
Preliminary Information
101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com

Quartus II Handbook, Volume 1
Design & Synthesis

qii5v1-2.1

http://www.altera.com

Copyright © 2004 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-
plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

Printed on recycled paper

ii Altera Corporation
Preliminary

Altera Corporation iii
Preliminary

Contents

Chapter Revision Dates ... xi

About this Handbook ... xiii
How to Contact Altera .. xiii
Typographic Conventions .. xiii

Section I. Design Flows
Revision History ... Section I–2

Chapter 1. Hierarchical Block-Based & Team-Based Design Flows
Introduction .. 1–1
Design Flows: Flattened versus Hierarchical Block-Based .. 1–1
Block-Based & Team-Based Designs ... 1–2
Block-Based Design with the Quartus II LogicLock Methodology .. 1–4
Preserving Timing Results Using the LogicLock Flow .. 1–5

Preserving Routing .. 1–6
Design Partitioning & Creating Multiple Netlist Files ... 1–6

Performing Incremental Fitting .. 1–8
Save a Node-Level Netlist into a Persistent Source File (Verilog Quartus Mapping File). ... 1–8
Prevent Further Netlist Optimization ... 1–9

Conclusion .. 1–9

Chapter 2. Quartus II Design Flow for MAX+PLUS II Users
Introduction .. 2–1
Chapter Overview ... 2–1
Typical Design Flow .. 2–2
Device Support ... 2–3
Quartus II GUI Overview ... 2–4

Project Navigator .. 2–4
Node Finder .. 2–4
Tcl Console .. 2–4
Messages .. 2–4
Status .. 2–5

Setting up MAX+PLUS II Look and Feel in Quartus II ... 2–6
Compiler Tool .. 2–8

Converting an Existing MAX+PLUS II Design .. 2–10
Converting MAX+PLUS II Graphic Design Files .. 2–11
Importing MAX+PLUS II Assignments .. 2–12

iv Altera Corporation
Preliminary

Quartus II Handbook, Volume 1

Quartus II Design Flow ... 2–13
Creating a New Project .. 2–14
Design Entry ... 2–14
Making Assignments ... 2–17
Synthesis .. 2–20
Functional Simulation .. 2–20
Place & Route .. 2–22
Timing Analysis .. 2–23
Timing Closure Floorplan ... 2–25
Timing Simulation .. 2–26
Power Estimation ... 2–28
Programming .. 2–29

Conclusion .. 2–29
Quick Menu Reference .. 2–30

Chapter 3. System Design Using SOPC Builder
Introduction .. 3–1

SOPC Builder Peripherals .. 3–2
Embedded Software Applications .. 3–4
Avalon Switch Fabric .. 3–4
System Generation ... 3–6
Simulation Model & Testbench .. 3–6

Using SOPC Builder ... 3–6
System Contents Page .. 3–7
System Generation Page .. 3–9
System Dependency Pages ... 3–12
Generating a System ... 3–13

Further Information ... 3–13

Chapter 4. Quartus II Support for HardCopy Devices
Introduction .. 4–1
Features ... 4–2
HARDCOPY_FPGA_PROTOTYPE, HardCopy Stratix, and Stratix Devices 4–3
HardCopy Design Flow .. 4–4

The Design Flow Steps of the One Step Process .. 4–6
How to Design HardCopy Devices ... 4–6

Targeting Designs to HARDCOPY_ FPGA_PROTOTYPE Devices ... 4–6
Tcl Support for HardCopy Migration ... 4–9

Design Optimization & Performance Estimation ... 4–10
HardCopy Floorplans & Timing Models .. 4–10
Performance Estimation .. 4–10
Placement Constraints ... 4–12

Location Constraints ... 4–13
LAB Assignments ... 4–13
LogicLock Assignments .. 4–14
Targeting Designs to HardCopy APEX 20KC and HardCopy APEX 20KE Devices 4–14

Checking Designs for HardCopy Design Guidelines .. 4–15

Altera Corporation v
Preliminary

Contents

Design Assistant Settings .. 4–15
Running Design Assistant ... 4–15
Reports and Summary ... 4–15

Generating the HardCopy Design Database ... 4–16
Static Timing Analysis (STA) ... 4–17
Power Estimation ... 4–17

HardCopy Stratix Power Calculator ... 4–17
Opening HardCopy Stratix Power Calculator ... 4–18
HardCopy APEX 20K Power Calculator .. 4–20
Power Calculators for FPGAs ... 4–20

Tcl Support for HardCopy Stratix ... 4–20
Conclusion .. 4–20
Related Documents ... 4–21

Chapter 5. Engineering Change Management
Impact of Last Minute Design Changes ... 5–1

Performance .. 5–1
Compile Time .. 5–2
Verification .. 5–2
Documentation ... 5–2

ECO Support .. 5–2
ECO Support at the HDL Level .. 5–3
ECO Support at the Netlist Level ... 5–5

Conclusion .. 5–6

Section II. Design Guidelines
Revision History ... Section II–1

Chapter 6. Design Recommendations for Altera Devices
Introduction .. 6–1
Synchronous FPGA Design Practices ... 6–1

Fundamentals of Synchronous Design ... 6–2
Hazards of Asynchronous Design ... 6–2

Recommended Design Techniques ... 6–3
Combinational Logic Structures ... 6–4
Clocking Schemes ... 6–7

Hierarchical Design Partitioning ... 6–12
Targeting Clock & Register-Control Architectural Features ... 6–14
Conclusion .. 6–15

Chapter 7. Recommended HDL Coding Styles
Introduction .. 7–1
Instantiating and Inferring Altera Megafunctions .. 7–1

Instantiating Altera Megafunctions in HDL Code .. 7–2
Inferring Megafunctions from HDL Code .. 7–4

vi Altera Corporation
Preliminary

Quartus II Handbook, Volume 1

Counters ... 7–5
Adder/Subtractors ... 7–6
Multipliers ... 7–8
Multiply-Accumulators & Multiply-Adders .. 7–10
RAM ... 7–14
ROM ... 7–20
Shift Registers ... 7–21

Device-Specific Coding Recommenda-tions .. 7–25
Secondary Control Signals in Registers or Flip-Flops ... 7–25
Tri-State Signals .. 7–27
Adder Trees ... 7–28

General Coding Recommenda-tions ... 7–31
Latches ... 7–31
State Machines .. 7–32
.. Multiplexers 7–38

Conclusion .. 7–47

Section III. Synthesis
Revision History .. Section III–2

Chapter 8. Quartus II Integrated Synthesis
Introduction .. 8–1
Verilog HDL & VHDL Support ... 8–1

Verilog HDL .. 8–1
VHDL ... 8–2

Types of Synthesis Options .. 8–3
Synthesis Directives ... 8–4
Synthesis Attributes ... 8–5
Quartus II Logic Options ... 8–6

Quartus II Synthesis Options ... 8–6
Translate Off & On ... 8–7
Read Comments as HDL ... 8–7
Full Case .. 8–8
Parallel Case .. 8–9
Keep Combinational Node/Implement as Output of Logic Cell ... 8–10
Preserve Registers .. 8–11
Maximum Fan-Out ... 8–12
Optimization Technique .. 8–13
State Machine Processing .. 8–14
Preserve Hierarchical Boundary .. 8–15
Restructure Multiplexers ... 8–16
Power-Up Level .. 8–18
Power-Up Don’t Care .. 8–19
Remove Duplicate Logic ... 8–19
Remove Duplicate Registers ... 8–20
Remove Redundant Logic Cells ... 8–20

Altera Corporation vii
Preliminary

Contents

Megafunction Inference Control .. 8–20
RAM Style .. 8–22

Setting Other Quartus II Options in Your HDL Source Code .. 8–23
Use I/O Flip-Flops ... 8–23
Altera Attribute .. 8–25
Chip Pin ... 8–27

Scripting Support ... 8–29
Quartus II Synthesis Options .. 8–29
Assigning a Pin ... 8–31

Conclusion .. 8–31

Chapter 9. Synplicity Synplify & SynplifyPro Support
Introduction .. 9–1
Design Flow .. 9–1
Synplify Optimization Strategies .. 9–6

Implementations in Synplify Pro ... 9–6
Timing-driven Synthesis Settings .. 9–6
Finite State Machine (FSM) Compiler ... 9–9
General Optimization Attributes & Options .. 9–10
Altera Specific Attributes .. 9–11

Exporting Designs to the Quartus II Software Using NativeLink Integration 9–13
Running the Quartus II Software from within the Synplify Software 9–14
Using the Quartus II Software to Launch the Synplify Software .. 9–14

Cross-Probing with the Quartus II Software ... 9–15
Enabling Cross-Probing .. 9–15
Cross-Probing from the Quartus II Software ... 9–16
Cross-Probing from the Synplify Software .. 9–16

Guidelines for Altera Megafunctions & Architecture-Specific Features 9–17
Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager 9–18
Inferring Altera Megafunctions from HDL Code .. 9–23
Hierarchy & Design Considerations with Multiple VQM Files .. 9–29
Creating a Design with Multiple VQM Files .. 9–29
Creating a Design with Multiple VQM Files using Multipoint Synthesis (Synplify Pro only) ...
9–30
Generating a Design with Multiple VQM Files Using Black Boxes .. 9–36

Conclusion .. 9–41

Chapter 10. Mentor Graphics LeonardoSpectrum
Support

Introduction .. 10–1
Design Flow .. 10–1
Optimization Strategies .. 10–4

Timing-Driven Synthesis .. 10–4
Other Constraints ... 10–5

Timing Analysis with the Leonardo-Spectrum Software .. 10–7
Exporting Designs Using NativeLink Integration .. 10–8

Generating Netlist Files ... 10–8

viii Altera Corporation
Preliminary

Quartus II Handbook, Volume 1

Including Design Files for Black-Boxed Modules ... 10–8
Passing Constraints Via Scripts .. 10–8
Integration with the Quartus II Software ... 10–9

Guidelines for Altera Megafunctions & LPM Functions ... 10–9
Inferring Multipliers & DSP Functions ... 10–11
Controlling DSP Block Inference ... 10–12

Block-based Design with the Quartus II LogicLock Methodology .. 10–18
Hierarchy & Design Considerations .. 10–19
Creating a Design with Multiple EDIF Files .. 10–20
Generating Multiple EDIF Files Using Black Boxes .. 10–24
Incremental Synthesis Flow .. 10–29

Conclusion .. 10–31

Chapter 11. Mentor Graphics Precision RTL Synthesis Support
Introduction .. 11–1
Design Flow .. 11–1
Creating a Project & Compiling a Design .. 11–5

Creating a Project ... 11–5
Compiling the Design .. 11–6

Setting Constraints .. 11–6
Setting Timing Constraints ... 11–7
Setting Mapping Constraints .. 11–7
Assigning Pin Numbers & I/O Settings ... 11–8
Assigning I/O Registers .. 11–9
Disabling I/O Pad Insertion ... 11–9
Controlling Fan-Out on Data Nets .. 11–10

Synthesizing the Design & Evaluating the Results ... 11–11
Obtaining Accurate Logic Utilization & Timing Analysis Reports 11–11

Megafunctions & Architecture-Specific Features ... 11–14
Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager 11–15
Inferring Altera Megafunctions from HDL Code .. 11–17

Block-Based Design with the Quartus II LogicLock Methodology .. 11–23
Hierarchy & Design Considerations .. 11–23
Creating a Design with Separate Blocks for the LogicLock Methodology 11–24
Creating a Design with Separate Blocks Using the LogicLock Attribute in a Single Precision
Project ... 11–25
Generating a Design with Multiple EDIF Files Using Black Boxes 11–26

Conclusion .. 11–30

Chapter 12. Synopsys FPGA
Compiler II BLIS & Quartus II LogicLock Design Flow

Introduction .. 12–1
Design Hierarchy ... 12–1
Block-Level Incremental Synthesis ... 12–2

FPGA Compiler II Design Block .. 12–2
FPGA Compiler II & Quartus II Synthesis ... 12–3
Block Root .. 12–3
How the BLIS Feature Works with the LogicLock Feature .. 12–4

Altera Corporation ix
Preliminary

Contents

Hierarchy Considerations ... 12–5
Time Stamp Synthesis .. 12–6

Creating & Maintaining a Design ... 12–6
Opening the Modules Constraint Table & Labeling Block Roots ... 12–7
Exporting Block-Level Netlist Files ... 12–7
Changing Source Within a Block ... 12–8
Removing a Block Root ... 12–9
Using BLIS Shell Commands .. 12–9

Conclusion .. 12–10

Chapter 13. Synopsys Design Compiler FPGA Support
Design Flow Using the DC FPGA Software & the Quartus II Software 13–2
Setup of the DC FPGA Software Environment for Altera Device Families 13–3
Megafunctions & Architecture-Specific Features ... 13–5

Reading MegaWizard-Generated Variation Wrapper Files .. 13–7
Using MegaWizard-Generated Variation Wrapper Files in a Black-Box Methodology 13–7

Inferring Altera Megafunctions from HDL Code ... 13–8
Reading Design Files into the DC FPGA Software ... 13–9
Selecting a Target Device .. 13–11
Compilation & Synthesis .. 13–14
Saving Synthesis Results .. 13–17
Exporting Designs to the Quartus II Software .. 13–18
Place & Route with the Quartus II Software .. 13–21
Conclusion .. 13–21

Chapter 14. Analyzing Designs with the Quartus II RTL Viewer & Technology Map Viewer
Introduction .. 14–1
RTL Viewer Overview .. 14–1
Technology Map Viewer Overview .. 14–2
Quartus II Design Flow with the RTL & Technology Map Viewers .. 14–3
Introduction to the User Interface ... 14–4

Schematic View ... 14–5
Hierarchy List ... 14–12

Navigating the Schematic View .. 14–13
Zooming & Magnification ... 14–13
Page Partitioning in the Schematic View .. 14–14
Traversing the Design Hierarchy ... 14–16
Back & Forward Page Viewing .. 14–17
Go to Net Driver ... 14–17

Filtering in the Schematic View ... 14–17
Examples of Filtered Netlists .. 14–19
Expanding a Filtered Netlist ... 14–21
Reducing a Filtered Netlist ... 14–21

Probing to Source Design File & Other Quartus II Features ... 14–22
Viewing a Timing Path in the Technology Map Viewer ... 14–22
Other Features in the Schematic Viewer .. 14–24

Tooltips .. 14–24

x Altera Corporation
Preliminary

Quartus II Handbook, Volume 1

Displaying Net Names .. 14–26
Full Screen View ... 14–26
Find Command ... 14–26
Exporting Schematic as JPEG or BMP Image & Copying to Clipboard 14–27
Printing .. 14–28

Using the RTL & Technology Map Viewers to Analyze Design Problems 14–28
Conclusion .. 14–29

Index .. 1

Altera Corporation xi
Preliminary

Chapter Revision Dates

The chapters in this book, Quartus II Handbook, Volume 1, were revised on the following dates. Where
chapters or groups of chapters are available separately, part numbers are listed.

Chapter 1. Hierarchical Block-Based & Team-Based Design Flows
Revised: August 2004
Part number: qii51001-2.1

Chapter 2. Quartus II Design Flow for MAX+PLUS II Users
Revised: June 2004
Part number: qii51002-2.0

Chapter 3. System Design Using SOPC Builder
Revised: June 2004
Part number: qii51003-2.0

Chapter 4. Quartus II Support for HardCopy Devices
Revised: June 2004
Part number: qii51004-2.0

Chapter 5. Engineering Change Management
Revised: June 2004
Part number: qii51005-2.0

Chapter 6. Design Recommendations for Altera Devices
Revised: June 2004
Part number: qii51006-2.0

Chapter 7. Recommended HDL Coding Styles
Revised: June 2004
Part number: qii51007-2.0

Chapter 8. Quartus II Integrated Synthesis
Revised: June 2004
Part number: qii51008-2.0

Chapter 9. Synplicity Synplify & SynplifyPro Support
Revised: June 2004
Part number: qii51009-2.0

xii Altera Corporation
Preliminary

Chapter Revision Dates Quartus II Handbook, Volume 1

Chapter 10. Mentor Graphics LeonardoSpectrum
Support
Revised: June 2004
Part number: qii51010-2.0

Chapter 11. Mentor Graphics Precision RTL Synthesis Support
Revised: June 2004
Part number: qii51011-2.0

Chapter 12. Synopsys FPGA
Compiler II BLIS & Quartus II LogicLock Design Flow
Revised: June 2004
Part number: qii51012-1.0

Chapter 13. Synopsys Design Compiler FPGA Support
Revised: June 2004
Part number: qii51014-1.0

Chapter 14. Analyzing Designs with the Quartus II RTL Viewer & Technology Map Viewer
Revised: June 2004
Part number: qii51013-2.0

Altera Corporation xiii
Preliminary

About this Handbook

This handbook provides comprehensive information about the Altera®
Quartus®II design software, version 4.0..

How to Contact
Altera

For the most up-to-date information about Altera products, go to the
Altera world-wide web site at www.altera.com. For technical support on
this product, go to www.altera.com/mysupport. For additional
information about Altera products, consult the sources shown below.

Typographic
Conventions

This document uses the typographic conventions shown below.

Information Type USA & Canada All Other Locations

Technical support www.altera.com/mysupport/ altera.com/mysupport/

(800) 800-EPLD (3753)
(7:00 a.m. to 5:00 p.m. Pacific Time)

(408) 544-7000 (1)
(7:00 a.m. to 5:00 p.m. Pacific Time)

Product literature www.altera.com www.altera.com

Altera literature services lit_req@altera.com (1) lit_req@altera.com (1)

Non-technical customer
service

(800) 767-3753 (408) 544-7000
(7:30 a.m. to 5:30 p.m. Pacific Time)

FTP site ftp.altera.com ftp.altera.com

Note to table:
(1) You can also contact your local Altera sales office or sales representative.

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital
Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

http://www.altera.com/mysupport/
http://www.altera.com/mysupport/
http://www.altera.com
http://www.altera.com
mailto:lit_req@altera.com
mailto:lit_req@altera.com
ftp://ftp.altera.com
ftp://ftp.altera.com
http://www.altera.com
http://www.altera.com/mysupport

xiv Altera Corporation
Preliminary

Typographic Conventions Quartus II Handbook, Volume 1

Italic type Internal timing parameters and variables are shown in italic type.
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are
shown in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1,
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files (e.g., the AHDL
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in
Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ ● • Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c The caution indicates required information that needs special consideration and
understanding and should be read prior to starting or continuing with the
procedure or process.

w The warning indicates information that should be read prior to starting or
continuing the procedure or processes

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.

Visual Cue Meaning

Altera Corporation Section I–1
Preliminary

Section I. Design Flows

The Altera® Quartus® II design software provides a complete multi-
platform design environment that easily adapts to your specific design
needs. The Quartus II software also allows you to use the Quartus II
graphical user interface, EDA tool interface, or command-line interface
for each phase of the design flow. This section explains the Quartus II
options that are available for each of these flows.

This section includes the following chapters:

■ Chapter 1, Hierarchical Block-Based & Team-Based Design Flows

■ Chapter 2, Quartus II Design Flow for MAX+PLUS II Users

■ Chapter 3, System Design Using SOPC Builder

■ Chapter 4, Quartus II Support for HardCopy Devices

■ Chapter 5, Engineering Change Management

Section I–2 Altera Corporation
Preliminary

Design Flows Quartus II Handbook, Volume 1

Revision History The table below shows the revision history for Chapters 1 to 5.

Chapter(s) Date / Version Changes Made

1 Aug. 2004 v2.1 ● Minor typographical corrections

June 2004 v2.0 ● Updates to tables, figures.
● New functionality for Quartus 4.1.

Feb. 2004 v1.0 Initial release.

2 June 2004 v2.0 ● Updates to tables, figures.
● New functionality for Quartus 4.1.

Feb. 2004 v1.0 Initial release.

3 June 2004 v2.0 ● Updates to tables, figures.
● New functionality for Quartus 4.1.

Feb. 2004 v1.0 Initial release.

4 June 2004 v2.0 ● Updates to tables, figures.
● New functionality for Quartus 4.1.

Feb. 2004 v1.0 Initial release.

5 June 2004 v2.0 No change to document.

Feb. 2004 v1.0 Initial release.

Altera Corporation 1–1
August 2004 Preliminary

1. Hierarchical Block-Based
& Team-Based Design Flows

Introduction Today's complex designs require multiple hardware description
language (HDL) design files, each of which may undergo significant
testing and optimization before being combined into the final top-level
design. Many designs require work from more than one member of a
design team. In this environment, the traditional flattened netlist
approach to design may not be as effective as a hierarchical block-based
design methodology.

This chapter discusses the differences between flattened and hierarchical
design flows and describes block-based or team-based hierarchical
methodologies in detail. The chapter highlights the Altera® Quartus® II
LogicLock™ design methodology, and discusses issues to consider when
partitioning a design to achieve optimal results when using this
methodology.

Design Flows:
Flattened versus
Hierarchical
Block-Based

Most HDL-based designs are created using either a block-based or a
flattened design methodology. In a flattened synthesis flow, you apply a
single set of optimizations to the design’s top level. Thus, a flattened
design has one output netlist file for the entire design. However, as
designs become more complex and designers work in teams, a
block-based hierarchical design flow is often more effective. In this
approach, each sub-block may have its own output netlist file and you
perform optimization on individual sub-blocks. After you optimize all of
the sub-blocks, you integrate them into a final design and can optimize it
at the top level if desired. Synthesizing and optimizing each sub-block
separately may provide better quality of results.

Using a block-based design methodology can also reduce the placement
and routing changes required with each compilation in the Quartus II
software. Using a hierarchical design approach limits the amount of logic
impacted by engineering change orders (ECOs) that affect only one part
of the design.

When you make small changes to a design, you can use incremental
fitting for Stratix® II, Stratix, Stratix GX, Cyclone™, or MAX® II devices by
choosing Start > Start Incremental Fitting (Processing menu).
Incremental fitting updates the design’s netlist, placement, and routing,
while ensuring that the timing characteristics of the design change as
little as possible from those of the previous compilation. Incremental

qii51001-2.1

1–2 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 1

fitting also helps to reduce the compilation time necessary to regenerate
a netlist. If the changes to the design are too big, complexities in
incremental fitting may cause longer compilation times.

f For more information on incremental fitting and the circumstances
under which it can be used, refer to the Quartus II Help.

When you make changes to a single block in the design, you can use the
LogicLock design methodology to preserve your performance results, as
discussed in “Block-Based Design with the Quartus II LogicLock
Methodology” on page 1–4.

Table 1–1 describes each design flow and its advantages.

Block-Based &
Team-Based
Designs

For larger designs, such as those implemented in today’s large high
performance devices, a team of designers may work on different modules
of a design at the same time.

To take advantage of a block-based design flow, you must define different
modules as a part of your design hierarchy in different files and
instantiate them in a top-level file.

Table 1–1. Quartus II Flattened Versus Block-Based Hierarchical Design Flow

Design Flow Description Advantages

Traditional flattened One output netlist for
the entire design

● You can perform optimization across design boundaries
and hierarchies for the entire design.

● Simple to manage.

Block-based hierarchical Separate netlist files
for design modules

● You compile each module separately.
● You can apply different optimization techniques to each

module.
● Design modifications do not affect the optimization of

other modules if the placement of other modules is
locked down in the device.

● You can use optimized modules in other designs.

Altera Corporation 1–3
August 2004 Preliminary

Block-Based & Team-Based Designs

Figure 1–1 shows an example of a design hierarchy.

Figure 1–1. Quartus II Design Hierarchy

In Figure 1–1, the top-level design A is assigned to one engineer
(designer 1), while two engineers work on the lower levels of the design.
Designer 2 works on B and its submodules D and E, while designer 3
works on C and its submodule F.

You can treat each module or a group of modules as one block of the
design for block-based synthesis. A submodule can be a Verilog HDL
module, a VHDL entity, an ADHL (.tdf) submodule, a Block Design File
(.bdf) entity, a Verilog Quartus Mapping (.vqm), Electronic Data
Interchange Format (.edf) netlist file, or any combination of these. During
synthesis, you generate a separate VQM or EDF netlist file for each block
of submodules. In this case, there is a separate netlist file for each block
including modules A, B, and C.

To combine these submodules into a block for synthesis, they must form
a single tree in the hierarchical design. For example, you cannot create
one netlist file for the two submodules E and C, while A and B are in
different netlists, because E and C are in different branches of the design.
You can have E and C separate with individual netlists for A, B, C, and E,
or have E and C grouped in one netlist for the whole tree under the
top-level design A.

D

Designer 1

F

Designer 2 Designer 3

E

A

CB

1–4 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 1

Block-Based
Design with the
Quartus II
LogicLock
Methodology

You can use the LogicLock design methodology in the Quartus II
software to perform block-based hierarchical compilation. Using the
LogicLock design flow, you can design and optimize each module
independently, integrate all optimized modules into a top-level design,
then verify the system. Incorporating each module into the top-level
design does not affect the performance of the lower-level modules, as
long as each module has registered inputs and outputs.

If each submodule in a design is represented by a unique netlist, only the
portions of the design that have been updated must be resynthesized
when you compile the design. You can make changes, optimize, and
resynthesize the submodule you are working on without affecting other
sections. Using the LogicLock design methodology, you can place the
logic in each netlist file into a fixed or floating region in an Altera device.
You can then maintain the placement and, if necessary, the routing of your
blocks in the Altera device, thus retaining performance.

Figure 1–2 compares the traditional design flow with the LogicLock
design flow.

Figure 1–2. Comparison of Traditional Design Flow with Quartus II LogicLock Design Flow

Design

Integrate

Optimize

Verify

Traditional Design Flow

Design, Optimize
& Verify

Integrate

Verify

LogicLock Design Flow

Altera Corporation 1–5
August 2004 Preliminary

Preserving Timing Results Using the LogicLock Flow

f For more information on using the LogicLock feature in the Quartus II
software, see the LogicLock Design Methodology chapter in Volume 2 of the
Quartus II Handbook. The rest of this chapter assumes that you are
familiar with the basic LogicLock features and methodology.

