporation
June 2004

Recommended HDL Coding Styles

Altera Corporation
June 2004

begin
if (reset)
state <= state O;
else
state <= next_state;
end

always @ (state or in_1, or in_2)
begin
tmp_out O <= in_
tmp_out_1 <= in_

1 +
1

n_2;
n_2;

case (state)
state_0: begin
tmp_out_2 <= in_1 + 5”b00001;
next_state <= state 1;
end
state_1: begin
if (in_1 < in_2) begin
next_state <= state 2;
tmp_out_2 <= tmp_out_O;
end
else begin
next_state <= state_3;
tmp_out_2 <= tmp_out_1;
end
end
state_2: begin
tmp_out_2 <= tmp_out_0 - 5”b00001
next_state <= state_3;
end
state_3: begin
tmp_out_2 <= tmp_out_1 + 57b00001
next state <= state O;
end
state_4:begin
tmp_out_2 <= in_2 + 5”b00001
next_state <= state 0;
end
default:begin
tmp_out_2 <= 57b00000
next_state <= state O;
end
endcase
end
assign out = tmp_out_2
endmodule

7-35

Quartus Il Handbook, Volume 1

LIBRARY ieee;

An equivalent implementation of this state machine could be achieved by
using “define instead of the parameter data type, as follows:

“define state_0 37b000
“define state 1 3’b001
“define state_2 3°b010
“define state_3 37b011
“define state 4 3’b100

In this case, the state and next_state assignments are assigned a
“state_0 instead of a state_0, as shown in the following example:

next state <= “state_ 3;

Although the “define construct is supported, Altera strongly
recommends the use of the parameter data type because it conserves the
state names throughout synthesis.

VHDL State Machines

To ensure proper recognition and inference of VHDL state machines,
represent the states in a state machine with enumerated types and use the
corresponding types to make state assignments. This implementation
makes the state machine easier to read and reduces the risks of errors
during coding. If the state is not represented by an enumberated type, the
Quartus II synthesis software for example, does not recognize the state
machine. Instead, it is implemented as regular logic gates and registers,
and it is not listed as a state machine in the Analysis & Synthesis report.

VHDL State Machine Coding Example

The following entity vhd1_¥sm is an example of a typical VHDL state
machine implementation.

This state machine has five states. The asynchronous reset sets the
variable state to state_0. The sum of in_1 and in_2 is used as an
output of the state machine in the states state_1 and state_2. The
difference (inl - in2) is also used in the states state_1 and state_2.
The temporary variables tmp_out_0 and tmp_out_1 are used to store
the sum and the difference of in_1 and in_2. The use of these temporary
variables in the various states of the state machine ensures the proper
resource sharing between these mutually exclusive states.

Example State Machine in VHDL

USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

7-36

Altera Corporation
June 2004

Recommended HDL Coding Styles

ENTITY vhdl_fsm IS
PORT(
clk: IN STD LOGIC;
reset: IN STD LOGIC;
inl: IN STD_LOGIC_VECTOR(4 downto 0);
in2: IN STD_LOGIC_VECTOR(4 downto 0);
out_1: OUT STD_LOGIC_VECTOR(4 downto 0)

END vhd1l_fsm:

ARCHITECTURE rtl OF vhdl_fsm IS
TYPE Tstate IS (state_0, state_1, state 2, state 3, state_4);

SIGNAL tmp_out_0O: STD_LOGIC_VECTOR (4 downto 0);
SIGNAL tmp_out_1: STD_LOGIC_VECTOR (4 downto 0);
SIGNAL state: Tstate;

SIGNAL next _state: Tstate;

BEGIN
PROCESS(clk, reset)
BEGIN
IF reset = “1” THEN
state <=state_0;
ELSIF rising edge(clk) THEN
state <= next_state;
END IF;
END PROCESS;

PROCESS (state, inl, in2, tmp_out_O, tmp_out_1)

BEGIN
tmp_out_0 <= STD_LOGIC_VECTOR” (UNSIGNED(in1)+UNSIGNED(in2));
tmp_out_1 <= STD_LOGIC_VECTOR” (UNSIGNED(in1l)+UNSIGNED(in2));

CASE state 1S
WHEN state 0 =>
out 1 <= inl;
next_state <= state_1;
WHEN state_1 =>
IF (inl < in2) then
next_state <= state_2;
out_1 <= tmp_out_O;
ELSE
next_state <= state_3;
out_1 <= tmp_out_1;
END IF;
WHEN state_2 =>
IF (inl <*0100”) then
out_1 <= tmp_out_O;
ELSE
out_1 <= tmp_out_1;
END IF;
next_states <= state_3;

Altera Corporation 7-37
June 2004

Quartus Il Handbook, Volume 1

END rtl;

7-38

WHEN state 3 =>
out_1 <= “111117;
next_state <= state 4;
WHEN state 4 =>
out_1 <= in2;
next_state <= state O;
WHEN OTHERS =>
out_1 <= *“00000’;
next_state <= state O;
END CASE;
END PROCESS;

Multiplexers

Multiplexers form a large portion of the logic utilization in many FPGA
designs. By optimizing your multiplexing logic, you ensure the most
efficient implementation in your Altera device. This section discusses
some common pitfalls and provides design guidelines to achieve optimal
resource utilization for multiplexer designs. The section also describes the
different types of multiplexers, and how they are implemented in the
4-input look-up tables (LUTs) found in many FPGA architectures, such as
Altera’s Stratix devices.

Il Devices with 6-input LUTs (Stratix II devices) are not
specifically discussed here. Many of the principles and
techniques for optimization are similar, but the device
utilization is different in these devices. Devices with 6-input
LUTs can implement wider multiplexers in one ALM than can
be implemented in the 4-input LUT of an LE.

Types of Multiplexers

This first sub-section discusses how multiplexers or “muxes,” are created
from various types of HDL code. CASE statements, IF statements, and
state machines are all common sources of multiplexing logic in designs.
These HDL structures create different types of multiplexers including
binary multiplexers, selector multiplexers, and priority multiplexers.
Understanding how multiplexers arise from HDL code and how they
might be implemented during synthesis is the first step towards
optimizing multiplexer structures for best results.

Binary Multiplexers

Binary multiplexers select inputs based on binary-encoded selection bits.
The “Simple Binary-Encoded “Case” Statement” example below shows
Verilog HDL code that describes a simple 4:1 binary multiplexer.

Altera Corporation
June 2004

Recommended HDL Coding Styles

Simple Binary-Encoded “Case” Statement

case (sel)
2"b00: z = a;
2°b01: z = b;
2"b10: z = c;
2"b1l1l: z = d;
endcase

A 4:1 binary multiplexer is efficiently implemented by using two 4-input
LUTs. Larger binary muxes can be constructed using the 4:1 mux;
constructing an N-input multiplexer (N:1 mux) from a tree of 4:1 muxes
can result in a structure using as few as 0.66*(N - 1) LUTs.

Selector Multiplexers

Selector multiplexers have a separate select line for each data input. The
select lines for the mux are essentially one-hot encoded. “Simple One-
Hot-Encoded “Case” Statement” example below shows a simple Verilog
HDL code samples that describes a one-hot selector multiplexer.

Simple One-Hot-Encoded “Case” Statement

case (sel)
4"b0001: z = a;
4"b0010: z = b;
4"b0100: z = c;
4"b1000: z = d;
default: z = "X";
endcase

Selector multiplexers are commonly built as a tree of AND and OR gates.
Using this scheme, two inputs can be selected, using two select lines, in a
single 4-input LUT using two AND gates and an OR gate. The outputs of
these LUTs can be combined using a wide OR gate. An N-input selector

multiplexer of this structure requires at least 0.66*(N-0.5) LUTs, which is
just slightly worse than the best binary multiplexer.

Priority Multiplexers

In priority multiplexers, the select logic implies a priority, so the options
to select the correct item must be checked in order. These structures
commonly arise from IF, ELSE, WHEN, SELECT, or ?: statements in
VHDL or Verilog HDL. The example VHDL code in the “IF Statement
Implying Priority” example below is likely to result in the
implementation illustrated schematically in Figure 7-1.