Preserving
Timing Results
Using the
LogicLock Flow

When preserving logic placement in an Altera device, Altera
recommends using an atom netlist to preserve the node names in
sub-blocks of your design. An atom netlist contains design information
that fully describes the submodule’s logic in terms of the device
architecture. In the atom netlist, the nodes are fixed as Altera primitives
and the node names do not change if the atom netlist does not change. If
a node name does change, any placement information associated with
that node, such as LogicLock assignments made when back-annotating a
region, is invalid and ignored by the Compiler.

If all the netlists are contained in one Quartus II project, use the
LogicLock flow to back-annotate the logic in each region. If a design
region changes, only the netlist associated with the changed region is
affected. When you place and route the design with the Quartus II
software, the software needs to re-fit only the LogicLock region
associated with the changed netlist file.

1 Altera recommends that you turn on the Prevent further netlist
optimization option when back-annotating a region with
Synthesis Netlist Optimizations and/or Physical Synthesis
Optimization options turned on. This sets the Netlist
Optimizations option to Never Allow for all nodes in the
region, avoiding the possibility of a node name change in the
top-level design when the region is imported.

You may need to remove previously back-annotated assignments for a
modified block because the node names may be different in the newly
synthesized version. When you recompile with one new netlist file, the
placement and assignments for the unchanged netlist files assigned to
different LogicLock regions are not affected. Therefore, you can make
changes to code in an independent block and not interfere with another
designer’s changes, even if all the blocks are integrated into the same top-
level design.

With the LogicLock design methodology, you can develop and test
submodules without affecting the other areas of a design.

1–6 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 1

Preserving Routing

LogicLock regions not only allow you to preserve logic placement from
one compilation to the next, but they also allow you to retain routing
inside LogicLock regions. You can back-annotate and export the routing
of a submodule, then import it into a top-level project. This feature allows
you to specify the exact location of the submodule in the device and
which routing resources the Quartus II PowerFit™ Fitter should use
during compilation.

You can import back-annotated routing if exactly one instance of the
imported region exists in the top level of the design. If more than one
instance exists, the routing constraint is ignored and the LogicLock region
is imported without back-annotation of routing. The routing constraint
cannot be applied to multiple instances in different parts of the device
because routing channels from one part of the device may not be exactly
the same in another area of the device.

f For more information on back-annotating routing, see the LogicLock
Design Methodology chapter in Volume 2 of the Quartus II Handbook.

Design
Partitioning &
Creating
Multiple Netlist
Files

When using a block-based design methodology, you typically create
separate netlists for separate design modules. Partitioning your design
up-front is the best way to employ team-based methodologies and
facilitate design reuse. In addition, to take advantage of the LogicLock
design methodology when synthesizing a design using the Quartus II
software, you should create an atom netlist for each design block before
you lock down the nodes in that block into LogicLock regions.

When creating separate netlist files for a block-based methodology, it is
important to consider how your design is partitioned into sub-blocks that
will be separate netlists in your block-based methodology. Altera
recommends using registered boundaries for all modules. This helps
ensure that the timing between hierarchical blocks does not become the
critical timing path in the design once the blocks are assembled.

f See the Design Recommendations for Altera Devices chapter in Volume 1 of
the Quartus II Handbook for more design partitioning guidelines.

Certain third-party synthesis tools allow you to create separate netlist
files for different sections of a design hierarchy, or to maintain separate
partitions within one netlist for different sections of a design hierarchy. To
ensure that the synthesis tool functions properly, tools allow you to create
separate netlist files or partitions only for blocks that contain entire
modules, entities, or existing netlist files. In addition, each module or
entity should have its own design file. If two different modules are in the

Altera Corporation 1–7
August 2004 Preliminary

Design Partitioning & Creating Multiple Netlist Files

same design file but are defined as being part of different blocks, it is
difficult to perform incremental synthesis. In this case, both regions must
be recompiled when you change one of the modules or entities.

If you don’t use a synthesis tool feature to automatically create separate
netlist files, you can create a black box for each submodule in the
higher-level file that instantiates it. Create a black box by first
instantiating the submodule in the top-level design, then providing a
component declaration in VHDL or a dummy module declaration in
Verilog HDL. When creating a black box, you do not provide the actual
design or logic that forms that submodule. You then create a netlist file for
the submodule in a separate synthesis project. Essentially, you instantiate
a wrapper for the submodule netlist in the top-level design or any higher
module that instantiates it. Some synthesis tools have attributes that can
be set to tell the synthesis tool that a submodule contained in a black box
is intended to be empty.

f See the appropriate chapter in the Synthesis section in Volume 1 of the
Quartus II Handbook for details on your synthesis tool’s support for
creating multiple netlist files to be used with the LogicLock design
methodology, and for more information on creating submodules
contained in a black box.

If you synthesize a design using Quartus II Integrated Synthesis that
contains a VHDL Design File (.vhd), Verilog Design File (.v), Text Design
File (.tdf), or a Block Design File (.bdf), you must also create an atom
netlist to establish fixed nodes and node names when using the
LogicLock design methodology. Turn on the Save a node-level netlist
into a persistent source file (Verilog Quartus Mapping File) option on
the Compilation Process page in the Settings dialog box (Assignments
menu). This option saves your final results as an atom-based netlist in
VQM format. By default, the Quartus II software places the VQM in the
atom_netlists directory under the current project directory. To create a
different VQM with different Quartus II settings, change the file name
setting on the Compilation Process page in the Settings dialog box
(Assignments menu).

1 If you are using an atom netlist from a third-party synthesis tool
and the design has black-boxed library of parameterized
modules (LPM) functions or Altera megafunctions, you must
generate a separate Quartus II VQM for the modules contained
in the black box.

1–8 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 1

Scripting
Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some of these procedures at a command
prompt.

For detailed information about specific scripting command options and
Tcl API packages, type quartus_sh --qhelp at a system command
prompt to run the Quartus II Command-Line and Tcl API Help utility.

f For more information on Quartus II scripting support, including
examples, refer to the Tcl Scripting and Command-Line Scripting chapters
of the Quartus II Handbook.

Performing Incremental Fitting

You can perform incremental fitting with a Tcl command or with a
command run at a command prompt.

Tcl Script

Use the following in a script or Tcl console:

execute_flow -incremental_fitting

The execute_flow command is in the flow package.

Command Prompt

Use the following at a system command prompt:

quartus_sh --flow incremental_fitting <project name> r

For more information about performing incremental fitting, see page 1–1.

Save a Node-Level Netlist into a Persistent Source File (Verilog
Quartus Mapping File).

Make the following assignments to cause the Quartus II Fitter to save a
node-level netlist into a VQM file:

set_global_assignment \
-name LOGICLOCK_INCREMENTAL_COMPILE_ASSIGNMENT ON
set_global_assignment \
-name LOGICLOCK_INCREMENTAL_COMPILE_FILE <file name>

Any path specified in the file name must be relative to the project
directory. For example, specifying atom_netlists/top.vqm places
top.vqm in the atom_netlists subdirectory of your project directory.

Altera Corporation 1–9
August 2004 Preliminary

Conclusion

Prevent Further Netlist Optimization

Use the following Tcl statements to prevent further netlist optimization of
nodes in a back-annotated LogicLock region:

foreach node [get_logiclock_contents \
-region <region name> -node_location] {

set node_name [lindex $node 0]
set_instance_assignment \
-name ADV_NETLIST_OPT_ALLOWED “NEVER ALLOW” \
-to $node_name

}

The get_logiclock_contents command is in the logiclock
package.

For more information about preventing further netlist optimization, refer
to “Preserving Timing Results Using the LogicLock Flow” on page 1–5.

Conclusion Hierarchical design methodologies can improve the efficiency of your
design process, providing better design reuse opportunities and fewer
integration problems when working in a team environment. Following
the guidelines in this chapter can help you achieve good results with
these methodologies.

1–10 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 1

Altera Corporation 2–1
June 2004 Preliminary

2. Quartus II Design Flow for
MAX+PLUS II Users

Introduction The feature-rich Quartus® II software enables you to shorten your design
cycles and achieve a reduced time-to-market. With Stratix® II, Stratix GX,
Stratix, and MAX® II family support, the Quartus II software is the most
widely accepted Altera® design software tool today.

This chapter describes a simple process for converting MAX+PLUS II
designs to Quartus II projects, as well as similarities and differences
between the MAX+PLUS II design flow and the Quartus II design flow.
This includes supported device families, GUI comparisons, and the
advantages of the Quartus II software.

There are many features in the Quartus II software to help
MAX+PLUS® II users make an easy transition to the Quartus II software
design environment. These include the ability to choose an option in the
Quartus II software to cause the graphical user interface (GUI) to display
menus, tool bars, and utility windows as they appear in the
MAX+PLUS II software without sacrificing functionality.

Chapter
Overview

This chapter covers the following topics:

■ Typical complex programmable logic device (CPLD) design flow
■ Device support
■ Quartus II GUI overview
■ Setting up the MAX+PLUS II look and feel in the Quartus II software
■ MAX+PLUS II look and feel
■ Compiler tool
■ MAX+PLUS II design conversion
■ Quartus II design flow

qii51002-2.0

2–2 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Typical Design
Flow

Figure 2–1 shows a typical design flow with the Quartus II software.

Figure 2–1. Quartus II Software Design Flow

Design

Quartus II Analysis
& Elaboration

Quartus II
Integrated

Analysis &
Synthesis

Quartus II
Functional
Simulation

Quartus II Fitter
Quartus II

 Gate-Level TIming
Simulation

Timing
 and Area

Requirements
Satisfied?

Configuration/
Programming

files

(.sof/.pof)

Configure/Program

Device

Constraints and

Settings

Constraints and
Settings

Quartus II-

Generated

Functional Netlist

place-and-route
simulation files
(.vo/.vho, .sdo)

Post

Files

Yes

No

Altera Corporation 2–3
June 2004 Preliminary

Device Support

Device Support The Quartus II software supports most of the devices supported in the
MAX+PLUS II software, but it does not support any obsolete devices or
packages. The devices supported by these two software packages are
shown in Table 2–1.

Table 2–1. Device Support Comparison

Device Supported Quartus II MAX+PLUS II

Classic™ v
MAX 3000A v v
MAX 7000S/AE/B v v
MAX 7000 /E v
MAX 9000 v
ACEX® 1K v v
FLEX® 6000 v
FLEX 8000 v
FLEX 10K v (1) v
FLEX 10KA v v
FLEX 10KE v (2) v
Mercury™ v
APEX™ 20K/ APEX II v
Stratix v
Stratix GX v
Stratix II v
Cyclone™ v
MAX II v
Notes to Table 2–1:
(1) PGA packages (G) are not supported in the Quartus II software.
(2) Some packages are not supported.

2–4 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Quartus II GUI
Overview

The Quartus II software provides the following utility windows to assist
in the development of your designs:

■ Project Navigator
■ Node Finder
■ Tcl Console
■ Messages
■ Status
■ Change Manager

Project Navigator

The Hierarchy tab of the Project Navigator window is similar to the
MAX+PLUS II Hierarchy Display and provides more information such as
logic cell, register, and memory bit resource utilization. The Files and
Design Units tabs of the Project Navigator window provide a list of
project files and design units.

Node Finder

The Node Finder window provides the equivalent functionality of the
MAX+PLUS II Search Node Database dialog box and allows you to find
and use any node name stored in the project database.

Tcl Console

The Tcl Console window allows access to the Quartus II Tcl shell from
within the GUI. From the Tcl Console window you can enter Tcl
commands and source Tcl scripts to make assignments, perform
customized timing analysis, view information about devices, or fully
automate and customize the way you run all components of the
Quartus II software. There is no equivalent functionality in the
MAX+PLUS II software.

f For more information on using Tcl with the Quartus II software, see the
Tcl Scripting chapter in Volume 2 of the Quartus II Handbook.

Messages

The Messages window is similar to the Message Processor window in the
MAX+PLUS II software, providing detailed information, warning, and
error messages. It also allows you to locate a node from a message to
various windows in the Quartus II software.

Altera Corporation 2–5
June 2004 Preliminary

Quartus II GUI Overview

Status

The Status window displays information similar to the MAX+PLUS II
Compiler window. Progress and time elapsed are shown for each stage of
the compilation.

Change Manager

The Change Manager provides detailed tracking information on all
design changes made with the Chip Editor.

f For more information on the Engineering Change Manager and the
Chip Editor, see the Design Analysis and Engineering Change Management
with Chip Editor chapter in Volume 3 of the Quartus II Handbook.

The Quartus II software is shown in Figure 2–2.

Figure 2–2. Example of the Quartus II Look and Feel

2–6 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Setting up
MAX+PLUS II
Look and Feel in
Quartus II

You can choose the MAX+PLUS II look and feel by selecting
MAX+PLUS II in the Look & Feel box of the General tab of the
Customize dialog box (Tools menu). Any changes to the look and feel
does not take effect until you restart the Quartus II software.

By default, when you select the MAX+PLUS II look and feel, the
MAX+PLUS II quick menu appears on the left side of the menu bar. You
can turn on or off both Quartus II and MAX+PLUS II quick menus. You
can also change the preferred positions of the two quick menus. These
options are available in the Quick menus box of the General tab of the
Customize dialog box (Tools menu). Click Apply without changing any
of the selections if you want to restore the factory defaults (see
Figure 2–3). Note: This was intended by design. If you simply click on
Apply without changing anything, you will get the factory defaults.

Figure 2–3. Customize Dialog Box -- General Tab

Altera Corporation 2–7
June 2004 Preliminary

MAX+PLUS II Look and Feel

MAX+PLUS II
Look and Feel

The MAX+PLUS II look and feel of the Quartus II software closely
resembles the MAX+PLUS II software. Figures 2–4 and 2–5 compare the
appearance of the MAX+PLUS II look and feel.

Figure 2–4. MAX+PLUS II Software GUI

Figure 2–5. Quartus II Software with MAX+PLUS II Look & Feel

2–8 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

The standard MAX+PLUS II tool bar is also available with the
MAX+PLUS II look and feel (see Figure 2–6).

Figure 2–6. Standard MAX+PLUS II Tool Bar

Compiler Tool The Compiler Tool provides an intuitive MAX+PLUS II-style interface.
You can edit the settings and view result files for the following modules:

■ Analysis and Synthesis
■ Fitter
■ Assembler
■ Timing Analyzer
■ EDA Netlist Writer

To start a compilation using the Compiler Tool, choose Compiler Tool
from either the MAX+PLUS II menu or the Tools menu and click Start in
the Compiler Tool (see Figure 2–7).

f For information about Quartus II modules outside of the Compiler Tool,
see the Command-Line Scripting chapter in Volume 2 of the Quartus II
Handbook.

Figure 2–7. Running a Full Compilation with the Compiler Tool

The Analysis and Synthesis module analyzes your design to build the
design database, optimizes it for the targeted architecture, and performs
technology mapping on the design logic. These are the functions
performed by the Compiler Netlist Extractor, Database Builder, and Logic
Synthesizer in the MAX+PLUS II software. There are no modules in the
Quartus II software similar to the MAX+PLUS II Partitioner module.

Altera Corporation 2–9
June 2004 Preliminary

Compiler Tool

The Fitter module uses the PowerFit™ fitter to fit your design into the
available resources of the targeted device. The Fitter places and routes the
design. The Fitter module is analogous to the Fitter stage of the
MAX+PLUS II software.

The Assembler module creates a device programming image of your
design so that you can configure your device. You can select from the
following types of programming images:

■ Programmer Object File (.pof)
■ SRAM Output File (.sof)
■ Hexadecimal (Intel-Format) Output File (.hexout)
■ Tabular Text File (.ttf)
■ Raw Binary File (.rbf),
■ Jam STAPL Byte Code 2.0 File (.jbc)
■ JEDEC STAPL Format File (.jam).

The Assembler module is analogous with to Assembler stage of the
MAX+PLUS II software.

The EDA Netlist Writer module generates a netlist for simulation with an
EDA simulation tool. The EDA Netlist Writer module is comparable to
the VHDL +Verilog Netlist Writer stage of the MAX+PLUS II software.

You can significantly reduce subsequent compilation times in the
Quartus II software if you turn on Smart Compilation in the
Compilation Process page in the Settings dialog box (Assignments
menu). The Smart Compilation feature skips any compilation stages that
are not required but may use more disk space. This option is similar to the
MAX+PLUS II Smart Recompile command.

2–10 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

MAX+PLUS II
Design
Conversion

The Quartus II software can open and convert MAX+PLUS II designs and
assignments. You can automatically convert an entire MAX+PLUS II
design, or choose which assignments and files to convert.

The Quartus II software is project-based. All the files for your design
(HDL input, simulation vectors, assignments etc.) are associated with a
project file. For more information about creating a new project, see
“Creating a New Project” on page 2–14.

Converting an Existing MAX+PLUS II Design

You can easily convert an existing MAX+PLUS II design for use with the
Quartus II software with the Open Project (File menu) or Convert
MAX+PLUS II Project (File menu) commands in the Quartus II software.

If you use the Convert MAX+PLUS II Project command, browse to the
MAX+PLUS II Assignments and Configuration File (.acf) or top-level
design file. The command generates a Quartus II Project File (.qpf) and a
Quartus II Settings File (.qsf). The Quartus II software stores project and
design assignments in the QSF, equivalent to the ACF in the
MAX+PLUS II software.

You can also open and convert a MAX+PLUS II design with the Open
Project command. In the Open Project dialog box, browse to the ACF or
the top-level design file (see Figure 2–8). Click Open to bring up the
Convert MAX+PLUS II Project dialog box.

1 The Quartus II software can import all MAX+PLUS II-generated
files, but it cannot save files in the MAX+PLUS II format. You
cannot open a Quartus II project in the MAX+PLUS II software,
nor can you convert a Quartus II project to a MAX+PLUS II
project.

Altera Corporation 2–11
June 2004 Preliminary

MAX+PLUS II Design Conversion

Figure 2–8. Convert MAX+PLUS II Design with Open Project Command

The conversion process performs the following actions:

■ Converts the ACF into a QSF (equivalent to importing all
MAX+PLUS II assignments)

■ Creates a Quartus II Project File (.qpf)
■ Displays all errors and warnings in the messages window

1 The Quartus II software can read MAX+PLUS II generated
Graphic Design Files (.gdf) and Simulation Channel Files (.scf)
without converting them. These files are not modified during a
MAX+PLUS II design conversion.

Converting MAX+PLUS II Graphic Design Files

The Quartus II Block Editor (similar to the MAX+PLUS II Graphic Editor)
saves files as Block Design Files (.bdf). You can convert your GDF into a
BDF using one of the following methods:

■ Open the GDF and choose Save As (File menu). In the Save As dialog
box, choose Block Diagram/Schematic File (*.bdf) from the Save as
type list.

■ Run the command line executable quartus_g2b.exe located in the
/<Quartus II installation>/bin directory. For example, to convert the
chiptrip.gdf file to a BDF, type the following command at a
command prompt:

quartus_g2b.exe chip_trip.gdf r

2–12 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Importing MAX+PLUS II Assignments

You can import MAX+PLUS II Assignments into an existing Quartus II
project. Open the project, choose Import Assignments (Assignments
menu), and browse to the ACF. (see Figure 2–9). You can also import QSF
and ESF files.

Figure 2–9. Import Assignments Dialog Box

The Quartus II software accepts most MAX+PLUS II assignments.
However, it is possible for an assignment to be imported incorrectly due
to node name formats.

Altera Corporation 2–13
June 2004 Preliminary

Quartus II Design Flow

The Quartus II and MAX+PLUS II software formats for node names and
bus pin names are different. Make sure that the naming schemes map
properly and do not interfere with design logic. Table 2–2 compares the
differences between the naming conventions used by the Quartus II
software and the MAX+PLUS II software.

When you import MAX+PLUS II assignments that contain node names
that use numbers, such as signal0 or signal1, the Quartus II software
inserts square brackets around the number, resulting in signal[0] or
signal[1]. The square bracket format is legal for signals that are part of
a bus, but creates illegal signal names for signals that are not part of a bus.
If your MAX+PLUS II design contains node names that end in a number
and are not part of a bus, you must edit the QSF to remove the square
brackets from the node name after importing.

The Quartus II software and the MAX+PLUS II software synthesize
nodes differently. The Quartus II software may not recognize valid
MAX+PLUS II node names, or may split MAX+PLUS II nodes into two
different nodes. As a result, any assignments made to synthesized nodes
are not recognized during compilation.

Quartus II
Design Flow

The following sections include information to help you get started using
the Quartus II software. They describe the similarities and differences
between the Quartus II software and the MAX+PLUS II software. The
following sections highlight improvements and benefits in the Quartus II
software.

To assist you through the Quartus II design flow, you can select from the
following wizards to guide you through various settings:

■ New project wizard
■ Timing wizard
■ Compiler settings wizard
■ Simulator settings wizard
■ Software build settings wizard

You can start the New Project Wizard from the File menu and the other
wizards under Wizards (Assignments menu).

Table 2–2. Quartus II & MAX+PLUS II Node & Pin Naming Schemes

Feature Quartus II Format MAX+PLUS II Format

Node name auto_max:auto|q0 |auto_max:auto|q0

Pin name d[0], d[1], d[2] d0, d1, d2

2–14 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Creating a New Project

The Quartus II software provides a wizard to help you create new
projects. Choose New Project Wizard (File menu) to start the New Project
wizard. The New Project Wizard generates the QPF and QSF for your
project.

Design Entry

The Quartus II software supports the following design entry methods:

■ AHDL (.tdf)
■ VHDL (.vhd)
■ Verilog HDL (.v)
■ Block Diagram File (.bdf)
■ EDIF netlist file (.edf)
■ VQM netlist file (.vqm)

The Quartus II software has an advanced integrated synthesis engine that
fully supports the Verilog HDL and VHDL languages and provides
options to control the synthesis process.

f For more information, see the Quartus II Integrated Synthesis chapter in
Volume 1 of the Quartus II Handbook.

To create a new design file, select a design entry type in the Device
Design Files tab of the New dialog box (File menu) and click OK (see
Figure 2–10).

Figure 2–10. New Dialog Box

Altera Corporation 2–15
June 2004 Preliminary

Quartus II Design Flow

1 You can create other files, such as a Vector Waveform File (.vwf)
from the Software Files tab and Other Files tab of the New
dialog box (File menu).

To analyze a netlist file created by an EDA tool, select the synthesis tool
used to generate it in the Tool name list of the Design Entry & Synthesis
page under EDA Tool Settings in the Settings dialog box (Assignments
menu). See (Figure 2–11).

Figure 2–11. Settings Dialog Box

The Quartus II Block Editor has many advantages over the MAX+PLUS II
Graphic Editor. The Block Editor offers an infinite amount of sheet space,
multiple region selections, an enhanced Symbol Editor, and conduits.

The Symbol Editor allows you to change the positions of the ports in a
symbol (see the three images in Figure 2–12). You can reduce wire
congestion around a symbol by changing the positions of the ports.

2–16 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Figure 2–12. Various Port Position for a Symbol

To make changes to a symbol in a BDF, right-click on a symbol in the
Block Editor and select Properties (right button pop-up menu) to bring
up the Symbol Properties dialog box. This dialog box allows you to
change the instance name, add parameters, and specify the line and text
color.

You can use conduits to connect blocks (including pins) in the Block
Editor. Conduits contain signals for the connected objects (see
Figure 2–13). You can determine the connections between various blocks
in the Conduit Properties dialog box by right clicking a conduit and
choosing Properties (right button pop-up menu).

Altera Corporation 2–17
June 2004 Preliminary

Quartus II Design Flow

Figure 2–13. Blocks and Pins Connected with Conduits

Making Assignments

The Quartus II software stores all project and design assignments in a
QSF. The QSF is a collection of assignments stored as Tcl commands and
organized by compilation stage and assignment type. The QSF stores all
assignments, regardless of how they are made: from the Floorplan Editor,
the Assignment Editor, with Tcl, or any other method.

2–18 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Assignment Editor

The Assignment Editor has an intuitive spreadsheet interface designed to
allow you to easily make, change, and manage a large number of
assignments.

The Assignment Editor is composed of the Category Bar, Node Filter Bar,
Information Bar, Edit Bar, and spreadsheet.

To make an assignment, perform the following steps in the Assignment
Editor:

1. Choose Assignment Editor (Assignments menu) to open the
Assignment Editor.

2. Select an assignment category in the Category bar.

3. Select a node name using the Node Finder or type a node name filter
into the Node Filter bar. (This step is optional; it excludes all
assignments unrelated to the node name.)

4. Type the required values into the spreadsheet.

5. Choose Save (File menu).

If you are unsure about the purpose of a cell in the spreadsheet, select the
cell and read the description displayed in the Information bar.

You can use the Edit bar to change the contents of multiple selected cells
simultaneously. Select cells in the spreadsheet and type the value in the
Edit box.

Other advantages of the Assignment Editor include clipboard support in
the spreadsheet and automatic font coloring to identify the status of
assignments.

f For more information, see the Assignment Editor chapter in Volume 1 of
the Quartus II Handbook.

Altera Corporation 2–19
June 2004 Preliminary

Quartus II Design Flow

Timing Assignments

You can use the timing wizard to help you set your timing requirements.
Choose Timing Wizard (Assignments menu) to create global clock and
timing settings. The settings include fMAX, setup times, hold times, clock
to output delay times, and individual absolute or derived clocks.

You can also set timing settings manually with the Timing Requirements
& Options page in the Settings dialog box (Assignments menu).

You can make more complex timing assignments with the Quartus II
software than allowed by the MAX+PLUS II software, including
multicycle and point-to-point assignments using wildcards.

Multicycle timing assignments allow you to identify register-to-register
paths in the design where you expect a delayed latch edge. This
assignment enables accurate timing analysis of your design.

Point-to-point timing assignments allow you to specify the required
delay between two pins or two registers or between a pin and a register.
This assignment helps you optimize and verify your design timing
requirements.

Wildcard characters “?” and “ * “ allow you to apply an assignment to a
large number of nodes with just a few assignments. For example,
Figure 2–14 shows a 4 ns tSU assignment to a bus of registers made in the
Assignment Editor.

Figure 2–14. Single TSU Timing Assignment Applied to All Nodes of a Bus

f For more information, see the Timing Analysis chapter in Volume 3 of the
Quartus II Handbook.

2–20 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Synthesis

Quartus II integrated synthesis offers an alternative to EDA synthesis
tools. Quartus II integrated synthesis fully supports VHDL and Verilog
HDL synthesizable language features, as well as selected compiler
directives.

You can set several synthesis options in the Analysis & Synthesis
Settings page of the Settings dialog box. Similar to MAX+PLUS II
synthesis options, you can select Speed, Area, or Balanced for the
optimization technique.

1 Only the APEX 20K, APEX II, Cyclone, Stratix II, and Stratix
device families support the balanced optimization technique.

To achieve higher performance, you can turn on synthesis netlist
optimizations that are available when targeting certain devices. You can
unmap a netlist created by an EDA tool and remap back to Altera
primitives by turning on Perform WYSIWYG primitive resynthesis.
Additionally, you can move registers across combinational logic to
balance timing without changing design functionality by turning on
Perform gate-level register retiming. Both of these options are accessible
from the Synthesis Netlist Optimizations page under Analysis &
Synthesis Settings in the Settings dialog box (Assignments menu).

f For more information, see the Quartus II Integrated Synthesis chatper in
Volume 1 of the Quartus II Handbook.

Functional Simulation

Similar to the MAX+PLUS II simulator, the Quartus II Simulator Tool
performs both functional and timing simulations.

To open the Simulator Tool, choose Simulator (MAX+PLUS II menu) or
Simulator Tool (Tools menu). Before you perform a functional
simulation, a functional simulation netlist is required. Click Generate
Functional Simulation Netlist in the Simulator Tool window (see
Figure 2–15) or choose Generate Functional Simulation Netlist
(Processing menu).

Altera Corporation 2–21
June 2004 Preliminary

Quartus II Design Flow

Figure 2–15. Simulator Tool Ready for Functional Simulation

1 Generating a functional simulation netlist creates a separate
database to significantly improve the performance of the
simulation.

You can view and modify the simulator options on the Simulator page of
the Settings dialog box or in the Simulator Tool window. You can set the
simulation period and turn Check outputs on or off. You can choose to
display the simulation outputs in the simulation report or in the vector
waveform file (.vwf). To display the simulation results in the simulation
input vector waveform file, turn on Overwrite simulation input file with
simulation results.

When using either the MAX+PLUS II software or the Quartus II software,
you may have to compile additional behavioral models to perform a
simulation with an EDA simulation tool. In the Quartus II software,
behavioral models for library of parameterized modules (LPM) functions
and Altera-specific megafunctions are available in the altera_mf and
220model library files, respectively. The 220model and altera_mf
files can be found in the /<Quartus II Install>/eda/sim_lib directory.

2–22 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

The Quartus II schematic design files (BDF) are not compatible with EDA
simulation tools. To perform an RTL functional simulation of a BDF using
an EDA tool, convert your schematic designs to a VHDL or Verilog HDL
design file. Open the schematic design file and choose Create/Update >
Create HDL Design File for Current File (File menu) to create an HDL
design file that corresponds to your BDF.

You can export a VWF or SCF simulation file as a Verilog HDL or VHDL
testbench file for simulation with an EDA tool. Open your VWF or SCF
file and choose Export (File menu) (see Figure 2–16). Select Verilog or
VHDL testbench from the Save as type list. Turn on Add self-checking
code to file to add additional self-checking code to the testbench.

Figure 2–16. Export Dialog Box

Place & Route

The Quartus II Fitter, known as the PowerFit fitter, is the compiler
module that fits your design into a device. The PowerFit fitter performs
placement and routing.

You can turn on various fitter options located in the Fitter Settings page
in the Settings dialog box (Assignments menu).

High-density device families supported in the Quartus II software, such
as Stratix devices, sometimes require significant fitter effort to process.
Quartus II has several options to reduce the time required to fit a design.

You can control the effort the Quartus II Fitter places by achieving your
timing requirements with two options: Optimize Timing and Optimize
I/O cell register placement for timing options. By default, both options

Altera Corporation 2–23
June 2004 Preliminary

Quartus II Design Flow

are turned on; however, if the length of time needed to compile is more
important than achieving specific timing results, you can turn off these
options.

You can control the amount of effort the Fitter makes by selecting
Standard Fit or Fast Fit. Select Standard Fit in the Fitter Effort box of the
Fitter Settings page in the Settings dialog box (Assignments menu) to
have the Fitter use the highest effort, preserving the performance from
previous compilations. Select Fast Fit for up to 50% faster compilation
times though this may cause a reduction in performance.

You can also select Auto Fit to decrease compilation time by directing the
Fitter to reduce Fitter effort after meeting the design's timing
requirements. The Auto Fit option is available for Stratix II, Stratix GX,
Stratix, and Cyclone devices.

To further reduce compilation times, turn on Limit to one fitting attempt
in the Fitter Settings page in the Settings dialog box (Assignments
menu).

If your design is very close to meeting your timing requirements, you can
control the seed number used in the fitting algorithm by changing the
value in the Seed box of the Fitter Settings page of the Settings dialog
box (Assignments menu). The value of the seed does not control
compilation time or the fitter effort level. It simply provides a different
starting point for the fitter algorithm.

Timing Analysis

You can use the Quartus II Analyzer to analyze more complex clocking
schemes than is possible with the MAX+PLUS II Timing Analyzer.

Launch the Timing Analyzer Tool by choosing Timing Analyzer
(MAX+PLUS II menu) or by choosing Timing Analyzer Tool (Tools
menu) (see Figure 2–17). To start the analysis, click Start in the Timing
Analyzer Tool or choose Start > Start Timing Analyzer (Processing
menu).

2–24 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Figure 2–17. Registered Performance Tab of the Timing Analyzer Tool

lThe Quartus II Timing Analyzer analyzes all clock domains in your
design, including paths that cross clock domains. You can ignore paths
crossing clock domains by creating a Cut Timing Path assignment or by
turning on Cut paths between unrelated clock domains in the Timing
Requirements & Options page in the Settings dialog box (Assignments
menu).

You can view the results by clicking on the available tabs or by clicking
Report in the Timing Analyzer Tool. The Quartus II Timing Analyzer
reports both fMAX and slack. Slack is the margin by which a timing
requirement was met or not met. A positive slack value, displayed in
black, indicates the margin by which a requirement was met. A negative
slack value, displayed in red, indicates the margin by which a
requirement was not met.

To analyze a particular path in more detail, select a path in the Timing
Analyzer Tool and click List Paths. This displays a detailed description of
the path in the System tab of the Messages window (see Figure 2–18).

Altera Corporation 2–25
June 2004 Preliminary

Quartus II Design Flow

Figure 2–18. Messages Window Displaying Detailed Timing Information

f For more information, see the Quartus II Timing Analysis chapter in
Volume 3 of the Quartus II Handbook.

Timing Closure Floorplan

The Quartus II Timing Closure Floorplan is similar to the MAX+PLUS II
Floorplan Editor but has many improvements to help you more
effectively debug and view your design. With its ability to display logic
cell usage, routing congestion, critical paths, and LogicLock regions, the
Timing Closure Floorplan also makes it easy to improve your design
performance.

To view the Timing Closure Floorplan, choose Floorplan Editor
(MAX+PLUS II menu) or Timing Closure Floorplan (Assignments
menu).

The Timing Closure Floorplan Editor provides Package (Top and Bottom)
and Interior Cell views equivalent to the MAX+PLUS II Device and LAB
views. In addition to these views available from the View menu, you can
also choose between the Interior MegaLABs (where applicable), Interior
LABs, and the Field view.

The Interior LABs view hides cell (logic cell, Adaptive Logic Module
[ALM], and macrocells) details and shows LAB information (see
Figure 2–19). You can display the number of cells used in each LAB by
selecting Show Usage Numbers (View menu).

2–26 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Figure 2–19. Interior LAB view of the Timing Closure Floorplan

The Field view is a color-coded, high-level view of your device resources
that hides both cell and LAB details. In the Field view, you can see critical
paths and routing congestion for your design.

The View Critical Paths feature shows a percentage of all critical paths in
your floorplan. You can enable this feature by choosing Show Critical
Paths (View menu). You can control the number of critical paths shown
by modifying the settings in the Critical Paths Settings dialog box (View
menu).

The View Congestion feature displays routing congestion by coloring and
shading logic resources. Darker shading shows greater resource
utilization. This feature assists in identifying locations where there is a
lack of routing resources.

1 You can show lower level details in any view by right-clicking
on a resource and choosing Show Details (right-click pop-up
menu).

f For more information, see the Timing Closure Floorplan chapter in Volume
2 of the Quartus II Handbook.

Timing Simulation

Timing simulation is an important part of the verification process. The
Quartus II software supports native timing simulation and exports
simulation netlists to third party software for design verification.

Quartus II Simulator Tool

The Quartus II Simulator tool provides an easy-to-use integrated
solution. It uses the compiler database to simulate the logical and timing
performance of your design (Figure 2–20). When performing timing
simulation, the simulator uses place-and-route timing information.

Altera Corporation 2–27
June 2004 Preliminary

Quartus II Design Flow

Figure 2–20. Quartus II Simulator Tool

You can use Tcl commands, Vector Waveform Files, text-based Vector
Files, or an existing SCF file as the vector stimuli for your simulation.

The simulation options available are similar to the options available in the
MAX+PLUS II Simulator. You can control the length of the simulation
and the type of checks performed by the Simulator. When the
MAX+PLUS II look and feel is selected, the Overwrite simulation input
file with simulation results option is on by default. If you turn it off, the
simulation results are written to the Report File. To view the Report File,
click Report in the Simulator Tool window.

You can also follow step-by-step instructions to help you set simulation
settings. To start the Simulator Setting Wizard, choose Simulator Settings
Wizard (Assignments menu).

2–28 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

EDA Timing Simulation

The Quartus II software also supports timing simulation with other EDA
simulation software. Performing timing simulation with other EDA
simulation software requires a Quartus II-generated timing netlist file, a
Standard Delay Format Output File, and a device-specific atom file.

Specify your EDA simulation tool by selecting the tool under Tool name
on the EDA Tool Settings > Simulation page of the Settings dialog box
(Assignment menu).

You can generate a timing netlist for the selected EDA simulator tool by
running a full compile or by choosing Start > Start EDA Netlist Writer
(Processing menu). The generated netlist and SDF file are placed into the
/<project directory>/simulation/<EDA simulator tool> directory. The
device-specific atom files are located in the /<Quartus II Install>
/eda/sim_lib/ directory.

Power Estimation

To develop an appropriate power budget and to design the power
supplies, voltage regulators, heat sink, and cooling system, you need an
accurate estimate of the power that your design consumes. You can
estimate power by using the Excel-based power calculator available on
the Altera Web Site at www.altera.com, or in the Quartus II software.

You can use the Excel-based power calculator by entering device resource
and performance information. Or, you can use the Quartus II
software-generated power estimation file and import it into the power
calculator. To generate the power estimation file, choose Generate Power
Estimation File (Project menu). The power calculator spreadsheet
supports the Stratix, Stratix GX, and Cyclone device families.

To report estimated power using the Quartus II software, simulate your
design with an input stimulus file. You can use the Quartus II simulator
or an EDA simulation tool to perform the simulation. The Cyclone,
MAX 7000B, MAX 7000AE, MAX 3000A, Stratix II, Stratix GX, and Stratix
device families are supported by this method for estimating power.

If you use the Quartus II simulator, enter the required information in the
Power Estimation dialog box available from the Simulator page of the
Settings dialog box (Assignments menu). Power estimation results
appear in the simulator summary page of the simulation report after a
timing simulation.

Altera Corporation 2–29
June 2004 Preliminary

Conclusion

f For more information on early power estimation, see the Early Power
Estimation chapter in Volume 3 of the Quartus II Handbook. For more
information about how to use the simulation-based power estimation
feature in Quartus II, see the Simulation-Based Power Estimation chapter in
the Quartus II Handbook.

Programming

The Quartus II Programmer has the same functionality as the
MAX+PLUS II Programmer including programming, verifying,
examining, and blank checking operations. To improve usability the
Quartus II Programmer displays all programming-related information in
one window (see Figure 2–21).

Click Add File or Add Device in the Programmer window to add a file or
device, respectively.

Figure 2–21. Programmer Window

You can save the programmer settings as a Chain Description File (.cdf).
The CDF is an ASCII text file that stores device name, device order, and
programming file name information. To restore the programmer settings,
browse to the CDF in the Open dialog box (File menu).

Conclusion The Quartus II software is the most comprehensive design environment
available for programmable logic designs. Features such as the
MAX+PLUS II look and feel help you make the transition from Altera’s
MAX+PLUS II design software and become more productive with the
Quartus II software. The Quartus II software has all the capabilities and
features of the MAX+PLUS II software and many more to speed up your
design cycle.

2–30 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Quick Menu
Reference

The MAX+PLUS II Quick Menu changes according to the window that is
active (see Figures 2–22 and 2–23). In the following example, the Graphic
Editor window is active.

Figure 2–22. MAX+PLUS II Quick Menu

Altera Corporation 2–31
June 2004 Preliminary

Quick Menu Reference

Figure 2–23. Quartus II Quick Menu

2–32 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Quartus II
Command
Reference for
MAX+PLUS II
Users

NA means either Not Applicable or Not Available.

If the command is not listed, then the command is the same in both tools.

Table 2–3. Quartus II Reference for MAX+PLUS II Users (Part 1 of 11)

MAX+PLUS II Software Quartus II Software

MAX+PLUS II Menu

Hierarchy display View > Utility Windows > Project
Navigator

Graphic Editor Block Editor

Symbol Editor Block Symbol Editor

Text Editor Text Editor

Waveform Editor Waveform Editor

Floorplan Editor Assignments > Timing Closure
Floorplan

Compiler Tools > Compiler Tool

Simulator Tools > Simulator Tool

Timing Analyzer Tools > Timing Analyzer Tool

Programmer Tools > Programmer

Message Processor View > Utility Windows > Messages

File Menu

File > Project > Name
(Ctrl+J)

File > Open Project (Ctrl+J)

File > Project > Set Project
to Current File (Ctrl+Shift+J)

Project > Set as Top-Level Entity
(Ctrl+Shift+J), or
File > New Project Wizard

File > Project > Save &
Check (Ctrl+K)

Processing > Start > Start Analysis &
Synthesis (Ctrl+K) or
Processing > Start > Start Analysis &
Elaboration

File > Project > Save &
Compile (Ctrl+L)

Processing > Start Compilation
(Ctrl+L)

File > Project > Save &
Simulate (Ctrl+Shift+L)

Processing > Start Simulation (Ctrl+I)

Altera Corporation 2–33
June 2004 Preliminary

Quartus II Command Reference for MAX+PLUS II Users

File > Project > Save, Compile &
Simulate (Ctrl+Shift+K)

Processing > Start Compilation & Simulation
(Ctrl+Shift+K)

File > Project > Archive Project > Archive Project

File > Project > <Recent Projects> File > <Recent Projects>

File > Delete File NA

File > Retrieve NA

File > Info (Ctrl+I) File > File Properties

File > Create Default Symbol File > Create/Update > Create Symbol Files
for Current File

File > Edit Symbol (Block Editor) Edit > Edit Selected Symbol

File > Create Default Include File File > Create/Update > Create AHDL Include
Files for Current File

File > Hierarchy Project Top
(Ctrl+T)

Project > Hierarchy > Project Top
(Ctrl+T)

File > Hierarchy > Up (Ctrl+U) Project > Hierarchy > Up (Ctrl+U)

File > Hierarchy > Down (Ctrl+D) Project > Hierarchy > Down (Ctrl+D)

File > Hierarchy > Top NA

File > Hierarchy > Project
Top (Ctrl + T)

Project > Hierarchy > Project Top
(Ctrl+T)

File > MegaWizard Plug-In
Manager

Tools > MegaWizard Plug-In Manager

(Graphic Editor) File > Size NA

(Waveform Editor) File > End Time (Waveform Editor) Edit > End Time

(Waveform Editor) File > Compare (Waveform Editor) View > Compare to
Waveforms in File

(Waveform Editor) File > Import
Vector File

File > Open (Ctrl+O)

(Waveform Editor) File > Create
Table File

File > Save As

(Hierarchy Display) File > Select
Hierarchy

NA

(Hierarchy Display) File > Open
Editor

(Project Navigator) Double-click

(Hierarchy Display) File > Close
Editor

NA

(Hierarchy Display) File > Change
File Type

(Project Navigator) Select file in Files tab and
choose Properties on right click menu

Table 2–3. Quartus II Reference for MAX+PLUS II Users (Part 2 of 11)

MAX+PLUS II Software Quartus II Software

2–34 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

(Hierarchy Display) File > Print
Selected Files

NA

(Programmer) File > Select
Programming File

File > Open

(Programmer) File > Save
Programming Data As

File > Save

(Programmer) File >
Inputs/Outputs

NA

(Programmer) File > Convert
SRAM Object Files

File > Convert Programming Files

(Programmer) File > Archive JTAG
Programming Files

NA

(Programmer) File > Create Jam
or SVF File

File > Create/Update > Create JAM, SVF, or
ISC File

(Message Processor) Select
Messages

NA

(Message Processor) Save
Messages As

(Messages) Save Messages on right click
menu

(Timing Analyzer) Save Analysis
As

Processing > Compilation Report - Save
Current Report on right click menu in Timing
Analyzer sections

(Simulator) Create Table File (Waveform Editor) File > Save As

(Simulator) Execute Command
File

NA

(Simulator) Inputs/Outputs NA

Edit Menu

(Waveform Editor) Edit >
Overwrite

(Waveform Editor) Edit > Value

(Waveform Editor) Edit > Insert (Waveform Editor) Edit > Insert Waveform
Interval

(Waveform Editor) Edit > Align to
Grid (Ctrl+ Y)

NA

(Waveform Editor) Edit > Repeat (Waveform Editor) Edit > Repeat Paste

(Waveform Editor) Edit > Grow or
Shrink

Edit > Grow or Shrink (Ctrl+Alt+G)

(Text Editor) Edit > Insert Page
Break

(Text Editor) Edit > Insert Page Break

(Text Editor) Edit > Increase
Indent (F2)

(Text Editor) Edit > Increase Indent

Table 2–3. Quartus II Reference for MAX+PLUS II Users (Part 3 of 11)

MAX+PLUS II Software Quartus II Software

Altera Corporation 2–35
June 2004 Preliminary

Quartus II Command Reference for MAX+PLUS II Users

(Text Editor) Edit >
Decrease Indent (F3)

(Text Editor) Edit > Decrease Indent

(Graphic Editor) Edit >
Toggle Connection Dot

(Double-Click)

(Block Editor) Edit > Toggle Connection Dot

(Graphic Editor) Edit > Flip
Horizontal

(Block Editor) Edit > Flip Horizontal

(Graphic Editor) Edit > Flip
Vertical

(Block Editor) Edit > Flip Vertical

(Graphic Editor) Edit > Rotate (Block Editor) Edit > Rotate by
Degrees

View Menu

 View > Fit in Window
(Ctrl+W)

 View > Fit in Window (Ctrl+W)

 View > Zoom In
(Ctrl+Space)

 View > Zoom In (Ctrl+Space)

 View > Zoom Out
(Ctrl+Shift+Space)

 View > Zoom Out (Ctrl+Space)

View > Normal Size (Ctrl+1) NA

View > Maximum Size (Ctrl+2) NA

(Hierarchy Display) View > Auto
Fit in Window

NA

(Waveform Editor) View > Time
Range

View > Zoom

Assign Menu

Assign > Device Assignments > Device or

Assignments > Settings (Ctrl+Shift+E)

Assign > Pin/Location/Chip Assignments > Assignment Editor -
Locations category

Assign > Timing Requirements Assignments > Assignment Editor -
Timing category

Assign > Clique Assignments > Assignment Editor -
Cliques category

Assign > Logic Options Assignments > Assignment Editor -
Logic Options category

Assign > Probe NA

Table 2–3. Quartus II Reference for MAX+PLUS II Users (Part 4 of 11)

MAX+PLUS II Software Quartus II Software

2–36 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Assign > Connected Pins Assignments > Assignment Editor -
Simulation category

Assign > Local Routing Assignments > Assignment Editor -
Local Routing category

Assign > Global Project Device
Options

Assignments > Device - Device & Pin
Options

Assign > Global Project
Parameters

Assignments > Settings - Analysis &
Synthesis - Default Parameters

Assign > Global Project Timing
Requirements

Assignments > Timing Settings

Assign > Global Project Logic
Synthesis

Assignments > Settings - Analysis &
Synthesis

Assign > Ignore Project
Assignments

Assignments > Assignment Editor -
disable

Assign > Clear Project
Assignments

Assignments > Remove Assignments

Assign > Back-Annotate Project Assignments > Back-Annotate Assignments

Assign > Convert Obsolete
Assignment Format

NA

Utilities Menu

 Utilities > Find Text (Ctrl+F) Edit > Find (Ctrl+F)

Utilities > Find Node in
Design File (Ctrl+B)

Project > Locate > Locate in Design
File

Utilities > Find Node in
Floorplan

Project > Locate > Locate in Timing
Closure Floorplan

Utilities > Find Clique in Floorplan NA

Utilities > Find Node Source
(Ctrl+Shift+S)

NA

Utilities > Find Node Destination
(Ctrl+Shift+D)

NA

Utilities > Find Next (Ctrl+N) Edit > Find Next (F3)

Utilities > Find Previous
(Ctrl+Shift+N)

NA

Utilities > Find Last Edit NA

Utilities > Search and
Replace (Ctrl+R)

Edit > Replace (Ctrl+H)

Utilities > Timing Analysis Source
(Ctrl+Alt+S)

NA

Table 2–3. Quartus II Reference for MAX+PLUS II Users (Part 5 of 11)

MAX+PLUS II Software Quartus II Software

Altera Corporation 2–37
June 2004 Preliminary

Quartus II Command Reference for MAX+PLUS II Users

Utilities > Timing Analysis
Destination (Ctrl+Alt+D)

NA

Utilities > Timing Analysis Cutoff
(Ctrl+Alt+C)

NA

Utilities > Analyze Timing NA

Utilities > Clear All Timing
Analysis Tags

NA

(Text Editor) Utilities > Go To
(Ctrl+G)

Edit > Go To (Ctrl+G)

(Text Editor) Utilities > Find
Matching Delimiter (Ctrl+M)

(Text Editor) Edit > Find Matching
Delimiter (Ctrl+M)

(Waveform Editor) Utilities > Find
Next Transition (Right Arrow)

(Waveform Editor) View > Next Transition
(Right Arrow)

(Waveform Editor) Utilities > Find
Previous Transition (Left Arrow)

(Waveform Editor) View > Next Transition
(Left Arrow)

Options Menu

Options > User Libraries Assignments > Settings (Ctrl+Shift+E)

Options > Color Palette Tools > Options

Options > License Setup Tools > License Setup

Options > Preferences Tools > Options

(Hierarchy Display) Options >
Orientation

NA

(Hierarchy Display) Options >
Compact Display

NA

(Hierarchy Display) Options >
Show All Hierarchy Branches

(Project Navigator) Expand All on right click
menu

(Hierarchy Display) Options >
Hide All Hierarchy Branches

NA

(Editors) Options > Font Tools > Options

(Editors) Options > Text Size Tools > Options

(Graphic Editor) Options > Line
Style

Edit > Line

(Graphic Editor) Options >
Rubberbanding

Tools > Options

(Graphic Editor) Options > Show
Parameters

View > Show Parameter Assignments

(Graphic Editor) Options > Show
Probes

NA

Table 2–3. Quartus II Reference for MAX+PLUS II Users (Part 6 of 11)

MAX+PLUS II Software Quartus II Software

2–38 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

(Graphic Editor) Options > Show
Pins/Locations/Chips

View > Show Pin and Location
Assignments

(Graphic Editor) Options > Show
Clique, Timing & Local Routing
Assignments

NA

(Graphic Editor) Options > Show
Logic Options

NA

(Graphic Editor) Options >
Show All (Ctrl+Shift+M)

NA

(Graphic Editor) Options > Show
Guidelines (Ctrl+Shift+G)

Tools > Options - Block/Symbol Editor page

(Graphic Editor) Options >
Guideline Spacing

Tools > Options - Block/Symbol Editor page

(Symbol Editors) Options > Snap
to Grid

Tools > Options - Block/Symbol Editor page

(Text Editor) Options > Tab Stops Tools > Options - Text Editor page

(Text Editor) Options > Auto-
Indent

Tools > Options - Text Editor page

(Text Editor) Options > Syntax
Coloring

NA

(Waveform Editor) Options >
Snap to Grid

View > Snap to Grid

(Waveform Editor) Options >
Show Grid (Ctrl+Shift+G)

Tools > Options - Waveform Editor page

(Waveform Editor) Options > Grid
Size

Edit > Grid Size - Waveform Editor page

(Floorplan Editor) Options >
Routing Statistics

NA

(Floorplan Editor) Options >
Show Node Fan-In

View > Routing > Show Fan-In

(Floorplan Editor) Options >
Show Node Fan-Out

View > Routing > Show Fan-Out

(Floorplan Editor) Options >
Show Path

View > Routing > Show Paths between
Nodes

(Floorplan Editor) Options > Show
Moved Nodes in Gray

NA

(Simulator) Options > Breakpoint Processing > Simulation Debug >
Breakpoints

(Simulator) Options > Hardware
Setup

NA

Table 2–3. Quartus II Reference for MAX+PLUS II Users (Part 7 of 11)