Altera Corporation 7-39
June 2004

Quartus Il Handbook, Volume 1

7-40

IF Statement Implying Priority
IF condl THEN z <= a;
ELSIF cond2 THEN z <= b;
ELSIF cond3 THEN z <= c;
ELSE z <= d;

END IF;

Notice that the multiplexers shown in Figure 7-1 form a chain, evaluating
each condition, or select bit, one at a time.

Figure 7-1. Priority Multiplexer Implementation of the IF Statement in “IF
Statement Implying Priority” on page 7-40

An N-input priority mux uses a LUT for every 2:1 multiplexers in the
chain, requiring N-1 LUTs. In addition, this chain of multiplexers is
generally bad for delay since the critical path through the logic traverses
every multiplexer in the chain.

Avoid priority muxes where priority is not required. If the order of the
choices is not important to the design, use a CASE statement to implement
a binary or selector mux instead of the priority mux. If delay through the
structure is important in a multiplexing design that requires priority,
consider recoding the design to reduce the number of logic levels.

Default or Others Case Assignment

To fully specify the cases in a CASE statement, include a DEFAULT (Verilog
HDL) or OTHERS (VHDL) assignment. This assignment is especially
important in one-hot encoding schemes where many combinations of the

Altera Corporation
June 2004

Recommended HDL Coding Styles

Altera Corporation
June 2004

select lines are unused. Specifying a case for the unused select line
combinations directs the synthesis tool how to deal with these cases, and
is required by the Verilog HDL and VHDL language specifications.

Some designs do not have a requirement for the outcome in the unused
cases, often because it is assumed that these cases will not arise. In these
situations, you can choose any value for the DEFAULT or OTHERS
assignment. However, be aware that the assignment value you choose
can have a large effect on the logic utilization required to implement the
design due to the different ways synthesis tools treat different values for
the assignment, and how they use different speed and area optimizations.

In general, to obtain best results, explicitly define your invalid CASE
selections with a separate DEFAULT or OTHERS statement instead of
combining the invalid cases with one of the defined cases.

If you do not care about the value in the invalid cases, explicitly say so by
assigning the “X” logic value for these cases instead of choosing another
value. This assignment should allow your synthesis tool to make the best
area optimizations.

You may want to experiment with different DEFAULT or OTHERS
assignments for your HDL design and your synthesis tool to test the effect
they have on your logic utilization.

Implicit Defaults

The IF statements in Verilog HDL and VHDL can be a convenient way of
specifying conditions that don’t easily lend themselves to a CASE-type
approach. However, these statements can result in complicated
multiplexer trees that are not easy for synthesis tools to optimize.

In particular, every IF statement has an implicit ELSE condition, even if
itisnot specified. These implicit defaults can cause additional complexity
in a multiplexing design.

The code sample in the “IF Statement with Implicit Defaults” example

below appears to represent a 4:1 multiplexer; there are four inputs (a, b, c,
d) and one output (z).

7-41

Quartus Il Handbook, Volume 1

IF Statement with Implicit Defaults
IF condl THEN
IF cond2 THEN
Z <= a;
END IF;
ELSIF cond3 THEN
IF cond4 THEN
z <= b;
ELSIF cond5 THEN
Z <= cC;
END IF;
ELSIF cond6 THEN
z <= d;
END IF;

However, each of the three separate IF statements in the code has an
implicit ELSE condition that is not specified. Since the output values for
the ELSE cases are not specified, the synthesis tool assumes the intent is
to maintain the same output value for these cases. The code sample in the
“IF Statement with Default Conditions Explicitly Specified” example
shows code with the same functionality as the code in the “IF Statement
with Implicit Defaults” on page 7-42 example but specifies the ELSE
cases explicitly.

IF Statement with Default Conditions Explicitly Specified
IF condl THEN
IF cond2 THEN

z <= a;
ELSE

z <= z;
END IF;

ELSIF cond3 THEN
IF cond4 THEN
z <= b;
ELSIF cond5 THEN
zZ <= C;
ELSE
z <= z;
END IF;
ELSIF cond6 THEN
z <= d;
ELSE
z <= z;
END IF;

Figure 7-2 is a schematic representation of the code in the”IF Statement
with Default Conditions Explicitly Specified” example above, illustrating
that although there are only four inputs, the multiplexing logic is
significantly more complicated than a basic 4:1 mux.

7-42 Altera Corporation
June 2004

Recommended HDL Coding Styles

Altera Corporation
June 2004

Figure 7-2. Multiplexer Implementation of the IF Statements in “IF Statement
with Implicit Defaults” on page 7-42 and “IF Statement with Default
Conditions Explicitly Specified” on page 7-42

cond2

You can do several things in these cases to simplify the multiplexing logic
and remove the unneeded defaults. The most optimal way may be to
recode the design so it takes the structure of a 4:1 CASE statement.
Alternately, or if the priority is important, you can restructure the code to
deduce default cases and flatten the multiplexer. In this example, instead
of 1F cond1 THEN IF cond2, use IF (cond1l AND cond2) which
performs the same function. In addition, question whether the defaults
are don't care cases. In this example, you can promote the last ELSIF
condé6 statement to an ELSE statement if no other valid cases can occur.

Avoid unnecessary default conditions in your multiplexer logic to reduce
the complexity and the logic utilization required to implement your
design.

Degenerate Multiplexers

A degenerate multiplexer is one in which not all of the possible cases are
used for unique data inputs. The unneeded cases tend to contribute to
inefficiency in the logic utilization for these multiplexers. You can recode
degenerate muxes so that they take advantage of the efficient logic
utilization possible with full binary muxes.

7-43

Quartus Il Handbook, Volume 1

7-44

The number of select lines in a binary multiplexer normally dictates how
big a mux is needed to implement the desired function. For example, the
mux structure represented in Figure 7-3 on page 7-44 has four select lines
and could implement a binary multiplexer with 16 inputs. However, the
figure does not use all 16 inputs and thus is considered a “degenerate”

16:1 mux.

CASE Statement Describing a Degenerate Multiplexer
CASE sel[3:0] IS

WHEN ‘0101~

WHEN *0111~

WHEN *1010”

WHEN OTHERS
END CASE;

=>
=>
=>
=>

N N N N

<= a;
<= b;
<= cC;
<= d;

Figure 7-3. Binary Multiplexer Implementation of “CASE Statement Describing
a Degenerate Multiplexer” on page 7-44

2] L]

sel[1:0]

L°]

sel[3:2]

Binary mux

In the example in Figure 7-3, the first and fourth muxes in the top level
can easily be eliminated since all four inputs to each mux are the same
value, and the number of inputs to the other multiplexers can be reduced,
as shown in Figure 7-4.

Altera Corporation

June 2004

Recommended HDL Coding Styles

Altera Corporation
June 2004

Figure 7-4. Optimized Version of the Degenerate Binary Multiplexer from
Figure 7-3
b d
Lo Jle) Lol e

sel[1:0]

Implementing this version of the multiplexer still requires at least 5
4-input LUTs, two for each of the remaining 3:1 muxes and one for the 2:1
mux. This design selects an output from only four inputs, a 4:1 binary
mux can be implemented optimally in 2 LUTSs, so this degenerate
multiplexer tree is reducing the efficiency of the logic.

You can improve the logic utilization of this type of structure by recoding
the select lines to implement a full 4:1 binary mux. “Recoder Design for
Degenerate Binary Multiplexer” below provides code for a recoder
design that translates the original select lines into a signal z_sel with
binary encoding, and “4:1 Binary Multiplexer Design” below provides
code to implement the full binary mux.

Recoder Design for Degenerate Binary Multiplexer
CASE sel[3:0] IS

WHEN “0101” => z_sel <= “00”;

WHEN “0111” => z_sel <= “017;

WHEN 1010 => z_sel <= “107;

WHEN OTHERS => z_sel <= “117;
END CASE;

4:1 Binary Multiplexer Design
CASE z_sel[1:0] IS
WHEN *“00” => z <= a;
WHEN “01” => z <= b;
WHEN “10” => z <= c;
WHEN “11” => z <= d;
END CASE;

7-45

Quartus Il Handbook, Volume 1

7-46

Use the new z_sel control signal from the recoder to control the 4:1
binary multiplexer that chooses between the four inputs a, b, ¢, and d, as
illustrated in Figure 7-5. The complexity of the select lines is handled in
the recoder, and the data multiplexing is performed with simple binary
select lines enabling the most efficient implementation.