MAX+PLUS II Software Quartus II Software

Altera Corporation 2–39
June 2004 Preliminary

Quartus II Command Reference for MAX+PLUS II Users

(Timing Analyzer) Options > Time
Restrictions

Assignments > Timing Settings

(Timing Analyzer) Options >
Auto-Recalculate

NA

(Timing Analyzer) Options > Cell
Width

NA

(Timing Analyzer) Options > Cut
Off I/O Pin Feedback

Assignments > Timing Settings

(Timing Analyzer) Options > Cut
Off Clear & Reset Paths

Assignments > Timing Settings

(Timing Analyzer) Options > Cut
Off Read During Write Paths

Assignments > Timing Settings

(Timing Analyzer) Options > List
Only Longest Path

NA

(Programmer) Options > Sound NA

(Programmer) Options >
Programming Options

Tools > Options - Programmer page

(Programmer) Options > Select
Device

(Programmer) Edit > Change Device

(Programmer) Options >
Hardware Setup

(Programmer) Edit > Hardware Setup

Symbol (Graphic Editor)

Symbol > Enter Symbol
(Double-Click)

(Block Editor) Edit > Insert Symbol
(Double-Click)

Symbol > Update Symbol Edit > Update Symbol or Block

Symbol > Edit Ports/Parameters Edit > Properties

Element (Symbol Editor)

Element > Enter Pinstub Double-click on edge of symbol

Element > Enter Parameters NA

Templates (Text Editor)

Templates (Text Editor) Edit > Insert Template

Table 2–3. Quartus II Reference for MAX+PLUS II Users (Part 8 of 11)

MAX+PLUS II Software Quartus II Software

2–40 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Node (Waveform Editor)

Node > Insert Node
(Double-Click)

Edit > Insert Node or Bus (Double-Click)

Node > Enter Nodes from SNF Edit > Insert Node - click on Node Finder…

Node > Edit Node Double-click

Node > Enter Group Edit > Group

Node > Ungroup Edit > Ungroup

Node > Sort Names Edit > Sort

Node > Enter Separator NA

Layout (Floorplan Editor)

Layout > Full Screen View > Full Screen (Ctrl+Alt+Space)

Layout > Report File Equation
Viewer

View > Equations

Layout > Device View (Double-
Click)

View > Package Top or

View > Package Bottom

Layout > LAB View (Double-Click) View > Interior Labs

Layout > Current
Assignments Floorplan

View > Assignments > Show User
Assignments

Layout > Last Compilation
Floorplan

View > Assignments > Show Fitter
Assignments

Processing (Compiler)

Processing > Design Doctor Processing > Start > Start Design
Assistant

Processing > Design Doctor
Settings

Assignments > Settings - Design
Assistant

Processing > Functional SNF
Extractor

Processing > Generate Functional
Simulation Netlist

Processing > Timing SNF
Extractor

Processing > Start Analysis &
Synthesis

Processing > Optimize Timing
SNF

NA

Processing > Linked SNF
Extractor

NA

Processing > Fitter Settings Assignments > Settings - Fitter
Settings

Table 2–3. Quartus II Reference for MAX+PLUS II Users (Part 9 of 11)

MAX+PLUS II Software Quartus II Software

Altera Corporation 2–41
June 2004 Preliminary

Quartus II Command Reference for MAX+PLUS II Users

Processing > Report File Settings Assignments > Settings

Processing > Generate AHDL
TDO File

NA

Processing > Smart Recompile Assignments > Settings - Compilation
Process

Processing > Total Recompile Assignments > Settings - Compilation
Process

Processing > Preserve All Node
Name Synonyms

Assignments > Settings - Compilation
Process

Interfaces (Compiler) Assignments > EDA Tool Settings

Initialize (Simulator)

Initialize > Initialize Nodes/Groups NA

Initialize > Initialize Memory NA

Initialize > Save Initialization As NA

Initialize > Restore Initialization NA

Initialize > Reset to Initial SNF
Values

NA

Node (Timing Analyzer)

Node > Timing Analysis Source
(Ctrl+Alt+S)

NA

Node > Timing Analysis
Destination (Ctrl+Alt+D)

NA

Node > Timing Analysis Cutoff
(Ctrl+Alt+C)

NA

Analysis (Timing Analyzer)

Analysis > Delay Matrix (Timing Analyzer Tool) Delay tab

Analysis > Setup/Hold Matrix NA

Analysis > Registered
Performance

(Timing Analyzer Tool) Registered
Performance tab

JTAG (Programmer)

JTAG > Multi-Device JTAG Chain (Programmer) Mode: JTAG

JTAG > Multi-Device JTAG Chain
Setup

(Programmer) Window

Table 2–3. Quartus II Reference for MAX+PLUS II Users (Part 10 of 11)

MAX+PLUS II Software Quartus II Software

2–42 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

JTAG > Save JCF File > Save

JTAG > Restore JCF File > Open

JTAG > Initiate Configuration from
Configuration Device

Tools > Options - Programmer page

FLEX (Programmer)

FLEX > Multi-Device FLEX Chain (Programmer) Mode: Passive Serial

FLEX > Multi-Device FLEX Chain
Setup

(Programmer) Window

FLEX > Save FCF File > Save

FLEX > Restore FCF File > Open

Table 2–3. Quartus II Reference for MAX+PLUS II Users (Part 11 of 11)

MAX+PLUS II Software Quartus II Software

Altera Corporation 3–1
June 2004 Preliminary

3. System Design Using
SOPC Builder

Introduction The Altera® SOPC Builder system development tool provides a powerful
platform for creating memory-mapped systems based on processors,
peripherals, and memories that are internal or external to the FPGA. You
can use SOPC Builder to define and implement a complete system in a
fraction of the time required using traditional, manual system-on-a-chip
(SoC) methods. SOPC Builder is included in Altera’s Quartus® II
software, giving Quartus II users immediate access to this development
tool.

SOPC Builder automates the task of integrating the address-based
read/write interfaces to hardware design modules. By integrating
modules automatically, SOPC Builder dramatically simplifies the task of
creating high-performance system-on-a-programmable-chip (SOPC)
designs. In traditional SoC design, you must manually connect all of the
system components. Using SOPC Builder, you need only specify the
peripherals; SOPC Builder generates the interconnect logic automatically,
including address decoding, data-path multiplexing, wait-state
generation, interrupt controller, and data-width matching.

The outputs of SOPC Builder are hardware design language (HDL) files
that define all components of the system, and a top-level HDL design file
called the system module that ties all these components together.
Figure 3–1 on page 3–2 shows an example of a multi-master system
module connecting multiple master and slave peripherals. SOPC Builder
generates the Avalon™ switch fabric that contains logic to manage the
connectivity of all modules in the system.

qii51003-2.0

3–2 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Figure 3–1. Example of a System Module Generated by SOPC Builder

SOPC Builder Peripherals

Altera and other developers provide SOPC Builder components that
range from simple blocks of fixed logic, to complex, parameterized, and
dynamically-generated subsystems. Available SOPC Builder hardware
components include:

■ Microprocessors
■ Microcontroller peripherals
■ Timers
■ Serial communication interfaces, such as UART and serial peripheral

interface (SPI)
■ General-purpose I/O
■ Digital signal processing (DSP) functions
■ Communications peripherals
■ Interfaces to off-chip devices

● Memory controllers
● Buses and bridges
● Application-specific standard products (ASSPs)
● ASICs

You can use the SOPC Builder to connect any block of logic that uses the
Avalon interface or the AMBA™ advanced high-performance bus (AHB)
interface. Most SOPC Builder peripherals use the Avalon interface.

Arbiter

Width-Match

Arbiter

Width-Match

Arbiter

Width-Match

 Avalon Switch Fabric

Address
Decoder

Interrupt
Controller

Data
Multiplexing

Wait-State
Generation

Arbiter

Width-Match

Arbiter

Width-Match

Ethernet
(Bus Master)

32-Bit

Processor
(Bus Master)

32-Bit

Slave 2
32-Bit

Slave 1
8-Bit

Slave 3
16-Bit

Slave 4
32-Bit

Slave 5
64-Bit

Altera Corporation 3–3
June 2004 Preliminary

Introduction

Check the Altera web site at www.altera.com for up-to-date information
about available SOPC Builder Ready components.

SOPC Builder Ready Functions

Altera awards the SOPC Builder Ready certification to intellectual
property (IP) design functions that have plug–and–play integration with
SOPC Builder. These functions may be accompanied by software drivers,
low-level routines, or other software design files.

Altera offers a free “test drive” of IP functions through the OpenCore®

and OpenCore Plus evaluation features. You can verify the functionality
quickly and easily of a IP function both in simulation and in hardware, as
well as evaluate the size and performance before making the purchase
decision.

f You can download OpenCore and OpenCore Plus evaluations of Altera
IP functions directly from www.altera.com/IPMegastore. For IP
functions provided by third-party vendors, contact the vendor directly
to obtain an OpenCore evaluation.

User-Defined Peripherals

SOPC Builder provides a simple method for you to develop and connect
your own modules:

1. You create a block of logic with an Avalon or AHB interface in either
Verilog HDL or VHDL.

With the Avalon interface, user-defined peripherals need to adhere
only to a simple interface based on address, data, read-enable, and
write-enable signals.

2. Use the Interface to User Logic Wizard to import your HDL files
into SOPC Builder.

You use the wizard to map the input and output signal names to
Avalon signal types, specify the timing requirements, and specify
simulation files.

3. Instantiate the custom module in the same manner as for other
SOPC Builder Ready components.

User-defined peripherals can be instantiated multiple times in a
single design, and can be used in other system designs.

http://www.altera.com
http://www.altera.com/IPMegastore
http://www.altera.com/IPMegastore

3–4 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Embedded Software Applications

You can specify and integrate software components for
microprocessor-based systems. For each processor included in the
system, SOPC Builder generates the following applications
software-specific information:

■ Software components
■ Header files (C and assembly)
■ Generic C drivers
■ Operating system (OS) kernels
■ Middleware libraries

These files form a custom software development kit (SDK) for each
processor. For more details, see “SDK Option” on page 3–10.

Avalon Switch Fabric

The Avalon switch fabric is the glue that binds SOPC Builder-generated
systems together. The Avalon switch fabric is the collection of control,
data and address signals, and arbitration logic connecting master and
slave peripherals. The Avalon switch fabric is implemented as a
configurable architecture that matches the interface ports, logical
behavior, and signal sequencing of the specific peripherals connected to
the system.

The Avalon switch fabric is designed for both simplicity and
performance. The Avalon signal types are straightforward, and you can
design peripherals generically without knowing about the other
peripherals connected to the system. The Avalon switch fabric
implements a point-to-point connection between all master-slave pairs
that require connection.

The multi-master Avalon switch fabric maximizes system throughput by
allowing all master peripherals to transfer data in parallel. The Avalon
switch fabric also supports pipelined transfers, so that master-slave pairs
achieve the maximum throughput possible. SOPC Builder automatically
implements slave-side arbitration whenever necessary. With slave-side
arbitration, master transfers stall only when multiple master ports
attempt to access the same slave port at the same time.

Automatic Generation

SOPC Builder generates the Avalon switch fabric to connect master and
slave peripherals. Use the SOPC Builder to define the connectivity
between peripherals. With this information, SOPC Builder automatically
creates and connects the HDL modules.

Altera Corporation 3–5
June 2004 Preliminary

Introduction

Because of the SOPC Builder interface, your view of the Avalon switch
fabric is usually limited to the specific ports that relate to the connection
of custom Avalon peripherals. For SOPC Builder Ready IP functions,
SOPC Builder automatically connects the Avalon ports correctly, making
it unnecessary for you to consider the interfaces for these IP functions.

Function

The Avalon switch fabric provides the following services to connected
peripherals:

■ Data-Path Multiplexing—Multiplexers in the Avalon switch fabric
transfer data from the selected slave peripheral to the appropriate
master peripheral.

■ Address Decoding—Address decoding logic produces chip-select
signals for each peripheral. This simplifies peripheral design,
because individual peripherals do not need to decode the address
lines to generate chip-select signals.

■ Pipelined Transfer Capabilities—Latency-aware peripherals are
capable of initiating multiple read transfers in succession without
waiting for the first transfer to complete, also known as pipelining
data transfers. Transfers with latency allow master-slave pairs to
achieve maximum throughput performance, even though the first
transfer may require several cycles of latency to present valid data.

■ Wait-State Generation—Wait-state generation extends transfers by
one or more clock cycles, for the benefit of peripherals with special
synchronization needs. Wait states can be generated to stall a master
peripheral in cases when the target peripheral cannot respond in a
single clock cycle. Wait states are also generated in cases when
read-enable and write-enable signals have setup or hold time
requirements.

■ Dynamic-Bus Sizing—Dynamic-bus sizing hides the details of
interfacing narrow Avalon slave ports to a wider Avalon master port,
and vice versa. For example, in the case of a 32-bit master read
transfer from a 16-bit memory, dynamic-bus sizing automatically
executes two slave read transfers to fetch 32 bits of data from the
16-bit memory device. This reduces the logic and/or software
complexity in master peripherals, because the master port does not
need to be aware of the physical nature of the slave port.

■ Interrupt-Priority Assignment—When one or more slave ports
generate interrupts, the Avalon switch fabric passes the interrupts to
appropriate master peripherals.

3–6 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

System Generation

After you add all peripherals and specify all necessary system
parameters, SOPC Builder is ready to generate the system. During system
generation, SOPC Builder creates the following items:

■ The HDL files for the top-level system module and each component
in the system

■ A Block Symbol File (.bsf) representation of the top-level system
module

■ The SDK for application software development
■ ModelSim® simulation project files
■ A Tcl script that sets up all of the files needed for compilation in the

Quartus II software

After you generate the system module, it can be compiled directly by the
Quartus II software, or included in a larger design.

Simulation Model & Testbench

During system generation, SOPC Builder optionally can output a
simulation environment that accelerates the system simulation effort.
SOPC Builder generates both a simulation model and a testbench for the
entire system. You can simulate your custom systems with minimal effort,
immediately after generating the system with SOPC Builder. For more
information, see the “Simulation Option” on page 3–12.

Using SOPC
Builder

Launch SOPC Builder in the Quartus II software as follows:

1. Open a project in the Quartus II software.

2. Choose SOPC Builder (Tools menu) in the Quartus II software to
run SOPC Builder.

SOPC Builder provides an easy-to-use, table-oriented user interface for
defining systems. SOPC Builder contains two primary pages, System
Contents page and System Generation page.

In addition, certain peripherals may add system dependency pages that
allow you to specify refinements and relationships with other peripherals
in the system.

Altera Corporation 3–7
June 2004 Preliminary

Using SOPC Builder

System Contents Page

You select components and define the system on the System
Components page. The page is split into two sections: the module pool
and the module table. The module pool lists all the available components,
while the module table displays the components added to the current
system. Figure 3–2 shows an example of the System Contents page.

Figure 3–2. Systems Contents Page

Module Pool

The module pool shows the available library of components organized
according to category. Each component appears with a colored dot next
to its name. The colors of the dots have the following meanings:

■ Green dot—Indicates fully licensed components.
■ Yellow dot—Indicates that a component is available for system design

evaluation in some limited form, typically subject to a hard time out
or reduced functionality.

■ White dot—Indicates SOPC Builder Ready components available
from Altera or partner vendors that are not currently installed on the
PC. Evaluation versions of these components can be downloaded
from the web for free.

Module Pool

Device Family Setting System Clock Frequency Setting

Module
Pool Filter

Messages

Module Table

3–8 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

You can use the module pool to filter the display for available
components, installed components, components available on the web, or
components with updates available on the web. In addition, if you have
an Internet connection, the module pool is updated to show new
components from Altera and partner vendors as they become available.

Module Table

The module table lists components that are included in the current
system. Additionally, the module table describes the following elements:

■ Connectivity between master and slave ports
■ Addresses for each slave port
■ Interrupt controller (IRQ) assignments for each slave port
■ Arbitration priorities for slave ports shared by multiple-master ports

If Show Master Connections (View menu) is turned on, the left side of
the module table displays the connectivity between master ports and
slave ports. You can selectively connect any master port to any slave port.
Whenever two or more master ports share (i.e., have access to) the same
slave port, SOPC Builder automatically inserts an arbiter to grant access
to the slave when simultaneous requests occur.

To view arbitration priorities, choose Show Arbitration Priorities (View
menu).

You can connect any master port to any slave port if they use the same
interface protocol. If they use different interface protocols, they must
communicate through a bridge component, such as the AHB–to–Avalon
bridge provided with SOPC Builder.

f For more information on master/slave connections and arbitration
priorities, see Application Note 184: Simultaneous Multi-Mastering with the
Avalon Bus.

Altera Corporation 3–9
June 2004 Preliminary

Using SOPC Builder

Additional Settings

The System Contents page includes additional options as shown in
Table 3–1.

Note to Table 3–1:
(1) The Quartus II software does not detect this setting automatically. The setting must also be specified in the

Quartus II software.

System Generation Page

The System Generation page includes settings to control the generation
process for the hardware design files, simulation model, and the SDK.
Figure 3–3 on page 3–10 shows the System Generation page.

Table 3–1. System Contents Page Options

Option Description

Target Select one of the listed Development boards. The Target Device Family and System
Clock Frequency fields are automatically populated. Select the Unspecified Board to
select the Target Device Family and to set the System Clock Frequency manually.

Target Device Family Select the target FPGA device family from the Target Device Family list. SOPC
Builder takes advantage of the architectural features of a specified device family
when generating the system module. (1)

System Clock Frequency The System Clock Frequency setting specifies the master clock frequency that drives
the system module. Many peripherals use the system clock frequency to generate
clock dividers, baud rate generators, etc. SOPC Builder’s built-in testbench
generator also uses the setting to simulate a clock of the requested frequency. (1)

3–10 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Figure 3–3. System Generation Page Note (1)

Note to Figure 3–3:
(1) Some SOPC Builder Ready processor components may modify the look of this page to allow the user better access

to the processors software tool chain. Please refer to the processors documentation for more information.

SDK Option

When the SDK option is turned on, SOPC Builder creates a custom SDK
for each CPU in the system. This SDK contains software files (drivers,
libraries, and utilities) for any system components that provide
software-support files.

You can build software applications for Excalibur™ devices as part of the
generation process. The SDK files are arranged into the following
directories:

■ inc—This directory contains header files. These files include the
definition for the memory map, register declarations for included
peripherals, and macros that can be used in creating embedded
software applications.

■ lib—This directory contains software library files. During system
generation, processor components can include commands to have
SOPC Builder compile the libraries automatically.

Enable SDK

Enable HDL

System Generation
Progress Message

SOPC Builder
Messages

Enable ModelSim
Simulation File
Generation

Run the ModelSim
Software

Altera Corporation 3–11
June 2004 Preliminary

Using SOPC Builder

■ src—This directory provides a location for application source-code
development. Example source code files associated with peripherals
may also be copied into this directory during system generation.

You should save any file you have edited with a unique filename to
prevent the file from being overwritten in a subsequent system
generation. Altera recommends that your source code be stored in one of
the following locations:

■ src directory
■ A subdirectory of the src directory
■ A directory on the same level as the src directory in the SDK

You should provide all the SDK files to the software engineers developing
application code for the system every time you generate or update the
system hardware module.

1 Certain components, such as the Nios® II embedded processor,
may modify the contents on the page to provide better access to
the software development environment for the processor. Please
refer to the CPU component documentation for more
information.

HDL Option

To generate HDL files that describe the system, turn on the HDL option.
The files are Verilog HDL or VHDL, depending on which language you
specify when starting SOPC Builder. The Verilog HDL files contain the
following components:

■ An instance of every component in the system
■ The Avalon switch fabric tailored to connect all components in the

system. See “Avalon Switch Fabric ” on page 3–4 for more details.
■ A simulation model and a simulation testbench, depending on the

Simulation option. See the “Simulation Option” section for more
details.

3–12 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Simulation Option

To generate a simulation model and a test bench to simulate a custom
model, turn on the Simulation option. The testbench is tailored to the
structure of system module. The testbench provides the following
functionality:

■ Instantiates the system module
■ Drives clock and reset inputs with default behaviors
■ Instantiates and connects the simulation models provided for any

components external to the system module (e.g., memory models)

There are custom simulation files associated with each peripheral. SOPC
Builder copies these files into a simulation directory during system
generation. The simulation directory is separate from the directory for
synthesizable HDL. The system provides files for each peripheral that
address the needs of both environments.

Simulating with ModelSim
SOPC Builder generates a ModelSim project directory that includes the
following files:

■ Simulation data files for all memory components that have
initialized contents

■ A setup_sim.do file that contains setup information and aliases
customized for simulating the system module

■ A wave_presets.do file that displays an initial set of bus interface
waveforms

■ A ModelSim Project File (.mpf) for the current system

Run the ModelSim software in SOPC Builder by clicking Run ModelSim.
If the ModelSim software is not in your search path, specify the location
in the SOPC Builder Setup dialog box (File menu).

Simulating with Other Simulators
You can use the SOPC Builder-generated simulation files with simulation
software other than ModelSim. However, you cannot use the files
generated for ModelSim (.tcl, .do, .mpf, etc.) directly. You can inspect
these files and use them as a basis for setting up similar capabilities in
other simulation tools.

System Dependency Pages

Certain components, such as a CPU like the Nios II embedded processor,
display an additional page called a system dependency page in SOPC
Builder. System dependency pages display additional parameters or
associations to be specified for a component. For example, you can

Altera Corporation 3–13
June 2004 Preliminary

Further Information

specify the relationship between a CPU and memory components to
indicate which memory is to be used as the program memory and which
is to be used as data memory. For components that use system
dependency pages, a separate system dependency page is displayed for
each instance of the component added to a system.

Generating a System

After you have specified the component and selected the generation
options, click the Generate button to cause SOPC Builder to generate the
system. This button is available from any page in the SOPC Builder user
interface.

As the generation process proceeds, SOPC Builder displays messages and
information in the system generation progress messages box. SOPC
Builder displays the message “Generation Complete” when it is finished,
and places a log file in the root directory of the project.

Further
Information

For more information on using SOPC Builder, see the following
documents:

■ Avalon Specification—The Avalon interface specification is useful for
developers creating custom peripherals. It defines terms and
concepts of SOPC designs based on the Avalon interface used for
connecting on-chip processors and peripherals into a
system-on-a-programmable chip. Avalon interface signal functions
and timing are defined.

■ Application Note 184: Simultaneous Multi-Mastering with the Avalon Bus
—This application note describes the simultaneous multi-master
Avalon switch fabric with an explanation about how it differs from
traditional arbitration schemes. It includes an in-depth explanation
of bus arbitration priorities and most commonly used configurations
for Nios embedded system design.

■ Application Note 333: Developing Peripherals for SOPC Builder—This
application note describes the process for developing Avalon
peripherals that can be integrated into SOPC Builder-generated
systems. Topics include how to define an Avalon interface for a
custom peripheral, how to import HDL files into SOPC Builder, and
how to provide software drivers for the peripheral. Example designs
are provided for hands-on experience importing user designs into
SOPC Builder.

3–14 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

■ Application Note 320: OpenCore Plus Evaluation of Megafunctions—
Altera MegaCore® functions and AMPP megafunctions are reusable
blocks of intellectual property that you can customize and use in a
design. With Altera’s free OpenCore® Plus evaluation feature you
can simulate the behavior of a megafunction, verify functionality,
and generate a time-limited device to verify your design.

■ Application Note 323: Using SignalTap II Logic Analyzer for Embedded
Designs using SOPC Builder—SignalTap® II is a system-level
debugging tool that captures and displays real-time signals in a
SOPC design. By using a SignalTap II Embedded Logic Analyzer
(ELA) in SOPC Builder generated systems, you can observe the
behavior of peripherals in response to software execution.

■ Simultaneous Multi-Mastering with the Nios Processor Tutorial—This
tutorial describes how to optimize an embedded system’s
performance using the simultaneous multi-master bus architecture.
It describes the features in SOPC Builder that easily allow the
customization of a system architecture to define a new architecture
to improve the example design’s performance.

■ Using SOPC Builder with Excalibur Devices Tutorial—This tutorial
introduces the process of using SOPC Builder to generate systems
with Excalibur devices. It shows how to use SOPC Builder and the
Quartus II software to create and process Excalibur device system
modules to interfaces with components provided on the Excalibur
development board.

■ SOPC Builder PTF File Reference Manual—This reference manual is for
IP developers creating library components for SOPC Builder. This
manual contains reference material on the internal workings of the
peripheral template file (.ptf) structure and the generation phases of
SOPC Builder. This manual is recommended for advanced system
designers with basic familiarity of SOPC Builder.

Altera Corporation 4–1
June 2004 Preliminary

4. Quartus II Support for
HardCopy Devices

Introduction The Altera® HardCopy® devices provide a comprehensive alternative to
ASICs. HardCopy structured ASICs offer a complete solution from
prototype to high-volume production, and maintain the powerful
features and high-performance architecture of their equivalent FPGAs
with the programmability removed. You can use the Quartus® II design
software to design HardCopy devices in a manner similar to the
traditional ASIC design flow or you can prototype with Altera's high
density Stratix®, APEX™ 20KC, and APEX 20KE FPGAs before migrating
to the corresponding HardCopy device for high-volume production.

HardCopy structured ASICs provide the following key benefits:

■ Improves performance, on the average, 50% over the corresponding
FPGA

■ Lowers power consumption, on the average, 40% over the
corresponding FPGA

■ Preserves the FPGA architecture and features, and minimizes risk
■ Guarantees first-silicon success through a proven, seamless

migration process from the FPGA to the equivalent HardCopy
device

■ Offers a quick turnaround of the FPGA design to a structured ASIC
device—samples are available in less than eight weeks

Altera’s Quartus II software has built-in support for HardCopy Stratix
devices. The HardCopy design flow in Quartus II software offers the
following advantages:

■ Unified design flow from prototype to production
■ Performance and power estimation of the HardCopy Stratix device

allows you to design systems for maximum throughput
■ Easy-to-use and inexpensive design tools from a single vendor
■ An integrated design methodology that enables system-on-a-chip

designs

This chapter discusses the following areas:

■ How to design HardCopy structured ASICs using the Quartus II
software

■ An explanation of what the HARDCOPY_FPGA_PROTOTYPE
devices are and how to target designs to these devices

■ Performance and power estimation of HardCopy Stratix devices
■ How to generate the HardCopy design database

qii51004-2.0

4–2 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Features The Quartus II software version 4.1 contains several powerful features that
facilitate design of HardCopy devices:

■ HARDCOPY_FPGA_PROTOTYPE Devices
These are Stratix FPGA devices with features identical to HardCopy
Stratix devices. You can use these FPGA devices to prototype your
designs and evaluate the functionality in silicon.