Figure 7-5. Binary Multiplexer with Recorder

sel[3:0] a || b || c || d ‘

L

41

z_sel[1:0]

The recoder design can be implemented in two LUTs and the efficient 4:1
binary mux uses two LUTs, for a total of four LUTs. The original
degenerate mux required five LUTs, so the recoded version uses 20% less
logic than the original.

You can often improve the logic utilization of multiplexers by recoding
the select lines into full binary cases. Although logic is required to do the
encoding, more logic may be saved performing the data multiplexing.

Buses of Multiplexers

The inputs to multiplexers are often buses of data inputs where the same
multiplexing function is performed on a set of data inputs in the form of
buses. In these cases, any inefficiency in the multiplexer is multiplied by
the number of bits in the bus. The issues described in the previous
sections become even more important for wide mux buses.

For example, the recoding technique discussed in the previous section
can often be used in buses that involve multiplexing. Recoding the select
lines may only need to be done once for all the multiplexers in the bus. By
sharing the recoder logic among all the bits in the bus, you can greatly
improve the logic efficiency of a bus of muxes.

The degenerate multiplexer in the previous section requires five LUTs to
implement. If the inputs and output are 32-bits wide, the function could
require 32 x 5 or 160 LUTs for the whole bus. The recoded design uses
only two LUTs, and the select lines only need to be recoded once for the
entire bus. The binary 4:1 mux requires two LEs per bit of the bus. The

Altera Corporation
June 2004

Recommended HDL Coding Styles

Conclusion

Altera Corporation
June 2004

total logic utilization for the recoded version could be 2 + (2 x 32) or 66
LUTs for the whole bus, as compared to 160 LUTs for the original version!
The savings in logic become much more obvious when the mux works
across wide buses.

Using techniques to optimize degenerate muxes, removing unneeded
implicit defaults, and choosing the optimal DEFAULT or OTHERS case can
play an important role when optimizing buses of multiplexers.

Quartus Il Option for Multiplexers Restructuring

The Quartus II integrated synthesis provides the Restructure
Multiplexers logic option that can help extract and optimize buses of
muxes during synthesis. In certain situations, this option performs some
of the recoding functions described above automatically without actually
changing your HDL code. For details, refer to the Restructure
Multiplexers subsection in the Quartus II Integrated Synthesis chapter in
Volume 1 of the Quartus II Handbook.

Keep the targeted device architecture in mind when selecting your coding
style, as certain coding styles can dramatically improve performance
results. To improve your design’s performance and area utilization, take
advantage of advanced device features such as memory and DSP blocks,
as well as the specific architecture of the targeted Altera device, and
follow the coding recommendations presented in this chapter.

For additional optimization recommendations, see the Design

Optimization for Altera Devices chapter in Volume 2 of the Quartus II
Handbook.

7-47

Quartus Il Handbook, Volume 1

7-48 Altera Corporation
June 2004

A I:l -Ig D)/A Section lll. Synthesis

®

Altera Corporation

As programmable logic devices (PLDs) become more complex and
require increased performance, advanced design synthesis has become an
important part of the design flow. In the Quartus® Il software you can use
the Quartus II Analysis & Synthesis module of the Compiler to analyze
your design files and create the project database. You can also use other
EDA synthesis tools to synthesize your designs, and then generate EDIF
netlist files or VQM files that can be used with the Quartus II software.
This section explains the options that are available for each of these flows,
and how they are supported in the Quartus II software.

This section includes the following chapters:

Chapter 8, Quartus II Integrated Synthesis

Chapter 9, Synplicity Synplify & SynplifyPro Support
Chapter 10, Mentor Graphics LeonardoSpectrum Support
Chapter 11, Mentor Graphics Precision RTL Synthesis Support

Chapter 12, Synopsys FPGA Compiler II BLIS & Quartus II
LogicLock Design Flow

Chapter 13, Synopsys Design Compiler FPGA Support

Chapter 14, Analyzing Designs with the Quartus II RTL Viewer &
Technology Map Viewer

Section IlI-1

Synthesis

Quartus Il Handbook, Volume 1

Revision History

Section IllI-2

The table below shows the revision history for Chapters 8 to 14.

Chapter(s)

Date / Version

Changes Made

8

June 2004 v2.0

e Updates to tables, figures.
o New functionality for Quartus 4.1.

Feb. 2004 v1.0

Initial release.

June 2004 v 2.0

9 June 2004 v2.0 |® Updates to tables, figures.
o New functionality for Quartus 4.1.
Feb. 2004 v1.0 | Initial release.
10 June 2004 v2.0 |® Updates to tables, figures.
o New functionality for Quartus 4.1.
Feb. 2004 v1.0 | Initial release.
11 June 2004 v2.0 |® Updates to tables, figures.
o New functionality for Quartus 4.1.
Feb. 2004 v1.0 | Initial release.
12 June 2004 vi.0 | No change to document.
Feb. 2004 v1.0 | Initial release.
13 June 2004 v1.0 | Initial release.
14 e Updates to tables, figures.

e New functionality for Quartus 4.1.

Feb. 2004 v1.0

Initial release.

Altera Corporation

: Il
A I:I-Ig D)/A 8. Quartus Il Integrated

Synthesis

®

(ii51008-2.0

Introduction

Verilog HDL &
VHDL Support

Altera Corporation
June 2004

As programmable logic designs become more complex and require
increased performance, advanced synthesis has become an important
part of the design flow. The Quartus® II software includes advanced
integrated synthesis that fully supports the Verilog and VHDL hardware
description languages (HDLs), as well as Altera-specific design entry
languages, and provides options to control the synthesis process. With
this synthesis support, the Quartus II software provides a complete, easy-
to-use, standalone solution for system-on-a-programmable-chip (SOPC)
designs.

This chapter documents the HDL support in the Quartus II software, and
explains how to improve and control your Quartus II synthesis results by
using Quartus II synthesis options, setting other Quartus II options in
your Verilog HDL or VHDL source code, and controlling the interface of
architecture-specific megafunctions.

This section explains the Quartus II software’s integrated synthesis
support for the Verilog HDL and VHDL synthesizable language features,
as well as some synthesis directives and attributes.

For information on specific syntax features and language constructs, see
Quartus 11 Verilog HDL Support and Quartus II VHDL Support in

Quartus II Help. Quartus II Help also describes the full support for
Altera Hardware Description Language (AHDL) Text Design Files (.tdf)
and schematic entry Block Design Files (.bdf), as well as how to import
Graphical Design Format (.gdf) files from the MAX+PLUS® II software.
These Altera-specific file formats are not described in this chapter.

Verilog HDL

The Quartus II Compiler’s analysis and synthesis module supports the
Verilog-1995 standard (IEEE Std. 1364-1995) and the Verilog-2001
standard (IEEE Std. 1364-2001) constructs. You can select which standard
to use in the Verilog version section of the Verilog HDL Input page
under Analysis & Synthesis Settings in the Settings dialog box
(Assignments menu). The Quartus II Compiler uses the Verilog-2001
standard by default.

[l=" The Verilog HDL code samples provided in this document
follow the Verilog-2001 standard.

Quartus Il Handbook, Volume 1

Supported Verilog-2001 standard constructs include:

B Generate statements: generate and genvar

B localparam constants

B Pre-processor statements suchas “elsif, line, “ifdef, “file,
and “default_nettype

B Signed declarations for all variables

B Operators such as **, <<<, and >>>

B Attributes using the syntax (* name = value *)

B Indexed part selects using +: and -:

B Combinational logic sensitivity wild card token @*

B Combined port and data type declarations

B ANSI-style port lists

B In-line parameter passing by name (explicit redefinition using #)

B Multi-dimensional arrays

Unsupported Verilog-2001 standard constructs include the following:
B Libraries and configurations
e See Quartus II Help for a complete listing of supported constructs.

The Quartus II software supports case-sensitive Verilog HDL code, in
accordance with the Verilog HDL standard.

The Quartus II software supports the ~ inc lude construct to include files
with absolute paths (with either / or \ as the separator), or relative paths
(relative to project root or current file location). When searching for a
relative path, the Quartus II software first searches relative to the project
directory. If the software cannot find the file, it searches relative to the
directory location of the file.

VHDL

The Quartus II Compiler's analysis and synthesis module supports the
VHDL 1987 (IEEE Std. 1076-1987) and VHDL 1993 (IEEE Std. 1076-1993)
standards. You can select which standard to use in the VHDL version
section of the VHDL Input page under Analysis & Synthesis Settings in
the Settings dialog box (Assignments menu). The Quartus II Compiler
uses the VHDL 1993 standard by default.

=" The VHDL code samples provided in this document follow the
VHDL 1993 standard.

8-2 Altera Corporation
June 2004

Types of Synthesis Options

Types of
Synthesis
Options

Altera Corporation
June 2004

The Quartus II software supports VHDL libraries differently from the
MAX+PLUS® II software or versions of the Quartus II software earlier
than version 2.1. In the Quartus Il software version 2.1 and later, standard
IEEE and vendor VHDL libraries and packages can be called from VHDL
code in the Quartus II software.

The IEEE library includes the standard VHDL packages
std_logic_1164, numeric_std, and numeric_bit. The STD library
is part of the VHDL language standard and includes packages standard
(included in every project by default) and textio. For compatibility with
older designs, the Quartus II software also supports the following
vendor-specific packages and libraries:

B Synopsys packages such as std_logic_arith and
std_logic_unsigned in the IEEE library

B Mentor Graphics® packages such as std_logic_arith in the
ARITHMETIC library

B Altera packages such asmaxplus2, altera_mf_components, and
Ipm_components in the ALTERA library

For a complete listing of library and package support, see Using
Quartus II Packages in the Quartus II Help.

The Quartus II software does not support user-defined precompiled
libraries.

To call a user-defined VHDL package in the Quartus II software, specify
the library and package name using the LIBRARY and USE commands.
You can use any name for your library, including work; therefore, you can
use current software versions for projects developed with older versions
of Altera software that used precompiled libraries without the need to
modify any code. To compile using a VHDL package projects, include the
VHDL package in your Quartus II project on the Files page of the
Settings dialog box (Assignments menu). The package must be listed
before other files that use the package because it must be analyzed by the
Quartus II Compiler first.

The Quartus II software provides a number of options to guide the
synthesis process and achieve optimal results. You can use synthesis
directives, synthesis attributes, and Quartus II logic options to control
synthesis.

8-3

Quartus Il Handbook, Volume 1

Versions of Quartus II software earlier than 2.1 did not support
synthesis directives or attributes; the software treated these
options as comments. The behavior of the Quartus II software is
different if designs compiled in earlier versions of the software
included these synthesis options. You may need to change older
code to take into account that the software recognizes these
options.

This section defines three types of synthesis options: synthesis directives,
synthesis attributes, and Quartus II logic options. The following section,
“Quartus II Synthesis Options”, describes the most common and useful
of the synthesis options in the Quartus II software, and provides HDL
examples of how to use each option where applicable.

Synthesis Directives

The Quartus II software supports synthesis directives, also commonly
called pragmas. You can include synthesis directives in Verilog HDL or
VHDL code as comments. These directives are not Verilog HDL or VHDL
commands; however, synthesis tools use them to control the synthesis
process in a particular manner. Other tools such as simulators ignore
these directives and treat them as comments.

You can enter synthesis directives in your code using the following
syntax, where directive and value are variables, and the entry in brackets is

optional.

Verilog HDL

// synthesis <directive> [=<value>]
or

/* synthesis <directive> [=<value>] */
VHDL

-- synthesis <directive> [=<value>]

In addition to the synthesis keyword shown above, the pragma,
synopsys, and exemplar keywords are supported in both Verilog HDL
and VHDL for compatibility with other synthesis tools in this chapter.
The examples demonstrate each syntax form.

8—4 Altera Corporation
June 2004

Types of Synthesis Options

Synthesis Attributes

The Quartus II software supports synthesis attributes for Verilog HDL
and VHDL, also commonly called pragmas. Synthesis attributes are
similar to synthesis directives in that they drive the synthesis process.
However, attributes always apply to a specific design element. Some
synthesis attributes are also available as Quartus II logic options.

The Verilog-2001 and VHDL language definitions provide specific syntax
for specifying attributes. However in Verilog-1995 HDL, you must use
comments similar to synthesis directives. You can enter attributes in your
code using the following syntax, where attribute, attribute type, value,
object, and object type are variables, and the entry in brackets is optional.

Verilog-1995 HDL

// synthesis <attribute> [= <value> |

or

/* synthesis <attribute> [= <value> | */

Il'=" You cannot use the open one-line comment in Verilog HDL
when a semicolon is required at the end of the line because it is
not clear to which HDL element the attribute applies. For
example, you cannot make an attribute assignment such as
reg r; // synthesis <attribute> because the attribute could
be read as part of the next line.

To apply multiple attributes to the same instance, separate the attributes
with spaces, as follows:

//synthesis <attributel> [= <value> | <attribute2> [= <value>]

For example, to set the maxfan attribute to 16 (See the “Maximum Fan-
Out” section for details) and set the preserve attribute (See the
“Preserve Registers” on page 811 for details) on a register called
my_reg, use the following syntax:

reg my_reg /* synthesis maxfan = 16 preserve */;
In addition to the synthesis keyword as shown above, the keywords

pragma, synopsys, and exemplar are supported for compatibility with
other synthesis tools.

Altera Corporation 8-5
June 2004

Quartus Il Handbook, Volume 1

Quartus I
Synthesis
Options

8-6

Verilog-2001 HDL
(* <attribute> [= <value>] *)

To apply multiple attributes to the same instance, separate the attributes
with commas, as follows:

(* <attributel> [= <valuel>), <attribute2> [= <value2>] *)

For example, to set the maxfan attribute to 16 (See the “Maximum Fan-
Out”section for details) and set the preserve attribute (See the
“Preserve Registers” section for details) on a register called my_reg, use
the following syntax:

(* preserve, maxfan = 16 *) regmy_reg;

VHDL
attribute <attribute> : <attribute type> ;
attribute <attribute> of <object> : <object type> s <value> ;

In this chapter, the examples demonstrate each syntax form.

Assignments or settings made with synthesis attributes take precedence
over assignments or settings made through the Quartus II user interface,
the Quartus Settings File (.gqsf), and the Tcl interface.

Quartus Il Logic Options

Quartus II logic options control many aspects of the synthesis and place-
and-route process. You can set logic options in the Quartus II graphical
user interface (GUI) through the Assignment Editor (Assignments
menu). Quartus II logic options allow you to set the associated attributes
without editing the source HDL code. Logic options can be used with all
design entry languages supported by the Quartus II software:

Verilog HDL, VHDL, and schematic entry.

This section discusses many common Quartus II synthesis options. These
options help you control the synthesis process within the Quartus II
software, and can help you acheive the optimal results for your design.
Some options are simply synthesis directives, some are only available as
either attributes or logic options, and some are available as both synthesis
attributes and logic options.

For information on using other Quartus II synthesis attributes to make
pin-related assignments and set other options (that are only available as
logic options) in your Verilog HDL or VHDL code, see “Setting Other
Quartus II Options in Your HDL Source Code” on page 8-23.

Altera Corporation
June 2004

Quartus Il Synthesis Options

Altera Corporation
June 2004

[l=~ Because Verilog HDL is case-sensitive, synthesis directives and
attributes are also case sensitive.

Translate Off & On

The translate_off and translate_on synthesis directives indicate
whether the Quartus II software or a third-party synthesis tool should
compile a portion of HDL code that is not relevant for synthesis. The
translate_off directive marks the beginning of code that the
synthesis tool should ignore; the translate_on directive indicates that
synthesis should resume. A common use of these directives is to indicate
a portion of code that is intended for simulation only. The synthesis tool
reads synthesis-specific directives and processes them during synthesis;
however, third-party simulation tools read the directives as comments
and ignore them. The following are examples of these directives.