■ HardCopy Timing Optimization Wizard
Using this feature, you can target your designs to HardCopy Stratix
devices, providing an estimate of the design’s performance in a
HardCopy Stratix device.

■ HardCopy Stratix Floorplans and Timing Models
The Quartus II software supports post-migration HardCopy Stratix
device floorplans and timing models and facilitates design
optimization for performance and power consumption.

■ Placement Constraints
Location and LogicLock® constraints are supported at the HardCopy
floorplan level to improve overall performance.

■ Improved Timing Estimation
The Quartus II software version 4.1 determines routing and associated
buffer insertion for the design, and provides the Timing Analyzer
with more accurate information on the delays than was possible in
previous versions of the Quartus II software. The buffer insertion
information is exported in the Quartus Archive (.qar) file, so the
back-end design team can insert the buffers correctly.

■ Design Assistant
This feature checks your design for compliance with HardCopy
design rules and establishes a seamless migration path in the quickest
time.

■ HardCopy Files Wizard
This wizard enables you to deliver to Altera the design database and
all the deliverables required for migration with a “single click.”

■ HardCopy Stratix Power Calculator
This calculator is launched from the Quartus II software to estimate
power consumed by the HardCopy Stratix devices.

Altera Corporation 4–3
June 2004 Preliminary

HARDCOPY_FPGA_PROTOTYPE, HardCopy Stratix, and Stratix Devices

HARDCOPY_FPGA
_PROTOTYPE,
HardCopy Stratix,
and Stratix
Devices

You can use the HARDCOPY_FPGA_PROTOTYPE devices available in
Quartus II software to quickly target your designs to the actual resources
and package options available in the equivalent post-migration
HardCopy Stratix device. You can also use the equivalent Stratix FPGAs
to verify the design's functionality in-system, then generate the design
database necessary to migrate to a HardCopy device. This process
ensures the seamless migration of the design from a prototyping device
to a high-volume production device. It also minimizes risk, assures
samples in about eight weeks, and guarantees first-silicon success.

Table 4–1 compares HARDCOPY_FPGA_PROTOTYPE devices, Stratix
devices, and HardCopy Stratix devices.

Table 4–2 lists the resources available in each of the HardCopy Stratix
devices.

Table 4–1. Qualitative Comparison of HARDCOPY_FPGA_PROTOTYPE with Stratix and HardCopy Stratix
Devices

Stratix Device HARDCOPY_FPGA_
PROTOTYPE Device HardCopy Stratix Device

FPGA Virtual FPGA Structured ASIC

(Reference) (1) Architecture identical to Stratix
FPGA

Architecture identical to Stratix
FPGA

(Reference) (1) Resources identical to HardCopy
Stratix device

M-RAM resources different than
Stratix FPGA in some devices

Ordered through Altera Part
Number

Cannot be ordered Ordered by Altera part number

Note to Table 4–1:
(1) Reference indicates that the HARDCOPY_FPGA_PROTOTYPE and HardCopy Stratix devices are compared with

the Stratix device for this attribute.

Table 4–2. HardCopy Stratix Device Physical Resources (Part 1 of 2)

Device LEs

Approx.
ASIC

Equivalent
gates
(K)(1)

M512
Blocks

M4K
Blocks

M-RAM
Blocks

DSP
Blocks PLLs Max.

User I/Os

HC1S25F672 25,660 250 224 138 2 10 6 473

HC1S30F780 32,470 325 295 171 2 (2) 12 6 597

HC1S40F780 41,250 410 384 183 2 (2) 14 6 615

4–4 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

For a given density, the number of available M-RAM blocks in HardCopy
Stratix devices is identical with the corresponding
HARDCOPY_FPGA_PROTOTYPE devices, but may be different from
the corresponding Stratix devices.

Maintaining the identical resources between
HARDCOPY_FPGA_PROTOTYPE and HardCopy Stratix devices
facilitates seamless migration from the FPGA to the structured ASIC
device.

The HARDCOPY_FPGA_PROTOTYPE device aids in designing the
structured ASIC, and provides a path to having an FPGA-proven design
prior to migration. The physical entity for the
HARDCOPY_FPGA_PROTOTYPE device is the equivalent Stratix
FPGA. Designs targeting HARDCOPY_FPGA_PROTOTYPE in the
Quartus II software configure the equivalent Stratix FPGAs with
HardCopy-structured ASIC resources. Therefore, it is normal to find
unused resources in the Stratix FPGAs. The three types of devices are tied
together with the same netlist, thus a single SRAM Object File (.sof) can
be used to achieve the various goals at each stage.

f For more information on HardCopy Stratix devices, see the HardCopy
Stratix Device Family Data Sheet section of the HardCopy Device Handbook.

1 HARDCOPY_FPGA_PROTOTYPE devices are not available for
the APEX 20K family.

HardCopy
Design Flow

Figure 4–1 shows a HardCopy design flow diagram. The design steps are
explained in detail in the following sections of this chapter.

f For a detailed description of the HardCopy Timing Optimization wizard
and HardCopy Files wizard, see “HardCopy Timing Optimization
Wizard Summary Page” on page 4–9 and “Generating the HardCopy
Design Database” on page 4–16.

HC1S60F1020 57,120 570 574 292 6 18 12 773

HC1S80F1020 79,040 800 767 364 6 (2) 22 12 773

Note to Table 4–2:
(1) Does not include DSP blocks, on-chip RAM, or PLLs.
(2) The M-RAM resources for these HardCopy devices differ from the corresponding Stratix FPGA.

Table 4–2. HardCopy Stratix Device Physical Resources (Part 2 of 2)

Device LEs

Approx.
ASIC

Equivalent
gates
(K)(1)

M512
Blocks

M4K
Blocks

M-RAM
Blocks

DSP
Blocks PLLs Max.

User I/Os

Altera Corporation 4–5
June 2004 Preliminary

HardCopy Design Flow

Figure 4–1. HardCopy Design Flow Diagram

Notes for Figure 4–1:
(1) Migrate Only: The displayed flow is completed manually.
(2) Two Step Process: Migration and Compilation are done automatically (shaded area).
(3) One Step Process: Full HardCopy Compilation. The entire process is completed automatically (shaded area).

Start Quartus HardCopy Flow

FPGA Family
Stratix APEX

Select Stratix
HARDCOPY_FPGA

_PROTOTYPE
 device

Compile

Mirgrate the
Compiled Project (1)

Close Quartus
FPGA Project

Open Quartus
HardCopy Project

Compile to
HardCopy Stratix device

(Actual HardCopy
Floorplan)

Open Quartus
HardCopy Project

Close Quartus
FPGA Project

Migrate the
Compiled Project

Two Step Process (2)

One Step Process (3)

Compile

Mirgrate the
Compiled Project

Close Quartus
FPGA Project

Open Quartus
HardCopy Project

Compile to
HardCopy

Stratix device

Placement
Info for

HardCopy

Run HardCopy
Files Wizard

(.qar file for delivery
to Altera)

Compile

Select HardCopy
APEX 20KC or

APEX 20KE
Device

Compile to
HardCopy

Stratix device

4–6 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

The Design Flow Steps of the One Step Process

Compile the Design for an FPGA

This step compiles the design for a HARDCOPY_ FPGA_PROTOTYPE
device and gives you the resource utilization and performance of the
FPGA.

Migrate the Compiled Project

This step generates the Quartus II Project File (.qpf) and the other files
required for HardCopy implementation. The Quartus II software also
assigns the appropriate HardCopy Stratix device for the design
migration.

Close the Quartus FPGA Project

Because you must compile the project for a HardCopy Stratix device, you
must close the existing project which you have targeted your design to a
HARDCOPY_FPGA_PROTOTYPE device.

Open the Quartus HardCopy Project

Open the Quartus II project that you created in the "Migrate the Compiled
Project" step. The selected device is one of the devices from the HardCopy
Stratix family that was assigned during that step.

Compile for HardCopy Stratix Device

Compile the design for a HardCopy Stratix device. After successful
compilation, the Timing Analysis section of the compilation report shows
the performance of the design implemented in the HardCopy device.

How to Design
HardCopy
Devices

Targeting Designs to HARDCOPY_ FPGA_PROTOTYPE Devices

To target a design to a HardCopy Stratix device in the Quartus II
software, follow these steps:

1. If you have not yet done so, create a new project or open an existing
project.

2. Select Device (Assignments menu), then select Stratix in the Family
list. Select the desired HARDCOPY_FPGA_PROTOTYPE device in
the Available Devices list. You should also select the package, pin
count, and speed grade, as shown in Figure 4–2.

Altera Corporation 4–7
June 2004 Preliminary

How to Design HardCopy Devices

By choosing the HARDCOPY_FPGA_PROTOTYPE device, all the
information necessary for the post-migration HardCopy Stratix device is
included. The resources, package option, pin assignments, and all other
data is produced. The netlist resulting from the compilation contains
information about the electrical connectivity, resources used, I/O
placements, and the resources unused in the FPGA device.

Figure 4–2. Selecting a HARDCOPY_FPGA_PROTOTYPE Device

3. Choose Settings (Assignments menu). In the Category list select
HardCopy Settings and specify the external default clock jitter.

At this point, you are presented with the following three choices to target
the designs to HardCopy Stratix devices, as shown in Figure 4–3.

■ Migration Only: You can select this option after compiling the
project to migrate the project to a HardCopy project.

4–8 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

You can now perform the following tasks manually to target the
design to a HardCopy Stratix device. See “Performance Estimation”
on page 4–10 if you need more information on how to perform these
tasks.

a. Close the existing project.

b. Open the migrated HardCopy project.

c. Compile the HardCopy project for a HardCopy Stratix device.

■ Migration and Compilation: You can select this option after
compiling the project and it results in the following actions:
● Migrating the project to a HardCopy project
● Opening the migrated HardCopy project and compiling the

project for a HardCopy Stratix device

■ Full HardCopy Compilation: Selecting this option results in the
following actions:
● Compiling the existing HARDCOPY_FPGA_PROTOTYPE

project
● Migrating the project to a HardCopy Stratix project
● Opening the migrated HardCopy project and compiling it for a

HardCopy Stratix device

Figure 4–3. HardCopy Timing Optimization Wizard Options

After you make your selection, the HardCopy Timing Optimization
wizard Summary page shows you details about the settings you made in
the wizard, as shown in Figure 4–4.

Altera Corporation 4–9
June 2004 Preliminary

How to Design HardCopy Devices

Figure 4–4. HardCopy Timing Optimization Wizard Summary Page

When either of the first two options in Figure 4–3 are selected (Migration
Only or Migration and Compilation), designs are targeted to HardCopy
Stratix devices and optimized using the HardCopy placement and timing
analysis to estimate performance. For details on the steps performed by
the Quartus II software during Full HardCopy Compilation and
Migration and Compilation, see “Performance Estimation” on
page 4–10. If the performance requirement is not met, you can modify
your RTL source, optimize the FPGA design, and estimate timing until
you reach timing closure.

Tcl Support for HardCopy Migration

To complement the GUI features for HardCopy migration, the Quartus II
software provides the following command-line executables (which
provide the Tcl shell to run the -flow Tcl command) to migrate the
HARDCOPY_FPGA_PROTOTYPE project to HardCopy Stratix devices:

■ quartus_sh --flow migrate_to_hardcopy <project_name>
[-c <revision>] r

This command migrates the project compiled for the
HARDCOPY_FPGA_PROTOTYPE device to a HardCopy Stratix
device.

4–10 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

■ quartus_sh -flow hardcopy_full_compile <project_name>
[-c <revision>] r

This command performs the following tasks:

● Compiles the exsisting project for a
HARDCOPY_FPGA_PROTOTYPE device

● Migrates the project to a HardCopy Stratix project
● Opens the migrated HardCopy Stratix project and compiles it

for a HardCopy Stratix device

Design
Optimization &
Performance
Estimation

The HardCopy Timing Optimization wizard is a powerful feature that
helps you migrate designs from Stratix
HARDCOPY_FPGA_PROTOTYPE devices to HardCopy Stratix devices.

HardCopy Floorplans & Timing Models

The Quartus II software version 4.0 and later supports HardCopy Stratix
floorplans and HardCopy Stratix timing models. These features enable
you to estimate the design’s performance and power consumption in the
migrated device. They reflect the actual placement of the design in the
HardCopy Stratix device, and can be used to see the available resources,
and the location of the resources in the actual device.

Performance Estimation

Figure 4–5 illustrates the design flow for estimating performance and
optimizing your design. You can target your designs to
HARDCOPY_FPGA_PROTOTYPE devices, and pass the design
information to placement and timing analysis to estimate performance. In
the event that the required performance is not met, you can modify your
RTL source, optimize the FPGA design and estimate timing iteratively.

1 On average, HardCopy Stratix devices are 50% faster than their
equivalent Stratix device. These performance numbers are
highly design dependent, and final performance numbers must
be obtained from Altera.

Altera Corporation 4–11
June 2004 Preliminary

Design Optimization & Performance Estimation

Figure 4–5. Obtaining a HardCopy Performance Estimation

To perform Timing Analysis for a HardCopy Stratix device, follow these
steps:

1. Open an existing project compiled for a
HARDCOPY_FPGA_PROTOYPE device.

2. Choose HardCopy Utilities > HardCopy Timing Optimization
Wizard (Project menu).

3. Select a destination directory for the migrated project.

On completion of the HardCopy Timing Optimization wizard, the
destination directory contains the Quartus II project file, and all files
required for HardCopy implementation. At this stage, the design is
copied from the HARDCOPY_FPGA_PROTOTYPE project directory
to a new directory to perform the timing analysis. This two-project
directory structure enables you to move back and forth between the
HARDCOPY_FPGA_PROTOTYPE design database and the
HardCopy Stratix design database. The Quartus II software creates
the <project name> _hardcopy _optimization directory.

You do not have to re-select the HardCopy Stratix devices while
performing performance estimation. When you run the HardCopy
Timing Optimization wizard, the Quartus II software selects the
HardCopy Stratix device corresponding to the specified
HARDCOPY_FPGA_PROTOTYPE FPGA. Thus, the information
necessary for the HardCopy Stratix device is available from the
earlier HARDCOPY_FPGA_PROTOTYPE device selection.

 Proven
 netlist
 and new
timing and
placement
constraintHardCopy

placement
and timing
 analysis

HardCopy
 Stratix

 Proven
 netlist,
pin assign-
ments, and
 timing
constraints Timing

 met?
Stratix
FPGA

No

Yes

4–12 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

All constraints related to the design are also transferred to the new
project directory. You can modify these constraints, if necessary, in
your optimized design environment to achieve the necessary timing
closure. However, if the design is optimized at the
HARDCOPY_FPGA_PROTOTYPE device level by modifying the
RTL code or the device constraints, you must migrate the project
with the HardCopy Timing Optimization wizard.

1 If an existing project directory is selected when the
HardCopy Timing Optimization wizard is run, the existing
information is overwritten with the new timing analysis
results.

The project directory is the directory that you chose for the migrated
project.

4. Open the migrated Quartus II project created in the previous step.

5. Perform a full compilation.

After successful compilation, the Timing Analysis section of the
Compilation Report shows the performance of the design.

1 Performance estimation is not supported for HardCopy
APEX 20K devices in the Quartus II software. Your design can
be optimized by modifying the RTL code or the FPGA design
and the constraints. You can discuss with Altera any
performance improvement required with the HardCopy
APEX 20K device.

Placement Constraints

The Quartus II software version 4.0 and later supports placement
constraints and LogicLock regions for HardCopy Stratix devices.
Figure 4–6 shows an iterative process to modify the placement constraints
until the best placement for the HardCopy Stratix device is achieved.

Altera Corporation 4–13
June 2004 Preliminary

Location Constraints

Figure 4–6. Placement Constraints Flow for HardCopy Stratix Devices

Location
Constraints

LAB Assignments

The Quartus II software supports location constraints for HardCopy
Stratix devices. You can make LAB-level assignments after migrating the
HARDCOPY_FPGA_ PROTOTYPE project, and before compiling the
design for a HardCopy Stratix device, to achieve better performance. One
important consideration for LAB reassignments is that the entire contents
of a LAB is moved to another empty LAB. If you want to move the logic
contents of LAB A to LAB B, the entire contents of LAB A are moved to
an empty LAB B. For example, the logic contents of LAB_X33_Y65 can be
moved to an empty LAB at LAB_X43_Y56.

Compile the Design
for HARDCOPY_FPGA_

PROTOTYPE

Migrate to HardCopy
using the HardCopy

Timing
Optimization Wizard

Add/Update
Placement
Constraints

Add/Update
LogicLock

Constraints

Compile
for

HardCopy

Performance
Met?

Yes

Generate HardCopy Files

No

4–14 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

LogicLock Assignments

The LogicLock feature of the Quartus II software provides a block-based
design approach. Using this technique you can create and implement
each logic module independently, and integrate all optimized modules
into the top-level design.

f To learn more about this methodology, see the LogicLock Design
Methodology chapter in Volume 2 of the Quartus II Handbook.

LogicLock constraints are supported when you migrate the project from
a HARDCOPY_FPGA_PROTOTYPE project to a HardCopy Stratix
project. If the LogicLock region was specified as “Size=Fixed” and
“Location=Locked” in the HARDCOPY_FPGA_PROTOTYPE project, it is
converted to have “Size=Auto” and “Location=Floating” as shown in “An
Example of Supported LogicLock Constraints” on page 4–14. This
modification is necessary because the floorplan of a HardCopy Stratix
device is different from that of the Stratix device. If this modification did
not occur, LogicLock assignments would lead to no-fit bad placements.
Making the regions auto-size and floating maintains your module or
entity LogicLock assignments, allowing you to easily adjust the
LogicLock regions as required.

An Example of Supported LogicLock Constraints

LogicLock Region Definition in the
HARDCOPY_FPGA_PROTOTYPE .qsf File

set_global_assignment -name LL_HEIGHT 15 -entity risc8 -section_id test
set_global_assignment -name LL_WIDTH 15 -entity risc8 -section_id test
set_global_assignment -name LL_STATE LOCKED -entity risc8 -section_id test
set_global_assignment -name LL_AUTO_SIZE OFF -entity risc8 -section_id test

LogicLock Region Definition in the Migrated HardCopy Stratix .qsf
File

set_global_assignment -name LL_HEIGHT 15 -entity risc8 -section_id test
set_global_assignment -name LL_WIDTH 15 -entity risc8 -section_id test
set_global_assignment -name LL_STATE FLOATING -entity risc8 -section_id test
set_global_assignment -name LL_AUTO_SIZE ON -entity risc8 -section_id test

Targeting Designs to HardCopy APEX 20KC and HardCopy
APEX 20KE Devices

The Quartus II software version 4.0 and later also supports targeting
designs to HardCopy APEX 20KC and HardCopy APEX 20KE device
families. After compiling your design for one of the APEX 20KC or
APEX 20KE devices supported by a HardCopy APEX device, run the
HardCopy Files wizard to generate the necessary set of files for
HardCopy migration.

Altera Corporation 4–15
June 2004 Preliminary

Checking Designs for HardCopy Design Guidelines

Checking
Designs for
HardCopy
Design
Guidelines

When you develop a design with HardCopy migration in mind, follow
design practices that ensure a straightforward migration process. Prior to
starting migration of the design to a HardCopy device, you must review
the design and identify and address all the design issues. Any design
issues that have not been addressed can jeopardize silicon success. The
Quartus II software includes the Design Assistant feature to check your
design against the HardCopy design guidelines. Some of the design rule
checks performed by the Design Assistant include the following rules:

■ Design should not contain combinational loops
■ Design should not contain delay chains
■ Design should not contain latches

The Design Assistant is run on a design in multiple ways. You must have
run Analysis and Synthesis on the design before running the Design
Assistant. Altera recommends that you run the Design Assistant to check
for compliance with the HardCopy design guidelines early in the design
process and after every compilation.

Design Assistant Settings

You must select the design rules in the Design Assistant page of the
Settings dialog box (Assignments menu) prior to running the design. In
this dialog box, you can choose whether to run the Design Assistant
during compilation.

Running Design Assistant

To run Design Assistant choose Start > Start Design Assistant
(Processing menu).

The Design Assistant runs automatically when the HardCopy Timing
Optimization wizard is launched. The design is checked before the
Quartus II software migrates the design and creates a new project
directory for performing timing analysis.

Also, the Design Assistant runs automatically whenever you generate the
HardCopy design database with the HardCopy Files wizard.

Reports and Summary

The results of running the Design Assistant on your design are available
in the Design Assistant Results section of the Compilation Report.
Reports include the settings, run summary, results summary, and details
of the results and messages. The Detailed Results report indicates the rule
name, severity of the violation and the circuit path where any violation
occurred.

4–16 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

f To learn about the design rules and standard design practices to comply
with HardCopy design rules, see the Quartus II Help and the Design
Guidelines for HardCopy Migration chapter of the HardCopy Device Handbook.

Generating the
HardCopy
Design
Database

You can use the HardCopy Files wizard to generate the complete set of
deliverables required for migrating the design to a HardCopy device in a
single click. The HardCopy Files wizard asks questions related to the design
and archives your design, settings, results, and database files for delivery to
Altera. Your responses to the design details are stored in
<project directory>\<project name>.hps.

You can generate the archive of the HardCopy design database only after
compiling the design to a HardCopy Stratix device. The Quartus II Archive
file (.qar) is generated at the same directory level as the targeted project,
either before or after optimization. The following are some of the files that
are part of the archived files.

■ <project_name>.vqm—This is a Verilog Quartus Mapping file.
■ <project_name>_pt_hcpy_v.tcl—This is a set of PrimeTime scripts.
■ <project_name>_hcpy_v.sdo—This is a standard delay file output (SDF)

file.
■ <project_name>.sof—This is a bitstream file used for programming the

FPGA.
■ <project_name>.qsf—This is the Quartus II assignments and settings

file.

In addition to the archived file, the HardCopy Files wizard also creates a
hardcopy directory that contains some of the important files that you can
review to ensure the correctness of the design database.

1 The Design Assistant is run automatically when the HardCopy
Files wizard is started.

1 After creating the migration database with the HardCopy Timing
Optimization wizard, you must compile the design before
generating the project archive. You will receive an error if you
create the archive before compiling the design.

Altera Corporation 4–17
June 2004 Preliminary

Static Timing Analysis (STA)

Static Timing
Analysis (STA)

In addition to performing timing analysis, the Quartus II software also
provides all of the requisite netlists and Tcl scripts to perform static timing
analysis (STA) using the industry standard STA tool, PrimeTime. The
following files, necessary for timing analysis with the PrimeTime tool, are
generated by the HardCopy Files wizard:

■ <settings name>_hcpy.vo—Verilog output format
■ <settings name>_hpcy_v.sdo—standard delay file output (SDF) file
■ <settings name>_pt_hcpy_v.tcl—Tcl script

These files are available in the <project name>\hardcopy directory.
PrimeTime libraries for the HardCopy Stratix and Stratix devices are
included with the Quartus II software.

1 Use the Stratix libraries to perform STA during timing analysis
of designs targeted to HARDCOPY_FPGA_PROTOTYPE
device.

f For more information on static timing analysis, see the Quartus II Timing
Analysis and the Synopsys PrimeTime Support chapters in Volume 3 of the
Quartus II Handbook.

Power
Estimation

The Quartus II software has built-in capability for estimating HardCopy
device power consumption by evaluating the following design
components:

■ Target device and package
■ Temperature grade
■ Clock domain fMAX

■ Device resources used

HardCopy Stratix Power Calculator

The HardCopy Stratix power calculator provides an initial estimate of ICC
for any HardCopy Stratix device based on typical conditions. This
calculation saves significant time and effort in gaining a quick
understanding of the power requirements for the device. No stimulus
vectors are necessary for power estimation, which is established by the
clock frequency and toggle rate in each clock domain.

This calculation should only be used as an estimation of power, not as a
specification. The actual ICC should be verified during operation because
this estimate is sensitive to the actual logic in the device and the
environmental operating conditions.

4–18 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

f For more information on simulation-based power estimation, see the
Simulation-Based Power Estimation chapter in Volume 3 of the
Quartus II Handbook.

Opening HardCopy Stratix Power Calculator

The HardCopy Stratix power calculator page on the Altera web site is
opened in the Quartus II software. The Quartus II software automatically
fills in the necessary information when you open the page. You can
modify the values and calculate the estimated power consumed under
various conditions.

The calculator can also be opened independently of the Quartus II
software by clicking the HardCopy Stratix Power Calculator link on the
HardCopy Design Utilities web page on the Altera web site.

1 You must enter design-specific information manually if you run
the calculator directly.

To estimate HardCopy Stratix power consumption, follow these steps:

1. After compiling the design for a HardCopy Stratix device, choose
HardCopy Utilities> HardCopy Power Estimation (Project menu),
and click OK.

The Quartus II software exports all the necessary data and displays
the Power Calculator, a section of which is shown in Figure 4–7.

Altera Corporation 4–19
June 2004 Preliminary

Power Estimation

Figure 4–7. HardCopy Stratix Power Calculator

2. Enter values for the following variables in the spreadsheet and click
Calculate to get the total power (PTOTAL).

● Average number of logic elements
● Average capacitive load
● DC output power
● Ambient temperature

For more information on power estimation, see the Quartus II Help.

4–20 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

1 The HardCopy Stratix Power Calculator is run from the
Quartus II software when the target is still
HARDCOPY_FPGA _PROTOTYPE device. However, power is
calculated for the HardCopy Stratix device, not for the FPGA.

Use the Stratix FPGA power calculator to estimate power
consumption for the HARDCOPY_FPGA_PROTOTYPE.

1 On average, HardCopy Stratix devices are expected to consume
40% less power than the equivalent FPGA.

HardCopy APEX 20K Power Calculator

The HardCopy APEX 20K power calculator is also a web-based calculator
that can be run from the Design Utilities section in the HardCopy
APEX 20K web pages. You cannot open this calculator in the Quartus II
software.