Verilog HDL Example of Translate Off & On
// synthesis translate_off
parameter tpd = 2; // Delay for simulation

#tpd;
// synthesis translate_on

VHDL Example of Translate Off & On
-- synthesis translate_off
use std.textio.all;

-- synthesis translate_on

Read Comments as HDL

The read_comments_as_HDL synthesis directive indicates that the
Quartus II software should compile a portion of HDL code that is
commented out. This directive allows you to comment out portions of
HDL source code that are not relevant for simulation, while instructing
the Quartus II software to read and synthesize that same source code.
Setting the read_comments_as_HDL directive to on marks the
beginning of commented code that the synthesis tool should read; setting
the read_comments_as_HDL directive to of f indicates the end of the
code.

1= You can use the directive with translate_off and
translate_onto create one HDL source file that includes both
a megafunction instantiation for synthesis and a behavioral
description for simulation.

8-7

Quartus Il Handbook, Volume 1

In the following examples, the commented code enclosed by
read_comments_as_HDL is visible to the Quartus II Compiler and is
synthesized.

L=~ Because synthesis directives are case-sensitive in Verilog HDL,
you must match the case of the directive, as shown below.

Verilog HDL Example of Read Comments as HDL
// synthesis read_comments_as HDL on
// my_rom Ipm_rom (.address (address),
// .data (data));
// synthesis read_comments_as HDL off

VHDL Example of Read Comments as HDL
-- synthesis read_comments_as_HDL on
-- my_rom : entity Ipm_rom

- port map (
- address => address,
- data => data,)

"HDL off

-- synthesis read_comments_as

Full Case

A Verilog HDL case statement is considered full when its case items cover
all possible binary values of the case expression or when a default case
statement is present. A ful 1 _case attribute attached to a case statement
header that is not full forces the unspecified states to be treated as logic
“don’t care” values. Using this attribute on a case statement that is not full
avoids the latch inference problems discussed in the Design
Recommendations for Altera Devices chapter in Volume 1 of the Quartus II
Handbook. VHDL case statements must be full, so the attribute does not

apply.

When using the ful I _case attribute, there is a potential cause for
simulation-mismatch between Verilog HDL functional and post-
Quartus II simulation because unknown case statement cases may still
function like latches during functional simulation. For example, a
simulation mismatch may occur with the code in the following example
when sel is 2"b11 because a functional HDL simulation output behaves
like a latch while the Quartus II simulation output behaves like “don’t

care.”
= Altera recommends making the case statement “full” in your
regular HDL code, instead of using the full_case attribute.
8-8 Altera Corporation

June 2004

Quartus Il Synthesis Options

Altera Corporation
June 2004

The case statement in the following example is not full because not all
binary values for sel are specified. Because the full_case attribute is
used, synthesis treats the output as “don’t care” when the sel input is
2'b11.

Sample Verilog HDL Code with a full_case Attribute
module full_case (a, sel, y);
input [3:0] a;
input [1:0] sel;
output y;
reg y;
always @ (a or sel)
case (sel) // synthesis full_case
2°b00: y=al[O0];
2"b01: y=a[1];
2°b10: y=a[2];
endcase
endmodule

Verilog-2001 syntax also accepts the following statements in the case
header instead of the comment form shown in the example above.

(* full_case *) case (sel)

Parallel Case

The parallel_case attribute indicates that a Verilog HDL case
statement should be considered parallel, that is, only one case item can be
matched at a time. Case statements in Verilog HDL case statements may
overlap. To resolve multiple matching case items, the Verilog language
defines a priority relationship among case items in which the case
statement always executes the first case item that matches the case
expression value. By default, the Quartus II software implements the
extra logic required to honor this priority relationship.

Attaching a paral lel_case attribute to a case statement header allows
the Quartus II software to consider its case items as inherently parallel,
that is, at most one case item matches the case expression value. Parallel
case items reduce the complexity of the generation logic (allowing
implementations such as multiplexing logic instead of a priority
encoder).

In VHDL, the individual case items in a case statement may not overlap,
so they are always parallel and this attribute does not apply.

Use this attribute only when the case statement is truly parallel. If you

use the attribute in any other situation, the generated logic will not match
the functional simulation behavior of the Verilog HDL.

8-9

Quartus Il Handbook, Volume 1

8-10

I Altera recommends that you avoid use of the paral lel_case
attribute, due to the possibility of introducing mismatches
between Verilog HDL functional and post-Quartus II
simulation.

The following example shows a casez statement with overlapping case
items. In functional HDL simulation , the three case items have a priority
order that depends on the bits in sel. For example, sel[2] takes
priority over sel [1] which takes priority over sel [0]. However the
synthesized design may simulate differently because the

paral lel_case attribute eliminates this priority order. If more than
one bit of sel is high, then more than one output (a, b,) will be high as
well, a situation that cannot occur in functional HDL simulation.

Sample Verilog HDL Code with a parallel_case Attribute
module parallel_case (sel, a, b, c);

input [2:0] sel;

output a, b, c;

reg a, b, c;

always @ (sel)
begin
{a, b, c} = 3"b0;
casez (sel) // synthesis parallel_case

3"b1??: a = 1"bl;
3"b?1?: b = 1"b1;
3"b??1: ¢ = 1"bl;
endcase
end
endmodule

Verilog-2001 syntax also accepts the following statements in the case (or
casez) header instead of the comment form shown in the example
above.

(* parallel_case *) casez (sel)

Keep Combinational Node/Implement as Output of Logic Cell

This synthesis attribute and corresponding logic option direct the
Compiler to keep a wire or combinational node through logic synthesis
minimizations and netlist optimizations. A wire that has a keep attribute
or a node that has the Implement as Output of Logic Cell logic option
applied becomes the output of a logic cell in the final synthesis netlist, and
the name of the logic cell will be the same as the name of the wire or node.
You can use this directive to make combinational nodes visible to the
SignalTap® II logic analyzer.

Altera Corporation
June 2004

Quartus Il Synthesis Options

Altera Corporation
June 2004

=" The option cannot keep nodes that have no fan-out. Node names
cannot be maintained for wires with tri-state drivers, or if the
signal feeds a top-level pin of the same name (in this case the
node name is changed to a name such as <net name>~reg0).

You can set the Implement as Output of Logic Cell logic option in the
Quartus II GUI, or you can set the keep attribute in your HDL code as
shown below. In this example, the Compiler maintains the node name
my_wire.

= In addition to keep, the Quartus II software supports the
syn_keep attribute name for compatibility with other synthesis
tools.

Verilog HDL

wire my_wire /* synthesis keep = 1 */;

Verilog-2001
(* keep = 1 *) wire my_wire;

VHDL
signal my_wire: bit;

attribute syn_keep: boolean;
attribute syn_keep of my _wire: signal is true;

Preserve Registers

This attribute and logic option direct the Compiler not to minimize or
remove a specified register during synthesis optimizations or register
netlist optimizations. Optimizations can eliminate redundant registers
and registers with constant drivers. This option can preserve a register so
you can observe it during simulation or with the SignalTap II logic
analyzer. Additionally, it can preserve registers if you are creating a
preliminary version of the design in which secondary signals are not
specified. You can also use the attribute to preserve a duplicate of an I/O
register so that one copy can be placed in an I/O cell and the second can
be placed in the core. By default, the software removes one of the two
duplicate registers in this case; the preserve attribute can be added to
both registers to prevent this.

I The option cannot preserve registers that have no fan-out.
You can set the Preserve Registers logic option in the Quartus II GUI or

you can set the preserve attribute in your HDL code as shown below.
In this example, the my_reg register is preserved.

8-11

Quartus Il Handbook, Volume 1

8-12

= In addition to preserve, the Quartus II software supports the
syn_preserve attribute name for compatibility with other
synthesis tools.

Verilog HDL
reg my_reg /* synthesis preserve = 1 */;

Verilog-2001
(* preserve = 1 *) reg my_reg;

VHDL
signal my_reg : stdlogic;

attribute preserve : boolean;
attribute preserve of my_reg : signal is true;

L=~ Setting the Preserve Registers logic option does not affect
registers that are removed during the analysis and elaboration
stage of compilation (before logic synthesis). To fully preserve
the register throughout compilation, use the HDL attribute
instead of the logic option.

Maximum Fan-Qut

This attribute and logic option directs the Compiler to control the number
of destinations fed by a node. The Compiler duplicates a node and splits
its fan-out until the individual fan-out of each copy falls below the
maximum fan-out restriction. You can apply this option to a register or a
logic cell buffer. You can also use this option to reduce the load of critical
signals, which can improve performance. You can use this option to
instruct the Compiler to duplicate (or replicate) a register that feeds nodes
in different locations on the target device. Duplicating the register may
allow the PowerFit™ Fitter to place these new registers closer to their
destination logic, minimizing routing delay.

This option is available for all devices supported in the Quartus II
software except MAX® 3000, MAX 7000, FLEX 10K®, ACEX® 1K, and
Mercury™ devices. The maximum fan-out constraint is honored as long
as the following conditions are met:

B The node is not part of a cascade, carry, or register cascade chain

B The node does not feed itself

B The node feeds other logic cells, DSP blocks, RAM blocks and/or
pins through data, address, clock enable, etc, but not through any
asynchronous control ports (such as asynchronous clear)

Altera Corporation
June 2004

Quartus Il Synthesis Options

Altera Corporation
June 2004

The software does not create duplicate nodes in these cases either because
there is no clear way to duplicate the node, or, in the third condition above
where asynchronous control signals are involved, to avoid the possible
situation that small differences in timing could produce functional
differences in the implementation. If the constraint cannot be applied
because one of these conditions is not met, the Quartus II software issues
a message indicating that it ignored maximum fan-out assignment.

I~ If you have enabled any of the Quartus II netlist optimizations
that affect registers, add the preserve attribute to any registers
to which you have set a maxfan attribute. The preserve
attribute ensures that the registers are not affected by any of the
netlist optimization algorithms such as register re-timing.

For details on netlist optimizations, see the Netlist Optimization &
Physical Synthesis chapter in Volume 2 of the Quartus II Handbook.

You can set the Maximum Fan-Out logic option in the Quartus II GUI, or
you can set the maxfan attribute in your HDL code as shown below. In
this example, the Compiler duplicates the clK_gen register, so its fan-out
is not greater than 50.

s In addition to maxfan, the Quartus II software supports the
syn_maxfan attribute name for compatibility with other
synthesis tools.

Verilog HDL
reg clk_gen /* synthesis maxfan = 50 */;

Verilog-2001
(* maxfan = 50 *) reg clk_gen;

VHDL
signal clk _gen : stdlogic;

attribute maxfan : signal ;
attribute maxfan of clk _gen : signal is 50;

Optimization Technique

This logic option specifies the goal for logic optimization during
compilation, i.e., whether to attempt to achieve maximum speed
performance or minimum area usage, or a balance between the two.
Table 8-1 lists the settings for this logic option, which you can apply only

8-13

Quartus Il Handbook, Volume 1

8-14

to a design entity. You can also set this logic option for your whole project
on the Analysis & Synthesis Settings page in the Settings dialog box
(Assignments menu).

Table 8-1. Optimization Technique Settings

Setting Description
Area The Compiler makes the design as small as possible to minimize
resource usage.
Speed The Compiler chooses a design implementation that has the fastest
fmax-

Balanced | The Compiler maps part of the design for area and part for speed,
providing better area utilization than optimizing for speed, with only a
slightly slower fyyax than optimizing for speed.

The default setting varies by target device family, and is generally
optimized for the best area/speed trade-off. Results are design-
dependent and can vary depending on which device family you use.

State Machine Processing

This logic option specifies the processing style used to compile a state
machine. Table 8-2 lists the settings for this logic option, which you can
apply to a state machine name or to a design entity containing a state
machine. You can also set this option for your whole project on the
Analysis & Synthesis Settings page in the Settings dialog box
(Assignments menu).

Table 8-2. State Machine Processing Settings

Setting Description

Auto (Default) | Allows the Compiler to choose what it determines to be the best
encoding for the state machine.

Minimal Bits Uses the least number of bits to encode the state machine.

One-Hot Encodes the state machine in the one-hot style.

User-Encoded | Encodes the state machine in the manner specified by the user.

The default state machine encoding, Auto, uses one-hot encoding for
FPGA devices and minimal-bits encoding for complex programmable
logic devices (CPLDs). These settings achieve the best results on average,
but another encoding style might be more appropriate for your design, so
these options allows you to control the state machine encoding.

Altera Corporation
June 2004

Quartus Il Synthesis Options

Altera Corporation
June 2004

=" Seethe Recommended HDL Coding Styles chapter in the Quartus II
Handbook for guidelines to ensure that your state machine is
inferred and encoded correctly.

In addition, in VHDL designs, the state assignments created
automatically by the Quartus II software can be overridden by using
specific state assignments with the enum_encoding attribute. The
enum_encoding attribute must follow the associated type declaration
and precede any associated signal declarations. To use the
enum_encoding attribute during compilation, set the State Machine
Processing logic option to User-Encoded on the Analysis & Synthesis
Settings page of the Settings dialog box (Assignments menu), or use the
Assignment Editor (Assignments menu).

For more information, see the Manually Specifying State Assignments topic
in the Quartus II Help.

Preserve Hierarchical Boundary

This logic option determines how strictly the hierarchical boundaries
between design entities should be maintained during logic synthesis.
Table 8-3 lists the settings for the option, which you can only apply to a
design entity. Lower-level entities do not inherit their parent entity's
setting for this option.

Table 8-3. Preserve Hierarchical Boundary Settings

Setting Description

Off Completely ignores boundaries and therefore allows unlimited
optimization. This setting provides the greatest logic minimization.

Relaxed | Allows only partial cross-boundary optimization, which may reduce
the compilation time. Non-trivial inputs and outputs of the entity are
visible during simulation and timing analysis.

Firm Strictly maintains hierarchical boundaries. This setting may increase
compilation time, increase logic cell count, and negatively affect
design performance.

The Relaxed setting means that the Compiler preserves hierarchical
boundaries. However, certain signals such as VCC and GND are
propagated and optimized through the boundaries. The Firm setting
does not allow optimization across boundaries, and keeps each
hierarchical block separate.

8-15

Quartus Il Handbook, Volume 1

8-16

Restructure Multiplexers

This option specifies whether the Quartus II software should extract and
optimize buses of muxes during synthesis.

This option is useful if your design contains buses of fragmented
multiplexers. This option restructures multiplexers more efficiently for
area, allowing the design to implement multiplexers with a reduced
number of logic elements (LEs) or adaptive logic modules (ALMs). This
option is available for Cyclone™, Cyclone I, MAXI, Stratix®, Stratix GX,
and Stratix II devices.

The Restructure Multiplexers option works on entire trees of
multiplexers. Multiplexers may arise in different parts of the design
through Verilog HDL or VHDL constructs such as *"i ", "*case", or
"*?:"". When multiplexers from one part of the design feed multiplexers
in another part of the design, trees of multiplexers are formed.
Multiplexer buses occur most often as a result of multiplexing together
vectors in Verilog HDL, or STD_LOGIC_VECTORs in VHDL. The
Restructure Multiplexers option identifies buses of multiplexer trees that
have a similar structure. When turned on, the Restructure Multiplexers
option optimizes the structure of each multiplexer bus for the target
device to reduce the overall amount of logic used in the design.

Results of the multiplexer optimizations are design-dependent, but area
reductions as high as 20% are possible. The option may negatively affect
your design's clock speed, fyjax.

Altera Corporation
June 2004

Quartus Il Synthesis Options

Table 8—4 lists the settings for the logic option, which you can only apply
to a design entity. You can also set this option for your whole project on
the Analysis & Synthesis Settings page in the Settings dialog box

(Assignments menu).