With the HardCopy APEX 20K power calculator, you can estimate the
power consumed by HardCopy APEX 20K devices and design systems
with the appropriate power budget.

1 HardCopy APEX 20K devices are generally expected to
consume about 40% less power than the equivalent APEX 20K
FPGAs.

Power Calculators for FPGAs

Stratix, Stratix GX, and Cyclone devices have Excel-based power
calculators that are used to estimate the power consumed by the
respective FPGAs. For access to these power calculators, see the
respective Design Utilities web pages.

Tcl Support for
HardCopy Stratix

The Quartus II software also supports the HardCopy Stratix design flow
at the command prompt using Tcl scripts.

f For details on Quartus II support for Tcl scripting, see the Tcl Scripting
chapter in Volume 2 of the Quartus II Handbook.

Conclusion The methodology for designing HardCopy Stratix devices using the
Quartus II software is the same as that for designing the Stratix FPGA
equivalent. You can use the familiar Quartus II software tools and design
flow, target designs to HardCopy Stratix devices, optimize designs for
higher performance and lower power consumption than the Stratix

Altera Corporation 4–21
June 2004 Preliminary

Related Documents

FPGAs, and deliver the design database for migration to a HardCopy
Stratix device. The same intellectual property cores and tools, including
the SOPC Builder and DSP Builder, are used for HardCopy Stratix,
HardCopy APEX 20KC, or HardCopy APEX 20KE devices.

Related
Documents

For more information, refer to the following documentation:

■ Design Guidelines for HardCopy Migration chapter of the HardCopy
Device Handbook

■ Timing Closure in HardCopy Devices chapter in Volume 2 of the
Quartus II Handbook

4–22 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Altera Corporation 5–1
June 2004 Preliminary

5. Engineering Change
Management

Introduction A major benefit of programmable logic is that it accommodates changes
to the system specification late in the design cycle. In a typical
engineering project development cycle, the specification for the
programmable logic portion is likely to change when engineering
development begins or when all system elements are being integrated.

These last-minute design changes are commonly referred to as
engineering change orders (ECOs). ECOs are defined as small changes to
the functionality of a design, after the design has been fully compiled, i.e.,
synthesis and place-and-route are completed.

ECOs are usually intended to correct errors found in the programmable
logic design during debugging, or after changes that are made to the
design specification to compensate for design problems in other areas of
the system design. The operation of the system design cannot easily be
changed in these areas.

As the project nears completion, a significant amount of time and effort
has been invested in achieving timing closure in the programmable logic
device (PLD). It is crucial that the programmable logic design flow is
optimized to support ECOs in an efficient manner.

Impact of Last
Minute Design
Changes

ECOs have an impact on the following areas of a system design:

■ Performance
■ Compile time
■ Verification
■ Documentation

Performance

When a small change is made to the design functionality, it can result in
previous design optimizations being lost. Typical examples of design
optimizations are floorplan optimizations and physical synthesis. Ideally,
there should be a means to preserve the design optimizations that have
already been made. This will focus future optimizations that might be
made to the design on the areas of the design to which the ECO changes
were applied.

qii51005-2.0

5–2 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Compile Time

In the traditional programmable logic design flow, a small change in the
design results in a complete recompilation of the design, i.e., synthesis
and place-and-route. Thus, the process of making small changes to the
design to reach the final implementation on a board can be a very long
process. Ideally, to reach the desired functionality and to reach timing
closure, a small change in functionality should result in a reduced
compilation time. This can be achieved using incremental compilation
technology that uses the previous fit information on the areas of the
design that have not been affected by the ECOs.

Verification

After any design change, the impact of the change on the design must be
verified. This verification is achieved through timing analysis and
simulation. You can choose to limit the verification to the area of the
design that is impacted by the ECOs. This is accomplished by running
timing analyses on select paths and having the option to perform
simulation on gate level and timing simulation netlists.

Documentation

Changes to the project files must be tracked. This helps other users
reproduce the results at a later date. Ideally, you should be able to have
multiple compilation revisions so that others can try out changes without
corrupting the results that have been previously obtained.

ECO Support ECOs can be applied at either of two stages of a typical design flow:

■ HDL level
■ Netlist level

Traditionally in programmable logic design, ECOs have been applied at
the HDL level. This is because the tools to easily create ECOs and to
enable design sign-off at the netlist level have generally not been
available for PLDs.

Altera Corporation 5–3
June 2004 Preliminary

ECO Support

ECO Support at the HDL Level

An ECO at the HDL level is a small incremental change to the design’s
Verilog or VHDL source. This change may range from a single line to
several lines of code modified within a module or entity. Typical
examples of such modifications are:

■ Changes to the state encoding of a finite state machine
■ Addition of pipeline registers to improve design performance
■ Signal duplication to reduce fan-out
■ Adding a term to a conditional expression
■ Changing the polarity of register control signals

A few changes to the source code can produce many changes to the netlist
produced by other EDA synthesis or tools such as the Quartus® II
software’s integrated synthesis. During the synthesis process, the
synthesis tools generally preserve the names of registers from the HDL
source code, but automatically generate names for the combinational
(look-up table level) nodes. This automatic name generation is necessary
to accommodate the synthesis optimization performed on the HDL
source to use the target device resources more efficiently.

Thus, a minor source code change can result in many changes to the
names in the synthesis netlist. The changes in the synthesis netlist can be
due to either of the following reasons:

■ The node names in the new netlist implement different functionality
than in the previous netlist

■ The node names in the new netlist implement the same functionality
as in the previous netlist, but have different names

To leverage the previous design optimizations and to reduce the
compilation time, there must be a means of performing an incremental
compilation on the nodes with the new functionality and preserving the
previous optimizations on the nodes that have not changed. Thus, a
means of identifying nodes that maintain the same functionality but have
different names is essential for providing an ECO flow that truly works.
Such a solution is provided with the incremental fitting feature available
in the Quartus II software.

The Quartus II software incremental fitting feature performs a
comparison between the original synthesis netlist and the new netlist
containing the ECO changes. It matches nodes based upon names,
functionality, fan-in, and fan-out. Those nodes that can be matched
inherit the assignments from the previous fit.

5–4 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Thus, the incremental fitting feature can preserve existing fitting
information and timing. This feature limits any timing and fitting
changes to the logic that has changed in functionality and reduces the
compilation time.

To limit the changes caused by ECOs, it is recommended that users adopt
a modular design flow. A modular design flow, combined with the
incremental compilation features mentioned previously, minimizes the
changes in performance caused by ECOs and reduces compilation time.
Partitioning the design to adopt a modular design flow facilitates the
placing of each module in the floorplan for performance. The Quartus II
software provides the LogicLock™ feature to optimize the floorplan of
modular designs. The LogicLock Design Methodology chapter in Volume 2
of the Quartus II Handbook describes how to apply the LogicLock
methodology to a modular design flow. Figure 5–1 details the
recommended design flow to support ECO changes at the HDL level.

Figure 5–1. Design Flow to Support ECO Changes

Partition Design into Modules

 Synthesize Design
(Modular Synthesis)

 Incremental Synthesis
(Resynthesizes only the module
 that has changed)

Optimize / Place & Route
 Design

Incremental Fitter
(Optimize module
that has changed)

Verify Design
 Verify Design
(Verify area of design
 that has changed)

Make Minor HDL Change to
 Effected Module

 ECO
Changes

Sign-Off Design

Yes

No

Altera Corporation 5–5
June 2004 Preliminary

ECO Support

ECO Support at the Netlist Level

For certain ECO changes, it can be quicker to make changes at the netlist
level rather than at the HDL level. This happens when you are debugging
the design on silicon and need a very fast turnaround in generating a
programming file for debugging the system.

A typical application occurs when you uncover a problem on the board
and isolate the problem to the appropriate nodes or I/O cells on the PLD.
You then need to be able to quickly correct the functionality of the
offending logic cell or the properties of the I/O cell and generate a new
programming file in minutes. In doing this, you can verify the operation
of the change without having to modify the HDL and perform a synthesis
and place-and-route operation. This minimizes the disruption to the
board verification procedure.

If this quick fix works, you do not need to change the HDL source code
and rerun place-and-route. You should have the option to:

■ Document the change that has been made
■ Easily recreate the steps taken to produce the changes to the design
■ Generate EDA simulation netlists for verification of the design
■ Perform timing analysis on the design

These capabilities are provided in the Chip Editor feature of the
Quartus II software.

The Quartus II Chip Editor allows you to make functional changes to
individual logic cells and to the I/O cell and phase-locked loop (PLL)
parameters. These changes are stored in the Quartus II Change Manager
log. This allows you to control the application of the changes, and
generate a tool command language (Tcl) file. This Tcl commands file
recreates the changes on the original netlist, documents the changes made
to the project, and enables you to recreate the changes on the original
design files at a later date, without having to change the HDL source. You
can regenerate an EDA simulation netlist for the modified design if it is
necessary to perform a gate-level simulation of the modified design. If the
designer needs to rerun timing analysis to sign-off the design, timing
analysis can be rerun on the netlist containing the ECO changes.
Figure 5–2 shows the flow for ECO changes at the netlist level.

5–6 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Figure 5–2. Design Flow for ECO Changes at the Netlist Level

Conclusion Support for ECOs requires a combination of a modular design
methodology and the appropriate software design tools.

The Quartus II software provides you with the software tools and the
design methodology to successfully perform ECOs at both the HDL and
netlist level for programmable logic designs. This reduces the design
cycle time and provides faster timing closure on designs that require last
minute changes.

Perform DRC on Changes

 Generate New
Programming File

Simulation Timing Analysis

Sign-Off Design

Modify Logic Cells, I/O Cells,
 or PLL in Chip Editor

Verification

 Change Manager
 (Stores Netlist
Modification Details)

 Synthesized, Placed
 & Routed Design
(Download Programming
 File into Device)

ECO Required

Altera Corporation Section II–1
Preliminary

Section II. Design
Guidelines

Today's programmable logic device (PLD) applications have reached the
complexity and performance requirements of ASICs. In the development
of such complex system designs, good design practices have an
enormous impact on your device's timing performance, logic utilization,
and system reliability. Designs coded optimally will behave in a
predictable and reliable manner, even when re-targeted to different
device families or speed grades. This section presents design and coding
style recommendations for Altera® devices.

This section includes the following chapters:

■ Chapter 6, Design Recommendations for Altera Devices

■ Chapter 7, Recommended HDL Coding Styles

Revision History The table below shows the revision history for Chapters 6 and 7.

Chapter(s) Date / Version Changes Made

6 June 2004 v.2.0 ● Updates to tables, figures, and coding
examples.

● New functionality for Quartus 4.1.

Feb. 2004 v1.0 Initial release.

7 June 2004 v2.0 ● Updates to tables and figures.
● Added and updated section for State

Machines.
● Update to Verilog HDL for State Machines.
● New functionality for Quartus 4.1.

Feb. 2004 v1.0 Initial release.

Section II–2 Altera Corporation
Preliminary

Design Guidelines Quartus II Handbook, Volume 1

Altera Corporation 6–1
June 2004 PreliminaryPreliminary

6. Design Recommendations
for Altera Devices

Introduction Today's FPGA applications have reached the complexity and
performance requirements of ASICs. In the development of such complex
system designs, good design practices have an enormous impact on your
device’s timing performance, logic utilization, and system reliability.
Well-coded designs behave in a predictable and reliable manner even
when re-targeted to different families or speed grades. Good design
practices also aid in successful design migration between FPGA and
HardCopy® or ASIC implementations for both prototyping and
production. For optimal performance and better time-to-market when
designing with Altera® devices, you should understand the impact of
synchronous design practices, follow recommended design techniques
including hierarchical design partitioning, and take advantage of the
architectural features in the targeted device.

f For specific HDL coding examples and recommendations, refer to the
Recommended HDL Coding Styles chapter in Volume 1 of the Quartus II
Handbook.

Synchronous
FPGA Design
Practices

The first step in a good design methodology is to understand the
implications of your design practices and techniques. This section
outlines some of the benefits of optimal synchronous design practices and
the hazards involved in other techniques. Good synchronous design
practices can help you consistently meet your design goals. Inherent
problems with other design techniques can include reliance on
propagation delays in a device, incomplete timing analysis, and possible
glitches.

The basic principle of synchronous design is that a clock signal triggers
all events. As long as all of the registers’ timing requirements are met, a
synchronous design behaves in a predictable and reliable manner for all
process, voltage, and temperature (PVT) conditions. You can easily target
synchronous designs to different device families or speed grades. In
addition, if you plan to migrate your design to a high-volume solution
such as Altera HardCopy devices, or if you are prototyping an ASIC, then
synchronous design practices help ensure successful migration.

f For information about migrating designs to HardCopy devices, see the
Design Guidelines for HardCopy Migration chapter in the HardCopy
Handbook.

qii51006-2.0

6–2 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Fundamentals of Synchronous Design

In a synchronous design, everything is related to the clock signal. On
every active edge of the clock (usually the rising edge), the data inputs of
registers are sampled and transferred to outputs. Following an active
clock edge, the outputs of combinational logic feeding the data inputs of
registers change values. This change triggers a period of instability due to
propagation delays through the logic as the signals go through a number
of transitions and finally settle to new values. Changes happening on data
inputs of registers do not affect the values of their outputs until the next
active clock edge.

Because the internal circuitry of registers isolates data outputs from
inputs, instability in the combinational logic does not affect the operation
of the design as long as the following timing requirements are met:

■ Before an active clock edge, the data input has been stable for at least
the setup time of the register

■ After an active clock edge, the data input remains stable for at least
the hold time of the register

In Altera devices, the Quartus® II Timing Analyzer issues actual
hardware requirements for the setup times (tSU) and hold times (tH) for
every pin of your design. By meeting these external pin requirements and
following synchronous design techniques, you ensure that you satisfy the
setup and hold times for all registers within the Altera device.

1 Note that in order to meet setup and hold times requirements on
all input pins, any inputs to combinational logic that feeds a
register should have a synchronous relationship with the clock
of the register. If signals are asynchronous, you can register the
signals at the input of the Altera device to help prevent a
violation of the required setup and hold times.

When the setup or hold time of a register is violated, the output can be set
to an intermediate voltage level between the high and low levels, called a
metastable state. In this unstable state, small perturbations, like noise in
power rails, can cause the register to assume an unpredictable valid state.
Various undesirable effects can occur, including increased propagation
delays and incorrect output states. In some cases, the output can even
oscillate between the two valid states for a relatively long time.

Hazards of Asynchronous Design

In the past, designers have often used asynchronous techniques such as
ripple counters or pulse generators in PLD designs, enabling them to take
“short cuts” to save device resources. Asynchronous design techniques

Altera Corporation 6–3
June 2004 Preliminary

Recommended Design Techniques

have inherent problems such as relying on propagation delays in a
device, which can result in incomplete timing constraints and possible
glitches and spikes. Because today's FPGAs provide large quantities of
high-performance logic gates, registers, and memory, resource and
performance trade-offs have changed. Now it is much more important to
focus on design practices that help you meet design goals consistently
than to save device resources using problematic asynchronous
techniques.

Some asynchronous design structures rely on the relative propagation
delays of signals to function correctly. In these cases, race conditions can
arise where the ordering of signal changes can affect the output of the
logic. PLD designs can have varying timing delays, depending on how
the design is placed and routed in the device with each compilation.
Therefore, it is almost impossible to determine the timing delay
associated with a particular block of logic ahead of time. As devices
become faster because of device process improvements, the delays in an
asynchronous design may decrease, resulting in a design that does not
function as expected. Specific examples are provided in “Recommended
Design Techniques” on page 6–3. Relying on a particular delay also
makes asynchronous designs very difficult to migrate to different
architectures, devices, or speed grades.

The timing of asynchronous design structures is often difficult or
impossible to model with timing assignments and constraints. If you do
not have complete or accurate timing constraints, the timing-driven
algorithms used by your synthesis and place-and-route tools may not be
able to perform the best optimizations, and reported results may not be
complete.

Some asynchronous design structures can generate harmful glitches—
pulses that are very short compared with clock periods. Most glitches are
generated by combinational logic. When the inputs of combinational
logic change, the outputs exhibit a number of glitches before they settle to
their new values. These glitches can propagate through the combinational
logic, leading to incorrect values on the outputs in asynchronous designs.
In a synchronous design, glitches on the data inputs of registers are
normal events that have no negative consequences because the data is not
processed until the clock edge.

Recommended
Design
Techniques

When designing with hardware description language (HDL) code, it is
important to understand how a synthesis tool interprets different HDL
coding styles and what results to expect. Your coding style can affect logic
utilization and timing performance. This section discusses some basic
design techniques that ensure optimal synthesis results for designs
targeted to Altera’s devices while avoiding several common causes of

6–4 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

unreliability and instability. It is important to design your combinational
logic carefully to avoid potential problems, and pay attention to your
clocking schemes to maintain synchronous functionality.

Combinational Logic Structures

Combinational logic structures consist of logic functions that depend
only on the current state of the inputs. In Altera FPGAs, these functions
are implemented in the look-up tables (LUTs) of the device’s architecture
(logic elements or adaptive logic modules). In some cases when
combinational logic feeds registers, the register control signals can also be
used to implement part of the logic function to save LUT resources. By
following the recommendations in this section, you can improve the
reliability of your combinational design.

Combinational Loops

Combinational loops are among the most common causes of instability
and unreliability in digital designs, and should be avoided. In a
synchronous design, all feedback loops should include registers.
Combinational loops violate synchronous design principles by
establishing a direct feedback loop that contains no registers. For
example, a combinational loop occurs when the left-hand side of an
arithmetic expression also appears on the right-hand side in HDL code. A
combinational loop also occurs when you feed back the output of a
register to an asynchronous pin of the same register through
combinational logic, as shown in Figure 6–1.

Figure 6–1. Combinational Loop through Asynchronous Control Pin

Combinational loops are inherently high-risk design structures for the
following reasons:

■ Combinational loop behavior generally depends on the relative
propagation delays through the logic involved in the loop. As
discussed, propagation delays can change which means the behavior
of the loop is unpredictable.

D Q

Logic

CLRN

Altera Corporation 6–5
June 2004 Preliminary

Recommended Design Techniques

■ Combinational loops can cause endless computation loops in many
design tools. Most tools break open combinational loops to process
the design. The various tools used in the design flow may open a
given loop in a different manner, processing it in a way that is
inconsistent with the original design intent.

Delay Chains

Delay chains occur when two or more consecutive nodes with a single
fan-in and a single fan-out are used to cause delay. Often inverters are
chained together to add delay. Delay chains are sometimes used to
resolve race conditions created by other asynchronous design practices.
As discussed above, delays in PLD designs can change with each place-
and-route cycle. See “Hazards of Asynchronous Design” on page 6–2 for
examples of the kinds of problems that delay chains can cause. Avoid
using delay chains to prevent these kind of problems.

In some ASIC designs, delays are used for buffering signals as they are
routed around the device. This functionality is not needed in FPGA
devices because the routing structure provides buffers throughout the
device.

Pulse Generators & Multivibrators

Some designs use delay chains to generate either one pulse (pulse
generators) or a series of pulses (multivibrators). There are two common
methods for pulse generation, as shown in Figure 6–2. These techniques
are purely asynchronous and should be avoided.

Figure 6–2. Asynchronous Pulse Generators

In Figure 6–2, part (a), a trigger signal feeds both inputs of a 2-input AND
gate, but the design inverts or adds a delay chain to one of the inputs. The
width of the pulse depends on the relative delays of the path that feeds

D Q

Q

Pulse

PulseTrigger

Trigger

Clock

CLRN

(a)

(b)

6–6 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

the gate directly and the one that goes through the delay. This is the same
mechanism responsible for the generation of glitches in combinational
logic following a change of input values. This technique artificially
increases the width of the glitch by using a delay chain.

In Figure 6–2, part (b), a register's output drives the same register's
asynchronous reset signal through a delay chain. The register resets itself
asynchronously after a certain delay.

The width of pulses generated in this way are difficult for synthesis and
place-and-route software to determine, set, or verify. The actual pulse
width can only be determined after placement and routing, when routing
and propagation delays are known. It is difficult to reliably determine the
width of the pulse when creating HDL code, and it cannot be set by
electronic design automation (EDA) tools. The pulse may not be wide
enough for the application under all PVT conditions, and the pulse width
changes if you change to a different device. In addition, static timing
analysis cannot be used to verify the pulse width, so verification is very
difficult.

Multivibrators use a “glitch generator” to create pulses, together with a
combinational loop that turns the circuit into an oscillator. Multivibrators
cause even more problems than pulse generators because of the number
of pulses involved. In addition, when the structures generate multiple
pulses, they also create a new artificial clock in the design that has to be
analyzed by the design tools.

When you need to use a pulse generator, it should be implemented using
purely synchronous techniques, as shown in Figure 6–3.

Figure 6–3. Recommended Pulse-Generation Technique

In this design, the pulse width is always equal to the clock period. This
pulse generator is predictable, can be verified with timing analysis, and is
easily moved to other architectures, devices, or speed grades.

D QTrigger
Logic

Clock

Pulse

D Q

Altera Corporation 6–7
June 2004 Preliminary

Recommended Design Techniques

Latches

In digital logic, a latch holds the value of a signal until a new value is
assigned. Latches can also be inferred from HDL code when you did not
intend to use a latch. In some device architectures, latches add less delay
and can be implemented using less silicon area than registers. However,
FPGA architectures are based on registers. In FPGA devices, latches
actually use more logic resources and lead to lower performance than
registers.

Latches can cause various difficulties in the design. Although latches are
memory elements, they are fundamentally different from registers. When
a latch is in feed-through or transparent mode, there is a direct path
between the data input and the output. Glitches on the data input can
pass through the output. The timing for latches is also inherently
ambiguous. When analyzing a design with a D latch, for example, the
software cannot determine whether you intended to transfer data to the
output on the leading edge of the clock or on the trailing edge. In many
cases, only the original designer knows the full intent of the design,
meaning another designer cannot easily modify the design or reuse the
code.

Clocking Schemes

Like combinational logic, clocking schemes have a large effect on your
design's performance and reliability. Avoid using internally generated
clocks where possible because they can cause functional and timing
problems in the design. Clocks generated with combinational logic can
introduce glitches that create functional problems, and the delay inherent
in combinational logic can lead to timing problems. The following
sections provide some specific examples and recommendations for
avoiding these problems.

Internally-Generated Clocks

If you use the output from combinational logic as a clock signal or as an
asynchronous reset signal, you should expect to see glitches in your
design. In a synchronous design, glitches on data inputs of registers are
normal events that have no consequences. However, a glitch or a spike on
the clock input (or an asynchronous input) to a register can have
significant consequences. Narrow glitches can violate the register's
minimum pulse width requirements. Setup and hold times may also be
violated if the data input of the register is changing when a glitch reaches
the clock input. Even if the design does not violate timing requirements,
the register output can change value unexpectedly and cause functional
hazards elsewhere in the design.

6–8 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Because of these problems, always register the output of combinational
logic before you use it as a clock signal. See Figure 6–4.

Figure 6–4. Recommended Clock-Generation Technique

Registering the output of combinational logic ensures that the glitches
generated by the combinational logic are blocked at the data input of the
register.

The combinational logic used to generate an internal clock also adds
delays on the clock line. In some cases, logic delay on a clock line can
result in a clock skew greater than the data path length between two
registers. If the clock skew is greater than the data delay, the timing
parameters of the register will be violated and the design will not
function correctly. To reduce the clock skew within the clock domain,
assign the generated clock signal to one of the global high-fan-out and
low-skew clock networks in the FPGA device (if available). The
Quartus® II software will automatically use global routing for high-fan-
out control signals. You can make explicit Global Signal logic option
settings using the Assignment Editor (Assignment Menu) when
necessary to force the software to use the global routing for particular
signals.

Divided Clocks

Designs often require clocks created by dividing a master clock. Most
Altera FPGAs provide dedicated phase-locked loop (PLL) circuitry for
clock division. Using dedicated PLL circuitry can help you to avoid many
of the problems that can be introduced by asynchronous clock division
logic.

When you need to use logic to divide a master clock, always use
synchronous counters or state machines. In addition, create your design
so that registers always directly generate divided clock signals, as

D Q

Gating
Logic

Clock

Enable
Gated Clock

D Q D Q

Altera Corporation 6–9
June 2004 Preliminary

Recommended Design Techniques

described in “Internally-Generated Clocks” on page 6–7. To avoid
glitches, you should not decode the outputs of a counter or a state
machine to generate clock signals.

Ripple Counters

In the past, FPGA designers implemented ripple counters to divide clocks
by a power of two because the counters are easy to design and may use
fewer gates than their synchronous counterparts. Ripple counters use
cascaded registers, in which the output pin of each register feeds the clock
pin of the register in the next stage. This cascading can cause problems
because the counter creates a ripple clock at each stage. These ripple
clocks have to be handled properly during timing analysis, which can be
difficult and may require you to make complicated timing assignments in
your synthesis and place-and-route tools. To make verification easier,
avoid these types of structures.

Multiplexed Clocks

Clock multiplexing can be used to operate the same logic function with
different clock sources. Multiplexing logic of some kind selects a clock
source, as in Figure 6–5. For example, telecommunications applications
that deal with multiple frequency standards often use multiplexed clocks.

Figure 6–5. Multiplexing Logic & Clock Sources

Adding multiplexing logic to the clock signal can lead to some of the
problems discussed in the previous sections, but requirements for
multiplexed clocks vary widely depending on the application. Clock
multiplexing is acceptable if the following criteria are met:

Clock 1

Multiplexed
Clock

Clock 2

Select

Multiplexing
Logic

D Q

D Q

D Q

6–10 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

■ The clock multiplexing logic does not change after initial
configuration

■ The design uses multiplexing logic to select a clock for testing
purposes

■ Registers are always reset when the clock switches
■ A temporarily incorrect response following clock switching has no

negative consequences

If the design switches clocks in real time with no reset signal, and your
design cannot tolerate a temporarily incorrect response, then you must
use a synchronous design so that there are no timing violations on the
registers, no glitches on clock signals, and no race conditions or other
logical problems.