Table 8-4. Restructure Multiplexers Settings

Setting Description
On Enables multiplexer restructuring to minimize your design
area. This setting may reduce the fyax-
Off Disables multiplexer restructuring to avoid possible reductions
in fMAX'

Auto (Default) Allows the Compiler to determine whether to enable the
option based on your other Quartus Il synthesis settings. The
option is On when the Optimization Technique option is set
to Area, and Off when the Optimization Technique option is
Balanced or Speed. (Note that since the default Optimization
Technique is Balanced for many device families including
Stratix and Stratix Il devices, this option is turned Off by
default for those families).

Once you have compiled your design, you can view multiplexer
restructuring information in the Multiplexer Restructuring Statistics
report in the Multiplexer Statistics folder under Analysis & Synthesis
Optimization Results in the Analysis & Synthesis section of the
Compilation Report. Table 8-5 describes the information that is listed in
the Multiplexer Restructuring Statistics report table for each bus of
multiplexers.

Table 8-5. Multiplexer Information in the Multiplexer Restructuring Statistics Report

Heading

Description

Multiplexer Inputs

The number of different choices being multiplexed together.

Bus Width

The width of the bus in bits.

Baseline Area

An estimate of how many logic cells are needed to implement the bus of
multiplexers (before any multiplexer restructuring takes place). This estimate can
be used to identify any large multiplexers in the design.

Area if Restructured

An estimate of how many logic cells are needed to implement the bus of
multiplexers if Multiplexer Restructuring is applied.

Saving if Restructured

An estimate of how many logic cells are saved if Multiplexer Restructuring is
applied.

Altera Corporation
June 2004

8-17

Quartus Il Handbook, Volume 1

Table 8-5. Multiplexer Information in the Multiplexer Restructuring Statistics Report

Heading

Description

Registered

An indication of whether registers are present on the multiplexer outputs.
Multiplexer Restructuring uses the secondary control signals of a register (such
as synchronous-clear and synchronous-load) to further reduce the amount of
logic needed to implement the bus of multiplexers.

Example Multiplexer
Output

The name of one of the multiplexers' outputs. This name can help determine
where in the design the multiplexer bus originated.

8-18

For more information on optimizing for multiplexers, refer to the
Multiplexers section of the Design Recommendations for Altera Devices
chapter in Volume 1 of the Quartus II Handbook.

Power-Up Level

This logic option causes a register (flipflop) to power up with the
specified logic level, either High (1) or Low (0). You can apply this option
to any register or to a pin with the logic configurations described below:

W If this option is turned on for an input pin, the option is transferred
automatically to the register that is driven by the pin if the following
conditions are present:

e There is no logic, other than inversion, between the pin and the
register

e The input pin drives the data input of the register

e The input pin does not fan out to any other logic

B If this option is turned on for an output or bidirectional pin, it is
transferred automatically to the register that feeds the pin, if the
following conditions are present:

e Thereis no logic, other than inversion, between the register and
the pin
e The register does not fan out to any other logic

For the register to power up to with the specified logic level, the Compiler
may perform NOT gate push-back on the register.

Altera Corporation
June 2004

Quartus Il Synthesis Options

Altera Corporation
June 2004

Power-Up Don’t Care

This logic option causes registers to power up with a “don’t care” logic
level (X), or the logic level most appropriate for the design. This option
allows the Compiler to change the power-up condition of a register to, for
example, minimize your design’s area usage. This option is turned on by
default.

For example, a register may have its D input tied to VCC. If you turn this
option off, the register powers up low even though it goes high at the first
clock signal. If you turn this option on, the Compiler sets the power-up
value of the register to high and, therefore, can eliminate the register and
connect the output of the register to vcc. If the Compiler makes this type
of optimization, it issues a message indicating it is doing so.

This project-wide option does not apply to registers that have the Power-
Up Level logic option set to either High or Low.

s Versions of the Quartus II software earlier than version 2.1 did
not include this option. If you compile an older design that relies
on registers to power-up to a specific level, the Compiler may
synthesize the design differently. Turn off the Power-Up Don't
Care option if you want your design to use the power-up
behavior of older versions of Quartus II software.

Remove Duplicate Logic

If you turn on this option, the Compiler removes logic that is identical to
other logic in the design. If two functions generate the same logic, the
Compiler removes the second one, and the first one fans out to the second
one’s destinations. Additionally, if the deleted logic function has different
logic option assignments, the Compiler ignores them. This option is
turned on by default.

When turned on, this option also removes all duplicate registers like the
Remove Duplicate Registers option. If you do not want the Compiler to
remove certain registers when this option is turned on, turn off the
Remove Duplicate Registers option for those registers. See Table 86 for
more details.

Even if you turn this option on, the Compiler does not remove duplicate
logic that you inserted deliberately. If a function’s output feeds an LCELL
buffer, the Compiler always treats it as a unique signal and the Remove
Duplicate Logic option does not apply (i.e., the Compiler does not
remove an LCELL buffer if you turn on this option).

8-19

Quartus Il Handbook, Volume 1

Remove Duplicate Registers

If you turn on this logic option, the Compiler removes registers that are
identical to another register. If two registers generate the same logic, the
Compiler removes the second one, and the first one fans out to the second
one's destinations. Also, if the deleted register has different logic option
assignments, the Compiler ignores them. This option is turned on by
default.

The Compiler only recognizes this option if you turned on the Remove
Duplicate Logic option. When turned on, the Remove Duplicate Logic
option also removes duplicate registers. Therefore, you should use this
option only if you want to prevent the Compiler from removing duplicate
registers that you have used deliberately. That is, you should use this
option only with the Off setting. See Table 8-6. You can apply this option
to an individual register or a design entity that contains registers.

Table 8-6. Settings for Remove Duplicate Logic & Remove Duplicate Registers

Remove Duplicate | Remove Duplicate

Logic Setting | Registers Setting Description

On (Default) On (Default) Removes logic (including registers) if it is identical to other logic in

the design.

On

Preserves all registers for which the Remove Duplicate Registers
option is turned off. Removes logic (including any other registers) if
it is identical to other logic in the design.

Off

On or Off Preserves duplicate logic and registers.

8-20

Remove Redundant Logic Cells

This logic option removes redundant LCELL primitives or WYSIWYG
cells. If you turn on this option, the Compiler optimizes a circuit for area
and speed. The project-wide option is turned off by default.

Megafunction Inference Control

The Quartus II Compiler automatically recognizes certain types of HDL
code and infers the appropriate megafunction when a megafunction
provides optimal results. That is, the software uses the Altera
megafunction code when compiling your design even though you did
not specifically instantiate the megafunction. The software infers
megafunctions resulting in logic that is optimized for Altera devices. The
area and/or performance of such logic may be better than the results
obtained by inferring generic logic from the same HDL code.
Additionally, you must use megafunctions to access certain architecture-

Altera Corporation
June 2004

Quartus Il Synthesis Options

specific features, such as RAM, digital signal processing (DSP) blocks,
and shift registers, that generally provide improved performance
compared with basic logic elements.

«® For details on coding style recommendations when targeting
megafunctions in Altera devices, see the Recommended HDL Coding Styles
chapter in Volume 1 of the Quartus II Handbook.

The Quartus II software provides options to control the inference of
certain types of megafunctions, as described in the following sub-
sections.

Multiply-Accumulators & Multiply-Adders

Use the Auto DSP Block Replacement logic option to control DSP block
inference for multiply-accumulations and multiply-adders. This option is
turned on by default. To disable inference, turn off this option for your
whole project on the Analysis & Synthesis Settings page of the Settings
dialog box (Assignment menu), or disable the option for a specific block
using the Assignment Editor (Assignments menu).

=" Any registers that the software maps to the altmult_accum
and altmult_add megafunctions and places in DSP blocks are
not available in the Simulator because their node names do not
exist after synthesis.

Shift Registers

Use the Auto Shift Register Replacement logic option to control shift
register inference. This option is turned on by default. To disable
inference, turn off this option for your whole project on the Analysis &
Synthesis Settings page of the Settings dialog box (Assignments menu),
or for a specific block using the Assignment Editor. The software may not
infer small shift registers because small shift registers typically do not
benefit from implementation in dedicated memory. However, you can
use the Allow Any Shift Register Size for Recognition logic option to
instruct synthesis to infer a shift register even when its size is considered
too small.

s The registers that the software maps to the altshift_taps
megafunction and places in RAM are not available in the
Simulator because their node names do not exist after synthesis.