Gated Clocks

Gated clocks turn a clock signal on and off using an enable signal that
controls some sort of gating circuitry, as in Figure 6–6. When a clock is
turned off, the corresponding clock domain is shut down and becomes
functionally inactive.

Figure 6–6. Gated Clock

Gated clocks can be a powerful technique to reduce power consumption.
When a clock is gated both the clock network and the registers driven by
it stop toggling, thereby eliminating their contributions to power
consumption. However, gated clocks are not part of a synchronous
scheme and therefore can significantly increase the effort required for
design implementation and verification. Gated clocks contribute to clock
skew and make device migration difficult. These clocks are also sensitive
to glitches, which can cause design failure.

From a functional point of view, you can shut down a clock domain in a
purely synchronous manner using a synchronous clock enable signal.
However, when using a synchronous clock enable scheme, the clock
network continues toggling. This practice does not reduce power

Gating
Logic

Clock

Enable
Gated Clock

D Q D Q

Altera Corporation 6–11
June 2004 Preliminary

Recommended Design Techniques

consumption as much as gating the clock at the source does. In most
cases, you should use a synchronous scheme such as those described in
the “Synchronous Clock Enables” section. However, for improved power
reduction, see “Recommended Clock-Gating Method” on page 6–11.

Synchronous Clock Enables

To turn off a clock domain in a synchronous manner, use a synchronous
clock enable signal. Clock enable signals are efficiently supported in most
FPGAs because there is a dedicated clock enable signal available on all
device registers. This scheme does not reduce power consumption as
much as gating the clock at the source because the clock network keeps
toggling, but it will perform the same function as a gated clock by
disabling a set of registers. Insert a multiplexer in front of the data input
of every register to either load new data or copy the output of the register.
See Figure 6–7.

Figure 6–7. Synchronous Clock Enable

Recommended Clock-Gating Method

Use gated clocks only when your target application requires substantial
power reduction. If you must use gated clocks, implement them using the
robust clock-gating technique shown in Figure 6–8.

You can gate a clock signal at the source of the clock network, at each
register, or somewhere in between. Because the clock network contributes
to switching power consumption, whenever possible gate the clock at the
source so that you can shut down the entire clock network, instead of
gating it further along the clock network at the registers.

D Q

Enable

Logic

6–12 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Figure 6–8. Recommended Clock Gating Technique

In the technique shown in Figure 6–8, a register generates the enable
command to ensure that it is free of glitches and spikes. The register that
generates the enable signal is triggered on the inactive edge of the clock
to be gated (use the falling edge when gating a clock that is active on the
rising edge as shown in Figure 6–8). Using this technique, only one input
of the gate that turns the clock on and off changes at a time, which does
not generate glitches or spikes on the output. Use an AND gate to gate a
clock that is active on the rising edge. For a clock that is active on the
falling edge, use an OR gate to gate the clock and register the enable
command with a positive edge-triggered register.

When using this technique, pay attention to the duty cycle of the clock
and the delay through the logic that generates the enable signal, because
the enable signal must be generated in half the clock cycle. This situation
might cause problems if the logic that generates the enable command is
particularly complex, or if the duty cycle of the clock is severely
unbalanced. However, being careful with the duty cycle and logic delay
may be acceptable compared with the problems created by other methods
of gating clocks.

Hierarchical
Design
Partitioning

A hierarchical design consists of multiple design blocks linked together
in a hierarchy. When a design is partitioned hierarchically, you can
optimize and simulate the individual design blocks separately. You can

use the LogicLock™ design flow to follow a block-based design
methodology where each block is placed and routed independently, then
all blocks in the hierarchy are combined at the top level. Some synthesis
tools have features to help you create separate netlist files or maintain
separate parts of a netlist file for different parts of your design, to support
block-based design techniques.

D Q

Gating
Logic

Clock

Enable
Gated Clock

D Q D Q

Altera Corporation 6–13
June 2004 Preliminary

Hierarchical Design Partitioning

f For more information on the LogicLock design methodology, refer to the
LogicLock Design Methodology chapter in Volume 2 of the Quartus II
Handbook.

f For more information on hierarchical design flows, refer to the
Hierarchical Block-Based & Team-Based Design Flows chapter in Volume 2 of
the Quartus II Handbook.

When using a hierarchical design methodology, it is important to
consider how the design is partitioned. Altera recommends the following
practices for partitioning designs:

■ Partition the design at functional boundaries
■ Minimize the I/O connections between different partitions
■ Do not use “glue logic” or connection logic between hierarchical

blocks. If you preserve hierarchy boundaries, glue logic is not
merged with hierarchical blocks. Your synthesis software may
optimize glue logic separately, which can degrade synthesis results
and is not efficient when used with the LogicLock design
methodology.

■ Do not use tri-state signals or bidirectional ports on hierarchical
boundaries. If you use boundary tri-states in a lower-level block,
synthesis pushes the tri-states through the hierarchy to the top-level
to take advantage of the tri-state drivers on the output pins of Altera
device. Because this requires optimizing through hierarchies, lower-
level boundary tri-state signals are not supported with a block-level
design methodology.

■ Limit clocks to one per block. Partitioning the design into clock
domains makes synthesis and timing analysis easier.

■ Place state machines in separate blocks to speed optimization and
provide greater encoding control.

■ Separate timing-critical functions from non-timing-critical functions.
■ Limit the critical timing path to one hierarchical block. You can group

the logic from several design blocks to ensure the critical path resides
in one block.

■ Register all inputs and outputs of each block, which makes logic
synchronous and avoids glitches. Also, registering outputs may
eliminate the need to specify timing requirements for signals that
connect between different blocks.

6–14 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Targeting Clock
& Register-
Control
Architectural
Features

In addition to following general design guidelines, it is important to code
your design with the target technology in mind. FPGAs provide
device-wide clocks and register control signals that can improve
performance.

Clock Network Resources

In ASIC design, balancing the clock delay as it is distributed across the
device can be important. Altera FPGAs provide device-wide global clock
routing resources and dedicated inputs, so there is no need to manually
balance delays on the clock network. You should use the FPGA's low-
skew, high-fan-out, dedicated routing where available. By assigning a
clock input to one of these dedicated clock pins or using a Quartus II logic
option to assign global routing, you can take advantage of the dedicated
routing available for clock signals.

For best performance, limit the number of global clocks in your design to
the number of dedicated global clock resources available in your FPGA.
Today's FPGAs offer increasing numbers of global clocks to address large
designs with many clock domains. Many large FPGA devices provide
dedicated global clock networks, regional clock networks, and dedicated
fast regional clock networks. These clocks are typically organized into a
hierarchical clock structure that allows many clocks in each device region
with low skew and delay. There are typically a number of dedicated clock
pins to drive either the global or regional clock networks. PLL outputs
can also drive the global and regional clock networks, and internal signals
in the design can be routed onto the clock networks using the Global
Signal logic option assignments in the Quartus II software.

To take full advantage of these routing resources, the sources of clock
signals in a design (input clock pins or internally generated clocks)
should drive only the clock input ports of registers. In certain devices, if
a clock signal feeds the data ports of a register, the signal may not be able
to use the dedicated routing, which can lead to decreased performance. In
general, allowing clock signals to drive the data ports of registers is not
considered synchronous design, and it can complicate timing analysis; it
is not a recommended practice.

Reset Resources

ASIC designs may use local resets to avoid long routing delays on the
signal. You should take advantage of the device-wide asynchronous reset
pin available on most FPGAs to eliminate these problems. This reset
signal provides low-skew routing across the device.

Altera Corporation 6–15
June 2004 Preliminary

Conclusion

Register Control Signals

Avoid using an asynchronous load signal if the design's target device
architecture does not include registers with dedicated circuitry for
asynchronous loads. Also, avoid using both asynchronous clear and
preset if the architecture provides only one of those control signals.
APEX™devices, for example, directly support an asynchronous clear
function, but not a preset or load function. When the target device does
not directly support the signals, the place-and-route software must use
combinational logic to implement the same functionality. The
combinational logic is less efficient and can cause glitches and other
problems; it is best to avoid these implementations.

f For Verilog HDL and HHDL examples of registers with various control
signals, and information on the inherent priority order of register control
signals in Altera device architecture, refer to the Recommended HDL.
Coding Styles chapter in Volume 1 of the Quartus II Handbook.

Conclusion Following the design practices outlined in this chapter can help you
consistently meet your design goals. Asynchronous design techniques
may result in incomplete timing analysis, may clause glitches on data
signals, and may rely on propagation delays in a device leading to race
conditions and unpredictable results. Taking advantage of the
architectural features in your FPGA device can also improve your quality
of results.

6–16 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Altera Corporation 7–1
June 2004 Preliminary

7. Recommended HDL
Coding Styles

Introduction Your hardware description language (HDL) coding style can have a big
effect on the quality of results that you achieve for your Altera® design.
Synthesis tools optimize HDL code for both logic utilization and
performance, however, sometimes the best optimizations require human
knowledge of the design, and synthesis tools cannot always know the
design intent. Designers are often in the best position to improve their
quality of results.

This chapter discusses coding style recommendations to ensure optimal
synthesis results when targeting Altera devices. This chapter provides
code examples for inferring Altera megafunctions from HDL code and
targeting certain functions in Altera device architectures, along with
device-specific coding recommendations for certain types of logic, and
some general coding guidelines.

f For more general guidelines on structuring your design, refer to the
Design Recommendations for Altera Devices chapter in Volume 1 of the
Quartus II Handbook.

Instantiating and
Inferring Altera
Megafunctions

Altera provides parameterizable megafunctions that are optimized for
Altera device architectures. Using megafunctions instead of coding your
own logic saves valuable design time. Additionally, the Altera-provided
functions may offer more efficient logic synthesis and device
implementation. You can scale the megafunction’s size by simply setting
parameters.

Megafunctions include the library of parameterized modules (LPM) and
Altera device-specific megafunctions.

1 You must use megafunctions to access some Altera device-
specific features, such as memory, digital signal processing
(DSP) blocks, low-voltage differential signal (LVDS) drivers,
phase-locked loops (PLLs), transceivers, and double data rate
input/output (DDIO) circuitry.

Altera megafunctions are easy to instantiate and offer efficient device
implementation. Some designers, however, prefer to make their code
independent of device family or vendor, and prefer not to instantiate
megafunctions directly. In these cases, follow the guidelines in this
chapter to ensure your HDL code infers the appropriate Altera

qii51007-2.0

7–2 Altera Corporation
June 2004

Quartus II Handbook, Volume 1

megafunction. In addition, for some designs, generic HDL code may
provide better results. The following general guidelines provide some
examples:

■ For simple addition or subtraction functions, use the + or - symbol
instead of an LPM function. Instantiating an LPM function for simple
arithmetic operations may result in a less efficient result because the
function will be hard-coded and the synthesis algorithms cannot take
advantage of basic logic optimizations. For more complicated
arithmetic such as synchronous loadable counters, LPM functions
can give you access to detailed architecture-specific functionality
that is not easy to infer from HDL code.

■ For simple multiplexers and decoders, use array notation (such as
out = data [sel]) instead of an LPM function. Array notation
works very well and has simple syntax. You may want to use the
LPM_MUX function to take advantage of architectural features such as
cascade chains in APEX™ devices, but use the LPM function only if
you want to force a specific implementation.

■ Avoid division operations where possible. Division is an inherently
slow operation. Many designers use multiplications creatively to
produce division results. If you must divide, the LPM_DIVIDE
function provides the best results possible.

The following sections describe how to use megafunctions by
instantiating them in your HDL code or inferring them from generic HDL
code.

Instantiating Altera Megafunctions in HDL Code

If you decide to instantiate a megafunction in your HDL code, use one of
the following methods:

■ Use the Quartus® II software MegaWizard® Plug-In Manager to
parameterize the function and create a wrapper file.

■ Instantiate the function directly using the port and parameter
definitions.

Instantiating Megafunctions Using the MegaWizard Plug-In Manager

Altera recommends that you use the MegaWizard Plug-In Manager to
instantiate megafunctions. The wizard provides a graphical interface to
customize and parameterize megafunctions, and ensures that you set all
megafunction parameters properly. When you finish setting parameters
you can specify which files should be generated. The wizard generates an
Altera HDL (AHDL), Verilog HDL, or VHDL wrapper file (depending on
which language you chose on the first page of the wizard) that
instantiates the megafunction with the correct parameters, as well as

Altera Corporation 7–3
June 2004

Recommended HDL Coding Styles

other files including a Component Declaration File (.cmp) for VHDL and
an Include File (.inc) for AHDL. You can then instantiate the wrapper file
in your HDL code using the sample instantiation file <output
file>_inst.tdf/v/vhd. See Table 7–1 for a list of generated files.

1 Altera strongly recommends that you use the wizard for
complex megafunctions such as PLLs, transceivers, and LVDS
drivers.

When using certain megafunctions with synthesis tools outside the
Quartus II software, you have the option of creating a clear box body
instead of a wrapper file. The clear box netlist file is a fully synthesizeable
Altera megafunction, or LPM function, for use with electronic design
automation (EDA) synthesis tools. When implementing a megafunction
with the clear box model, you provide the EDA synthesis tool with
information about the architectural details used in the Quartus II
software. This enables certain synthesis tools to better report timing and
resource utilization estimates.

To generate a clear box model, turn on the Generate a clear box body (for
EDA tools only) option on the first page of the MegaWizard Plug-in
Manager.

Table 7–1 lists and describes the MegaWizard Plug-In
Manager-generated files.

Table 7–1. MegaWizard Plug-In Manager Generated Files (Part 1 of 2)

File Description

<output file>.bsf Block Symbol File used in the Quartus II schematic editor

<output file>.cmp Component Declaration File used in VHDL designs.

<output file>.inc Include File used in AHDL designs.

<output file>.tdf (1) Megafunction wrapper file for instantiation in an AHDL design.

<output file>.vhd (2) (4) Megafunction wrapper file, or clear box netlist file, for instantiation in a
VHDL design.

<output file>.v (3) (4) Megafunction wrapper file, or clear box netlist file, for instantiation in a
Verilog HDL design.

<output file>_bb.v (3) Hollow-body declaration used in Verilog HDL designs to specify port
directions when black-boxing in third-party synthesis tools.

<output file>_inst.tdf (2) Sample AHDL instantiation of the subdesign in the megafunction
wrapper file.

<output file>_inst.vhd (2) Sample VHDL instantiation of the entity in the megafunction wrapper
file.

7–4 Altera Corporation
June 2004

Quartus II Handbook, Volume 1

Instantiating Megafunctions Using the Port & Parameter Definition

You can instantiate the megafunction directly in your AHDL, Verilog
HDL, or VHDL code by calling the function like any other subdesign,
module, or component.

f See Quartus II Help for a list of the megafunction’s ports and
parameters. Quartus II Help also provides a sample VHDL component
declaration and AHDL function prototype for each megafunction.

Inferring Megafunctions from HDL Code

Synthesis tools, including Quartus II integrated synthesis, recognize
certain types of HDL code and automatically infer the appropriate
megafunction when a megafunction will provide optimal results. That is,
the software uses the Altera megafunction code when compiling your
design—even though you did not specifically instantiate the
megafunction. The software infers megafunctions resulting in logic that
is optimized for Altera devices. The area and/or performance of such
logic may be better than the results obtained by inferring generic logic
from the same HDL code. Additionally, you must use megafunctions to
access certain architecture-specific features—such as memory, DSP
blocks, and shift registers—that generally provide improved
performance compared with regular logic.

This section describes the types of logic that standard synthesis tools
recognize and map to megafunctions. Synthesis software infers only the
specific functions listed in this section that are described by HDL code.
The software cannot infer other functions, such as PLLs, LVDS drivers,
transceivers, or DDIO circuitry from HDL code because these functions
cannot be fully or efficiently described in HDL code. In some cases,
synthesis tools provide options to turn off the inference of certain
megafunctions.

<output file>_inst.v (3) Sample Verilog HDL instantiation of the module in the megafunction
wrapper file.

Notes to Table 2–1:
(1) The wizard generates this file only if you select AHDL output files.
(2) The wizard generates this file only if you select VHDL output files.
(3) The wizard generates this file only if you select Verilog HDL output files.
(4) A megafunction wrapper file will be created by default for most megafunctions. If you turn on the Generate a clear

box body (for EDA tools only) option, the wizard will create a clear box netlist file to be used with third-party EDA
synthesis tools. For more information about how to use the MegaWizard Plug-In Manager, see Quartus II Help.

Table 7–1. MegaWizard Plug-In Manager Generated Files (Part 2 of 2)

File Description

Altera Corporation 7–5
June 2004

Recommended HDL Coding Styles

f For features and options specific to a certain synthesis tool, see the
appropriate chapter in the Synthesis section in Volume 1 of the Quartus II
Handbook. Also refer to your synthesis tool’s documentation.

Counters

To infer counter functions, synthesis tools look for a set of registers that
feed through a plus-one adder, a minus-one adder, or both, and then
convert the registers and logic to an lpm_counter megafunction. If a
design also has logic that implements control signals, the synthesis tool
can recognize them as well. For example, the Quartus II software
recognizes the following signals:

■ Asynchronous clear
■ Asynchronous set (only to all logic value 1s)
■ Asynchronous load
■ Count enable
■ Synchronous clear
■ Synchronous set (only to all logic value 1s)
■ Synchronous load
■ Clock enable
■ Up/down

The following code samples show simple Verilog HDL and VHDL
counter function examples with different control signals.

Verilog HDL Counter with Count Enable & Asynchronous Clear

module counter (clk, reset, results, ena);
input clk;
input reset;
input ena;
output [7:0] result;

reg [7:0] result;

always @ (posedge clk or posedge reset)
begin

if (reset)
result = 0;

else if (ena)
result = result + 1;

end
endmodule

VHDL Counter with Synchronous Load

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arth.ALL;

7–6 Altera Corporation
June 2004

Quartus II Handbook, Volume 1

ENTITY count IS
PORT (

clock: IN STD_LOGIC;
sload: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (4 DOWNTO 0);
result: OUT STD_LOGIC_VECTOR (4 DOWNTO 0)

);
END count;

ARCHITECTURE rtl OF count IS
SIGNAL result_reg : STD_LOGIC_VECTOR (4 DOWNTO 0);

BEGIN
PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (sload = '1') THEN

result_reg <= data;
ELSE

result_reg <= UNSIGNED(result_reg) + 1;
END IF;

END IF;
END PROCESS;

result <= result_reg;
END rtl;

Adder/Subtractors

To infer adder/subtractor functions, synthesis tools look for adders and
subtractors that have the same set of inputs and outputs that are
multiplexed by a common signal. The software may then merge the
adders and subtractors and convert them to an lpm_addsub
megafunction.

The following code samples show Verilog HDL and VHDL examples of
simple adder/subtractors. The VHDL example includes a small user-
defined package to configure the widths.

Verilog HDL Adder/Subtractor

module addsub (a, b, addnsub, result);
input [7:0] a;
input [7:0] b;
input addnsub;
output [8:0] result;

reg [8:0] result;

always @ (a or b or addnsub)
begin

Altera Corporation 7–7
June 2004

Recommended HDL Coding Styles

if (addnsub)
result = a + b;

else
result = a - b;

end
endmodule

VHDL Adder/Subtractor

’
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

PACKAGE my_package IS
CONSTANT ADDER_WIDTH : integer := 5;
CONSTANT RESULT_WIDTH : integer := 6;

SUBTYPE ADDER_VALUE IS integer RANGE 0 TO 2 ** ADDER_WIDTH - 1;
SUBTYPE RESULT_VALUE IS integer RANGE 0 TO 2 ** RESULT_WIDTH - 1;

END my_package;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE work.my_package.ALL;

ENTITY addsub IS
PORT (

a: IN ADDER_VALUE;
b: IN ADDER_VALUE;
addnsub: IN STD_LOGIC;
result: OUT RESULT_VALUE

);
END addsub;

ARCHITECTURE rtl OF addsub IS
BEGIN

PROCESS (a, b, addnsub)
BEGIN

IF (addnsub = '1') THEN
result <= a + b;

ELSE
result <= a - b;

END IF;
END PROCESS;

END rtl;

7–8 Altera Corporation
June 2004

Quartus II Handbook, Volume 1

Multipliers

To infer multiplier functions, synthesis tools look for multipliers and
convert them to lpm_mult megafunctions. For devices with DSP blocks,
the software may implement the lpm_mult function in a DSP block
instead of logic, depending on device utilization. The Quartus II Fitter
may also place input and output registers in DSP blocks (i.e., perform
register packing) to improve performance and area utilization.

f For more information on the DSP block and which functions it can
implement, see the appropriate Altera device family data sheet and the
DSP Solution Center on the Altera website.

The following four code samples show Verilog HDL and VHDL examples
for unsigned and signed multipliers that synthesis tools infer as an
lpm_mult megafunction. Each example fits into one DSP block 9-bit
element (using no extra logic cells for registers when register packing
occurs).

1 The signed declaration in Verilog HDL is a feature of the
Verilog-2001 Standard.

Verilog HDL Unsigned Multiplier

module unsigned_mult (out, a, b);
output [15:0] out;
input [7:0] a;
input [7:0] b;

assign out = a * b;
endmodule

Verilog HDL Signed Multiplier with Input & Output Registers
(Pipelining = 2)

module signed_mult (out, clk, a, b);
output [15:0] out;
input clk;
input signed [7:0] a;
input signed [7:0] b;

reg signed [7:0] a_reg;
reg signed [7:0] b_reg;
reg signed [15:0] out;

wire signed [15:0] mult_out;

assign mult_out = a_reg * b_reg;

Altera Corporation 7–9
June 2004

Recommended HDL Coding Styles

always@(posedge clk)
begin

a_reg <= a;
b_reg <= b;
out <= mult_out;

end
endmodule

VHDL Unsigned Multiplier with Input & Output Registers (Pipelining = 2)

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY unsigned_mult IS
PORT (

a: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
b: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
clk: IN STD_LOGIC;
aclr: IN STD_LOGIC;
result: OUT STD_LOGIC_VECTOR (15 DOWNTO 0)

);
END unsigned_mult;

ARCHITECTURE rtl OF unsigned_mult IS
SIGNAL a_reg, b_reg: STD_LOGIC_VECTOR (7 DOWNTO 0);

BEGIN
PROCESS (clk, aclr)
BEGIN

IF (aclr ='1') THEN
a_reg <= (OTHERS => '0');
b_reg <= (OTHERS => '0');
result <= (OTHERS => '0');

ELSIF (clk'event AND clk = '1') THEN
a_reg <= a;
b_reg <= b;

result <= UNSIGNED(a_reg) * UNSIGNED(b_reg);
END IF;

END PROCESS;
END rtl;

VHDL Signed Multiplier

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_signed.ALL;
USE ieee.std_logic_unsigned.ALL;

7–10 Altera Corporation
June 2004

Quartus II Handbook, Volume 1

ENTITY signed_mult IS
PORT (

a: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
b: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
result: OUT STD_LOGIC_VECTOR (15 DOWNTO 0)

);
END signed_mult;

ARCHITECTURE rtl OF signed_mult IS
SIGNAL a_int, b_int: SIGNED (7 downto 0);
SIGNAL pdt_int: SIGNED (15 downto 0);

BEGIN
a_int <= SIGNED (a);
b_int <= SIGNED (b);
pdt_int <= a_int * b_int;
result <= STD_LOGIC_VECTOR(pdt_int);

END rtl;

Multiply-Accumulators & Multiply-Adders

Synthesis tools detect multiply-accumulators or multiply-adders and
convert them to altmult_accum or altmult_add megafunctions,
respectively. The software then places these functions in DSP blocks.

1 Synthesis software only infers multiply-accumulator and
multiply-adder functions if the Altera device family has
dedicated DSP blocks.

A multiply-accumulator consists of a multiply operator feeding an
addition operator. The addition operator feeds a set of registers that then
feed the second input to the addition operator. A multiply-adder consists
of two- to four-multiply operators feeding one- or two-levels of addition,
subtraction, or addition/subtraction operators. The second-level
operator, if used, is always addition. In addition to the multiply-
accumulator and multiply-adder, the Quartus II Fitter can also place
input and output registers into the DSP block (i.e., perform register
packing) to improve performance and area utilization.

The following code samples show Verilog HDL and VHDL examples of
inference for specific multiply-accumulators and multiply-adders.