Altera Corporation 8-21
June 2004

Quartus Il Handbook, Volume 1

RAM and ROM

Use the Auto RAM Replacement and Auto ROM Replacement logic
options to control RAM and ROM inference, respectively. These options
are turned on by default. To disable inference, turn off the appropriate
option for your whole project on the Analysis & Synthesis Settings page
of the Settings dialog box (Assignment menu), or disable the option for a
specific block using the Assignment Editor (Assignments menu).

The software may not infer very small RAM or ROM blocks because very
small memory blocks can typically be implemented more efficiently by
using the registers in the logic. However, you can use the Allow Any
RAM Size for Recognition and Allow Any ROM Size for Recognition
logic options to instruct synthesis to infer a memory block even when its
size is considered too small.

RAM Style

This attribute specifies the type of TriMatrix™ embedded memory block
that the Compiler should use when implementing an inferred RAM, and
is only supported for device families with TriMatrix embedded memory
blocks.

The ramsty le attribute takes a single string value (in quotation marks)
to specify the type of memory block: "M512", "M4K", or "M-RAM". In
Verilog HDL, set the ramsty l e attribute on the declaration of the
multidimensional variable that represents an inferred RAM. In VHDL,
set the ramstyle attribute on a signal or variable declaration that
represents an inferred RAM.

s In addition to ramstyle, the Quartus II software supports the
syn_ramstyle attribute name for compatibility with other
synthesis tools.

The following examples specify that the inferred ram my_ ram should be
implemented using an M512 embedded memory block.

Sample Verilog-1995 Code with a ramstyle Attribute
reg [0:7] my_ram[0:63] /* synthesis ramstyle = "M512" */;

Sample Verilog-1995 Code with a ramstyle Attribute
(* ramstyle = "M512"™ *) reg [0:7] my_ram[0:63];

Sample VHDL Code with a ramstyle Attribute
type memory_t is array (0 to 63) of std_logic_vector(0 to 7);
signal my_ram : memory_t;

8-22 Altera Corporation
June 2004

Setting Other Quartus Il Options in Your HDL Source Code

attribute ramstyle : string;
attribute ramstyle of my_ram : signal is '"M512";

Setting Other
Quartus Il
Options in Your
HDL Source
Code

Altera Corporation
June 2004

This section describes Quartus II synthesis attributes that can be used to
set other Quartus II options and settings in your HDL source code. The
attributes described in the “Chip Pin” and “Use 1/O Flip-Flops” sections
can help you make pin-related assignments in your HDL code, and the
attribute described in the “Altera Attribute” section can be used to make
any other Quartus II option or setting assignments in your HDL code.
Assignments made with these synthesis attributes take precedence over
assignments made through the Quartus II user interface, the .qsf, and the
Tcl interface.

Use 1/0 Flip-Flops

This attribute directs the Quartus II software to implement input, output,
and output enable flip-flops (or registers) in I/O cells that have fast, direct
connections to an I/O pin, when possible. Applying the useioff
synthesis attribute can improve I/O performance by minimizing setup,
clock-to-output, and clock-to-output enable times. This synthesis
attribute is supported using the Fast Input Register, Fast Output
Register, and Fast Output Enable Register logic options that can also be
set in the Assignment Editor (Assignments menu).

'~ For more information on which device families support fast
input, output, and output enable registers, refer to your device
family data sheet or handbook or to Quartus II Help.

The use i off synthesis attribute takes a Boolean value and can only be
applied to the port declarations of a top-level Verilog HDL module or
VHDL entity (it is ignored if applied elsewhere). Setting the value to 1
(Verilog HDL) or TRUE (VHDL) instructs the Quartus II software to pack
registers into I/O cells. Setting the value to 0 (Verilog HDL) or FALSE
(VHDL) prevents register packing into I/O cells.

In the following examples, the use 10T T synthesis attribute directs the

Quartus II software to implement the registers a_reg, b_reg,and o_reg
in the I/O cells corresponding to the ports a, b, and o respectively.

8-23

Quartus Il Handbook, Volume 1

Sample Verilog HDL Code with a useioff Attribute

module top_level(clk, a, b, 0);
input clk;
input [1:0] a, b /* synthesis useioff = 1 */;
output [2:0] o /* synthesis useioff = 1 */;

reg [1:0] a reg, b_reg;
reg [2:0] o_reg;

always @ (posedge clk)

begin
a_reg <= a;
b_reg <= b;

0 reg <= a_reg + b_reg;
end

assign o0 = 0_reqg;
endmodule

Verilog-2001 syntax also accepts the following type of statements instead
of the comment form shown in the example above.

(* useioff
(* useioff

1% input [1:0] a, b;
*) output [2:0] o;

I n
=

8-24 Altera Corporation
June 2004

Setting Other Quartus Il Options in Your HDL Source Code

Altera Corporation
June 2004

Sample VHDL Code with a useioff Attribute
library ieee;

use ieee.std_logic_1164._all;

use ieee.numeric_std.all;

entity top_level is
port (
clk : in std_logic;
a, b - in unsigned(l downto 0);
o] : out unsigned(l downto 0));

attribute useioff : boolean;

attribute useioff of a : signal is true;

attribute useioff of b : signal is true;

attribute useioff of o : signal is true;
end top_level;

architecture rtl of top_level is
signal o_reg, a reg, b_reg : unsigned(l downto 0);

begin
process(clk)
begin
a_reg <= a;
b_reg <= b;

o_reg <= a_reg + b_reg;
end process;

0 <= 0_reg;
end rtl;

Altera Attribute

This attribute enables you to apply Quartus II options and assignments to
an object (entity, instance, or net) in your HDL source code. With
altera_attribute, you can control synthesis options from your HDL
source even when the options lack a specific HDL synthesis attribute (like
many of the logic options presented earlier in this chapter). You can also
use this attribute to pass option settings and assignments to phases of the
Compiler flow beyond Analysis & Synthesis, such as Fitting. The syntax
for setting this attribute is the syntax defined in the section “Synthesis
Attributes” on page 8-5 for HDL attributes (examples are provided
below).

Assignments and settings made with the Altera Attribute take

precedence over assignments and settings made through the Quartus II
user interface, the Quartus Settings File (.qsf), and the Tcl interface.

8-25

Quartus Il Handbook, Volume 1

The attribute value is a single string containing a list of QSF variable
assignments separated by semicolons, as follows:

“'<variable_1>=<value_1>; <variable_2>=<value_2>[;...]"

If the Quartus II option or assignment includes a target, source, and/or
section tag, you can use the following syntax (similar to the syntax of the
QSF file) before the QSF assignment variable and value:

{ -from "<source>" -to ''<target>" -section_id "<section>" }

Each of the tags above is optional, but if any tags are included then you
need to use the braces {}. The syntax for the full attribute value,
including the optional target, source, and section tags for two different
QSF assignments is as follows:

"[{ [-from "<source_1>"] [-to "<target_1>"] [-section_id "<section_1>"] }]
<variable_l>=<value_1>; [{ [-from "<source_2>"] [-to "<target_2>"] [
section_id "<section_2>"] }] <variable_2>=<value_2>"

If a variable’s assigned value is a string of text, you must use escaped
quotes around the value, as in the following examples (using non-existent
variable and value terms):

Verilog HDL:
"VARIABLE_NAME=\"'STRING_VALUE\""

VHDL:
"VARIABLE_NAME ="""STRING_VALUE"""""

To find the QSF variable name or value corresponding to a specific
Quartus II option or assignment, you can make the option setting or
assignment in the Quartus II user interface and then note the changes in
the QSF file.

The following examples use altera_attribute to set the power-up
level of an inferred register. Note that for inferred instances, you cannot
apply the attribute to the instance directly so you should apply the
attribute to one of the instance's output nets. The Quartus II software
automatically moves the attribute to the inferred instance.

Verilog-1995 Example of Applying Altera Attribute to an Instance
reg my_reg /* synthesis altera_attri