Altera Corporation 7–11
June 2004

Recommended HDL Coding Styles

Verilog HDL Unsigned Multiply-Accumulator with Input, Output &
Pipeline Registers (Latency = 3)

module unsig_altmult_accum (dataout, dataa, datab, clk, aclr, clken);
input [7:0] dataa;
input [7:0] datab;
input clk;
input aclr;
input clken;

output [31:0] dataout;

reg [31:0] dataout;
reg [7:0] dataa_reg;
reg [7:0] datab_reg;
reg [15:0] multa_reg;

wire [15:0] multa;
wire [31:0] adder_out;

assign multa = dataa_reg * datab_reg;
assign adder_out = multa_reg + dataout;

always @ (posedge clk or posedge aclr)
begin

if (aclr)
begin

dataa_reg <= 0;
datab_reg <= 0;

multa_reg <= 0;

dataout <= 0;
end

else if (clken)
begin

dataa_reg <= dataa;
datab_reg <= datab;

multa_reg <= multa;

dataout <= adder_out;
end

end
endmodule

7–12 Altera Corporation
June 2004

Quartus II Handbook, Volume 1

Verilog HDL Signed Multiply-Adder (Latency = 0)

module sig_altmult_add (dataa, datab, datac, datad, result);
input SIGNED [15:0] dataa;
input SIGNED [15:0] datab;
input SIGNED [15:0] datac;
input SIGNED [15:0] datad;
output [32:0] result;

wire SIGNED [31:0] mult0_result;
wire SIGNED [31:0] mult1_result;

assign mult0_result = dataa * datab;
assign mult1_result = datac * datad;

assign result = (mult0_result + mult1_result);
endmodule

VHDL Unsigned Multiply-Adder with Input, Output & Pipeline Registers
(Latency = 3)

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_signed.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY unsignedmult_add IS
PORT (

a: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
b: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
c: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
d: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
clk: IN STD_LOGIC;
aclr: IN STD_LOGIC;
result: OUT STD_LOGIC_VECTOR (15 DOWNTO 0)

);
END unsignedmult_add;

ARCHITECTURE rtl OF unsignedmult_add IS
SIGNAL a_int, b_int, c_int, d_int: STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL pdt_int, pdt2_int: UNSIGNED (15 DOWNTO 0);
SIGNAL result_int: UNSIGNED (15 DOWNTO 0);

BEGIN
PROCESS (clk, aclr)
BEGIN

IF (aclr = '1') THEN
a_int <= (OTHERS => '0');
b_int <= (OTHERS => '0');
c_int <= (OTHERS => '0');
d_int <= (OTHERS => '0');

Altera Corporation 7–13
June 2004

Recommended HDL Coding Styles

pdt_int <= (OTHERS => '0');
pdt2_int <= (OTHERS => '0');
result_int <= (OTHERS => '0');

ELSIF (clk'event AND clk = '1') THEN
a_int <= a;
b_int <= b;
c_int <= c;
d_int <= d;

pdt_int <= UNSIGNED(a_int) * UNSIGNED(b_int);
pdt2_int <= UNSIGNED(c_int) * UNSIGNED(d_int);
result_int <= pdt_int + pdt2_int;

END IF;
END PROCESS;

result <= STD_LOGIC_VECTOR(result_int);
END rtl;

VHDL Signed Multiply-Accumulator with Input, Output & Pipeline
Registers (Latency = 3)

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_signed.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY sig_altmult_accum IS
PORT (

a: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
b: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
clk: IN STD_LOGIC;
accum_out: OUT STD_LOGIC_VECTOR (15 DOWNTO 0)

) ;
END sig_altmult_accum;

ARCHITECTURE rtl OF sig_altmult_accum IS
SIGNAL a_reg, b_reg : SIGNED (7 DOWNTO 0);
SIGNAL pdt_reg : SIGNED (15 DOWNTO 0);
SIGNAL adder_out : SIGNED (15 DOWNTO 0);

BEGIN
PROCESS (clk)
BEGIN

IF (clk'event and clk = '1') THEN
a_reg <= SIGNED (a);
b_reg <= SIGNED (b);

pdt_reg <= a_reg * b_reg;
adder_out <= adder_out + pdt_reg ;

END IF;
 END process;

7–14 Altera Corporation
June 2004

Quartus II Handbook, Volume 1

accum_out <= std_logic_vector(adder_out);
END rtl;

RAM

To infer RAM functions, synthesis tools detect sets of registers and logic
that can be replaced with the altsyncram or lpm_ram_dp
megafunctions, depending on the targeted device family.

1 Synthesis software only recognizes RAM blocks for device
families that have dedicated RAM blocks.

Synthesis tools recognize single port and simple dual-port (one read and
one write port) RAM blocks. The software may not infer very small RAM
blocks because very small RAM blocks can typically be implemented
more efficiently by using the registers in regular logic.

1 If your design contains a RAM block that the synthesis tool does
not recognize and infer, it may use a large amount of memory
and could potentially cause runtime compilation problems.

1 For certain RAM configurations in certain device families, using
a RAM megafunction may slightly change the design
functionality if the RAM reads from and writes to the same
location. In this scenario, the software generally issues a
warning. If you are using Quartus II integrated synthesis, the
Quartus II Help explains the condition under which the
functionality changes.

The following code samples show Verilog HDL and VHDL examples that
infer single- and dual-clock synchronous RAM. Depending on the device
family’s dedicated RAM architecture, the RAM may need to be
synchronous.

f Refer to the appropriate Altera device family data sheet or handbook for
more information about your specific device at
www.altera.com/literature.

For the dual-clock examples—if you are reading and writing to the same
address—the functionality of the inferred megafunction may differ from
the original HDL code. (Synthesis tools issues a warning to inform you of
this functional difference.)

Altera Corporation 7–15
June 2004

Recommended HDL Coding Styles

Verilog HDL Single-Clock Synchronous RAM

module ram_infer (q, a, d, we, clk);
 output [7:0] q;
 input [7:0] d;
 input [6:0] a;
 input we, clk;
 reg [6:0] read_add;
 reg [7:0] mem [127:0];

 always @ (posedge clk) begin
 if (we)
 mem[a] <= d;
 read_add <= a;
 end

assign q = mem[read_add];
endmodule

Verilog HDL Dual-Clock Synchronous RAM

module ram_dual (q, addr_in, addr_out, d, we, clk1,
clk2);

output [7:0] q;
input [7:0] d;
input [6:0] addr_in;
input [6:0] addr_out;
input we, clk1, clk2;

reg [6:0] addr_out_reg;
reg [7:0] q;
reg [7:0] mem [127:0];

always @ (posedge clk1)
begin

if (we)
mem[addr_in] <= d;

end

always @ (posedge clk2) begin
q <= mem[addr_out_reg];
addr_out_reg <= addr_out;

end
endmodule

7–16 Altera Corporation
June 2004

Quartus II Handbook, Volume 1

VHDL Single-Clock Synchronous RAM

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY ram IS
PORT (

clock: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0)

);
END ram;

ARCHITECTURE rtl OF ram IS
TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);

SIGNAL ram_block : MEM;
SIGNAL read_address_reg : INTEGER RANGE 0 to 31;

BEGIN
PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN

ram_block(write_address) <= data;
END IF;

read_address_reg <= read_address;

END IF;
END PROCESS;

q <= ram_block(read_address_reg);
END rtl;

Altera Corporation 7–17
June 2004

Recommended HDL Coding Styles

VHDL Dual-Clock Synchronous RAM

’
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY ram_dual IS
PORT (

clock1, clock2: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (3 DOWNTO 0);
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (3 DOWNTO 0)

);
END ram_dual;

ARCHITECTURE rtl OF ram_dual IS
TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(3 DOWNTO 0);

SIGNAL ram_block : MEM;
SIGNAL read_address_reg : INTEGER RANGE 0 to 31;

BEGIN
PROCESS (clock1)
BEGIN

IF (clock1'event AND clock1 = '1') THEN
IF (we = '1') THEN

ram_block(write_address) <= data;
END IF;

END IF;
END PROCESS;

PROCESS (clock2)
BEGIN

IF (clock2'event AND clock2 = '1') THEN
q <= ram_block(read_address_reg);
read_address_reg <= read_address;

END IF;
END PROCESS;

END rtl;

The following code samples show Verilog HDL and VHDL code
examples of RAM with asynchronous read addresses and registered
outputs.

The implementation of RAM example code in the following samples
varies depending on the dedicated RAM architecture of the appropriate
device family. For example, implementing asynchronous read addresses
in an APEX device’s RAM block is straightforward because the APEX
architecture supports asynchronous read addresses. However, read
addresses in Stratix® devices must be registered; therefore, you cannot

7–18 Altera Corporation
June 2004

Quartus II Handbook, Volume 1

directly implement the asynchronous RAM example code in the
following samples. To implement the asynchronous RAM example from
the Stratix architecture by inferring an altsyncram megafunction,
synthesis tools may move the output registers to the inputs of the RAM
block. If the read and write clocks are not the same, moving the output
registers to the inputs of the RAM block may slightly change the
functionality. In these circumstances, the software issues a warning.
When using Quartus II integrated synthesis, Quartus II Help explains the
differences.

Verilog HDL Single-Clock Synchronous RAM with Asynchronous Read
Address

module ram (clock, data, write_address, read_address, we, q);
parameter ADDRESS_WIDTH = 4;
parameter DATA_WIDTH = 8;

input clock;
input [DATA_WIDTH-1:0] data;
input [ADDRESS_WIDTH-1:0] write_address;
input [ADDRESS_WIDTH-1:0] read_address;
input we;
output [DATA_WIDTH-1:0] q;

reg [DATA_WIDTH-1:0] q;
reg [DATA_WIDTH-1:0] ram_block [2**ADDRESS_WIDTH-1:0];

always @ (posedge clock)
begin

if (we)
ram_block[write_address] <= data;

q <= ram_block[read_address];
end

endmodule

Altera Corporation 7–19
June 2004

Recommended HDL Coding Styles

VHDL Single-Clock Synchronous RAM with Asynchronous Read Address

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY ram IS
GENERIC (

ADDRESS_WIDTH : integer := 4;
DATA_WIDTH : integer := 8

);
PORT (

clock : IN std_logic;
data : IN STD_LOGIC_VECTOR(DATA_WIDTH - 1 DOWNTO 0);
write_address IN STD_LOGIC_VECTOR (ADDRESS_WIDTH - 1 DOWNTO 0);
read_address IN STD_LOGIC_VECTOR(ADDRESS_WIDTH - 1 DOWNTO 0);
we : IN STD_LOGIC;
q : OUT STD_LOGIC_VECTOR(DATA_WIDTH - 1 DOWNTO 0)

);
END ram;

ARCHITECTURE rtl OF ram IS
TYPE RAM IS ARRAY(0 TO 2 ** ADDRESS_WIDTH - 1) OF

std_logic_vector(DATA_WIDTH - 1 DOWNTO 0);
SIGNAL ram_block : RAM;

BEGIN
PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN
 ram_block(TO_INTEGER(UNSIGNED(write_address))) <= data;
END IF;

q <= ram_block(TO_INTEGER(UNSIGNED(read_address)));
END IF;

END PROCESS;
END rtl;

7–20 Altera Corporation
June 2004

Quartus II Handbook, Volume 1

ROM

To infer ROM functions, synthesis tools detect sets of registers and logic
that can be replaced with the altsyncram or lpm_rom megafunctions,
depending on the target device family.

1 Synthesis software only recognizes ROM functions for device
families that have dedicated memory blocks.

ROMs are inferred when you have a case statement where a value is being
set to a constant for every choice in the case statement. Because small
ROMs typically achieve the best performance when they are
implemented using the registers in regular logic, each ROM function has
to meet a minimum size requirement to be inferred and placed into
memory.

The following code samples show Verilog HDL and VHDL examples that
infer synchronous ROM. Depending on the device family’s dedicated
RAM architecture, the ROM may need to be synchronous; consult the
device family data sheet for details. For device architectures with
synchronous RAM blocks, such as Stratix devices, either the address or
the output has to be registered for ROM code to be inferred. When output
registers are used, the registers are implemented using the input registers
of the Stratix RAM block, but the functionality of the ROM is not changed.
If you register the address, the power-up state of the inferred ROM can be
different from the HDL design. In this scenario, the software generally
issues a warning. When using Quartus II integrated synthesis, Quartus II
Help explains the condition under which the functionality changes.

Verilog HDL Synchronous ROM

module sync_rom (clock, address, data_out);
input clock;
input [7:0] address;
output [5:0] data_out;
reg [5:0] data_out;

always @ (posedge clock)
begin

case (address)
8'b00000000: data_out = 6'b101111;
8'b00000001: data_out = 6'b110110;
...
8'b11111110: data_out = 6'b000001;
8'b11111111: data_out = 6'b101010;

endcase
end

endmodule

Altera Corporation 7–21
June 2004

Recommended HDL Coding Styles

VHDL Synchronous ROM

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY sync_rom IS
PORT (

clock: IN STD-LOGIC;
address: IN STD_LOGIC_VECTOR(7 downto 0);
data_out: OUT STD_LOGIC_VECTOR(5 downto 0)

);
END sync_rom;

ARCHITECTURE rtl OF sync_rom IS
BEGIN
PROCESS (clock)

BEGIN
CASE address IS

WHEN "00000000" => data_out <= "101111";
WHEN "00000001" => data_out <= "110110";

...

...

...
WHEN "11111110" => data_out <= "000001";
WHEN "11111111" => data_out <= "101010";
WHEN OTHERS => data_out <= "101111";

END CASE;
END PROCESS;

END rtl;

Shift Registers

To infer shift registers, synthesis tools detect a group of shift registers of
the same length and convert them to an altshift_taps megafunction.
To be detected, all the shift registers must have the following
characteristics:

■ Use the same clock and clock enable
■ Do not have any other secondary signals
■ Have equally spaced taps that are at least three registers apart

Synthesis software recognizes shift registers only for device families that
have dedicated RAM blocks and use certain guidelines to determine the
best implementation. The following guidelines are followed in Quartus II
integrated synthesis and are generally followed by third-party EDA tools
as well:

■ For FLEX® 10K and ACEX® 1K devices, the software does not infer
altshift_taps megafunctions because FLEX 10K and ACEX 1K
devices have a relatively small amount of dedicated memory.

7–22 Altera Corporation
June 2004

Quartus II Handbook, Volume 1

■ For APEX 20K and APEX II devices, the software infers
altshift_taps megafunctions if the shift register has more than a
total of 128 bits. Smaller shift registers typically do not benefit from
implementation in dedicated memory.

■ For Stratix II, Stratix, Cyclone™ II, and Cyclone devices, the software
determines whether to infer altshift_taps megafunctions based
on the width of the registered bus (W), the length between each tap
(L), and the number of taps (N).
● If the registered bus width is one (W = 1), the software infers

altshift_taps if the number of taps times the length
between each tap is greater than or equal to 64 (N × L ≥ 64).

● If the registered bus width is greater than one (W > 1), the
software infers altshift_taps if the registered bus width
times the number of taps times the length between each tap is
greater than or equal to 32 (W × N × L ≥ 32).

1 If the length between each tap (L) is not a power of two, the
software uses more logic to decode the read and write counters.
This situation occurs because for different sizes of shift registers,
external decode logic (using LEs or ALMs) is required to
implement the function, which eliminates the advantage of
implementing shift registers in memory.

1 The registers that the software maps to the altshift_taps
megafunction and places in RAM are not available in simulation
tools because their node names do not exist after synthesis.

The following code sample shows a Verilog HDL example of a simple,
single-bit wide, 64-bit long shift register. The software implements the
register (W = 1 and M = 64) in an altshift_taps megafunction for
supported devices. If the length of the register is less than 64 bits, the
software implements the shift register in logic.

Verilog HDL Single-Bit Wide, 64-Bit Long Shift Register
’

module shift_1x64 (clk, shift, sr_in, sr_out ;
 input clk, shift;

input sr_in;
output sr_out;

reg [63:0] sr;

always @ (posedge clk)
begin

if (shift == 1'b1)
begin

sr[63:1] <= sr[62:0];
sr[0] <= sr_in;

Altera Corporation 7–23
June 2004

Recommended HDL Coding Styles

end
end

assign sr_out = sr[63];
endmodule

The following code sample shows a Verilog HDL example of an 8-bit
wide, 64-bit long shift register (W > 1 and M = 64) with evenly spaced taps
at 15, 31, and 47. The software implements this function in a single
altshift_taps megafunction and maps it to RAM in supported
devices.

Verilog HDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced
Taps

module shift_8x64_taps (clk, shift, sr_in, sr_out, sr_tap_one, sr_tap_two,
sr_tap_three);

input clk, shift;
input [7:0] sr_in;
output [7:0] sr_tap_one, sr_tap_two, sr_tap_three, sr_out;

reg [7:0] sr [63:0];
integer n;

 always @ (posedge clk)
begin

if (shift == 1'b1)
begin

for (n = 63; n>0; n = n-1)
begin

sr[n] <= sr[n-1];
end

sr[0] <= sr_in;
end

end

assign sr_tap_one = sr[15];
assign sr_tap_two = sr[31];
assign sr_tap_three = sr[47];
assign sr_out = sr[63];

endmodule

7–24 Altera Corporation
June 2004

Quartus II Handbook, Volume 1

The following code sample shows a VHDL example of a 8-bit wide, 64-bit
long shift register with evenly spaced taps at 15, 31, and 47.

VHDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps

’

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY shift_8x64_taps IS
PORT (

clk : IN STD_LOGIC;
shift : IN STD_LOGIC;
sr_in : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
sr_tap_one : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
sr_tap_two : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
sr_tap_three : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
sr_out : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)

);
END shift_8x64_taps;

ARCHITECTURE arch OF shift_8x64_taps IS

SUBTYPE sr_width IS STD_LOGIC_VECTOR(7 DOWNTO 0);
TYPE sr_length IS ARRAY (63 DOWNTO 0) OF sr_width;

SIGNAL sr : sr_length;
BEGIN

PROCESS (clk)
BEGIN

IF (clk'EVENT and clk = '1') THEN
IF (shift = '1') THEN

sr(63 DOWNTO 1) <= sr(62 DOWNTO 0);
sr(0) <= sr_in;

END IF;
END IF;

END PROCESS;

sr_tap_one <= sr(15);
sr_tap_two <= sr(31);
sr_tap_three <= sr(47);
sr_out <= sr(63);

END arch;

Altera Corporation 7–25
June 2004

Recommended HDL Coding Styles

Device-Specific
Coding
Recommenda-
tions

This section provides device-specific coding recommendations for Altera
device architectures. Designing specific logic structures to match the
appropriate Altera device architecture can provide significant
improvements in quality of results.

Secondary Control Signals in Registers or Flip-Flops

FPGA device architectures are based on registers, or flip-flops. The
registers in Altera FPGAs provide a number of secondary control signals
that you can use to implement control logic for each register without
using extra logic cells. Device families vary in their support for secondary
signals, so consult your device family data sheet or handbook to verify
which signals are available in your target device.

To make the most efficient use of the signals in the device, your HDL code
should match the device architecture as closely as possible. The control
signals have a certain priority due to the nature of the architecture, so
your HDL code should follow that priority where possible.

Your synthesis tool can emulate any control signals using regular logic, so
it is always possible to get functionally correct results. However, if your
design requirements are flexible in terms of which control signals are
used and in what priority, you can achieve the most efficient results by
matching the device architecture. If the priority of the signals in your
design is not the same as the target architecture, then extra logic may be
required to implement the control signals.

1 Note that the priority order for secondary control signals in
Altera devices may be different than the order for other vendors’
devices, so if your design requirements are flexible in this area,
it is a good idea to check your secondary control signals when
migrating designs between FPGA vendors.

The signal order is the same for all Altera device families, although as
noted above, not all device families provide every signal. The priority
order is shown here:

1. Asynchronous Clear, aclr

2. Preset

3. Asynchronous Load, aload

4. Enable, ena

5. Synchronous Clear, sclr

7–26 Altera Corporation
June 2004

Quartus II Handbook, Volume 1

6. Synchronous Load, sload

7. Data In

The examples below provide Verilog HDL and VHDL code that create a
register with the aclr, aload, and ena control signals listed above.

The preset signal is not available on recent device families, because it has
been replaced with the more flexible aload signal, so it is not included in
the examples. Creating many registers with different sload and sclr
signals can make it difficult for the Quartus II Fitter to pack the registers
into logic array blocks (LABs), since the sclr and sload signals are LAB-
wide signals. Therefore, synthesis tools typically restrict their use to
certain examples such as arithmetic chains (e.g. counters) or wide
multiplexers where there are enough registers with common signals to
allow good LAB packing. If you do use these additional control signals,
use them in the priority order that matches the device architecture. To
ensure that you can achieve the most efficient results, the sclr signal
should have a higher priority than the sload signal in the same way that
aclr has higher priority than aload in the following examples.

Note that dff_all.v does not have adata on the sensitivity list, but
dff_all.vhd does. This is a limitation of the Verilog HDL language —there
is no way to describe an asynchronous load signal (where q toggles if
adata toggles while aload is high). All synthesis tools should infer an
aload signal from this construct despite this limitation, although you may
see information or warning messages from the synthesis tool.

Verilog HDL D-Flip-Flop (Register) with Control Signals

module dff_control(clk, aclr, aload, ena, data, adata,
q);

input clk, aclr, aload, ena, data, adata;
output q;
reg q;
always @ (posedge clk or posedge aclr or posedge

aload)
begin

if (aclr)
q <= 1'b0;

else if (aload)
q <= adata;

else
if (ena)

q <= data;
end

endmodule

Altera Corporation 7–27
June 2004

Recommended HDL Coding Styles

VHDL D-Flip-Flop (Register) with Control Signals

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY dff_control IS
PORT (

 clk : IN STD_LOGIC;
 aclr : IN STD_LOGIC;
 aload : IN STD_LOGIC;
 adata : IN STD_LOGIC;
 ena : IN STD_LOGIC;

data : IN STD_LOGIC;
 q : OUT STD_LOGIC
);
END dff_control;

ARCHITECTURE rtl OF dff_control IS
BEGIN

PROCESS (clk, aclr, ena, aload, adata)
BEGIN

 IF (aclr = '1') THEN
 q <= '0';
 ELSIF (aload = '1') THEN
 q <= adata;
 ELSE

IF (clk = '1' AND clk'event) THEN
IF(ena =‘1’)THEN

 q <= data;
END IF;

END IF;
END IF;

END PROCESS;
END rtl;

Tri-State Signals

When targeting Altera devices, you should only use tri-state signals when
they are attached to top-level bidirectional or output pins. Avoid lower-
level bidirectional pins, and avoid using the Z logic value unless it is
driving an output or bidirectional pin.

Synthesis tools implement designs with internal tri-state signals correctly
in Altera devices using multiplexing logic, but Altera does not
recommend this coding practice.

1 Note that in hierarchical or block-based designs, a hierarchical
boundary can not contain any bidirectional ports.

7–28 Altera Corporation
June 2004

Quartus II Handbook, Volume 1

The following code samples are simple examples for creating tri-state
bidirectional signals.

Tri-State Signal in Verilog HDL

module tristate (myinput, myenable, mybidir);
input myinput, myenable;
inout mybidir;

assign mybidir = (myenable ? myinput : 1'bZ);
endmodule

Tri-State Signal in VHDL

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

ENTITY tristate IS
PORT (

mybidir : INOUT STD_LOGIC;
myinput : IN STD_LOGIC;
myenable : IN STD_LOGIC

);
END tristate;

ARCHITECTURE rtl OF tristate IS
BEGIN

mybidir <= 'Z' WHEN (myenable = '0') ELSE myinput;
END rtl;

Adder Trees

Structuring adder trees appropriately to match your targeted Altera
device architecture can result in significant performance and density
improvements. A good example of an application that uses a large adder
tree is a finite impulse response (FIR) correlator; using a pipelined binary
or ternary adder tree appropriately can greatly improve your quality of
results.

This section explains why coding recommendations are different for
Altera four-input lookup table (LUT) devices (e.g., Stratix, APEX 20K,
and FLEX 10K devices) and the six-input LUT logic structures available
in Stratix II devices.

Altera Corporation 7–29
June 2004

Recommended HDL Coding Styles

Architectures With Four-Input LUTs in Logic Elements (LEs)

Architectures such as Stratix, APEX 20K, and FLEX 10K devices contain
four-input LUTs as the standard combinational structure in the logic
element (LE).

If your design can tolerate pipelining, the fastest way to add three
numbers A, B, and C, in Stratix, APEX 20K, or FLEX 10K devices is to add
A + B, register the output, and then add the registered output to C.
Adding A + B takes one level of logic (i.e., one bit is added in one LE), so
this runs at full clock speed. This can be extended to as many numbers as
desired.

In the example that follows, five numbers A, B, C, D, and E are added.
Adding five numbers in Stratix, APEX 20K, or FLEX 10K devices requires
four adders and three levels of registers for a total of 64 LEs (for 16-bit
numbers).

Verilog HDL Pipelined Binary Tree
module binary_adder_tree (A, B, C, D, E, CLK, OUT);

parameter WIDTH = 16;

input [WIDTH-1:0] A, B, C, D, E;
input CLK;
output [WIDTH-1:0] OUT;

wire [WIDTH-1:0] sum1, sum2, sum3, sum4;

reg [WIDTH-1:0] sumreg1, sumreg2, sumreg3, sumreg4;

// Registers
always @ (posedge CLK)

begin
sumreg1 <= sum1;
sumreg2 <= sum2;
sumreg3 <= sum3;
sumreg4 <= sum4;

end

// 2-bit additions
assign sum1 = A + B;
assign sum2 = C + D;
assign sum3 = sumreg1 + sumreg2;
assign sum4 = sumreg3 + E;

assign OUT = sumreg4;
endmodule

7–30 Altera Corporation
June 2004

Quartus II Handbook, Volume 1

Architectures With Six-Input LUTs in Adaptive Logic Modules (ALMs)

Because the Stratix II architecture uses a six-input LUT in its basic logic
structure, the adaptive logic module (ALM), Stratix II devices benefit
from a more streamlined coding style. Specifically, Stratix II device ALMs
can simultaneously add three bits. Thus, the tree in the previous example
need be only two levels deep and contain just two add-by-three inputs
instead of four add-by-two inputs.

Again, although the code in the previous example successfully compiles
for Stratix II devices, it is not efficient and does not take advantage of the
six-input Adaptive LUT (ALUT). By restructuring the tree as a ternary
tree the design becomes much more efficient, significantly improving
density utilization. Therefore, when targeting Stratix II devices, large
pipelined binary adder trees designed for four-input LUT architectures
should be rewritten to take advantage of the Stratix II device architecture.

The following example uses just 32 ALUTs in a Stratix II device—more
than a four-to-one advantage over the number of LUTs in the prior
example implemented in a Stratix device.

1 You cannot pack a Stratix II LAB full when using this type of
coding style, because of the number of LAB inputs. While
Quartus II integrated synthesis reports that 32 ALUTs are used
to implement the function, the Quartus II Fitter may report a
slightly higher number. However, in a typical design, the
Quartus II Fitter can pack other logic into the LAB to take
advantage of the unused ALUTs.

Verilog HDL Pipelined Ternary Tree
module ternary_adder_tree (A, B, C, D, E, CLK, OUT);

parameter WIDTH = 16;

input [WIDTH-1:0] A, B, C, D, E;
input CLK;
output [WIDTH-1:0] OUT;

wire [WIDTH-1:0] sum1, sum2;

reg [WIDTH-1:0] sumreg1, sumreg2;

// Registers
always @ (posedge CLK)

begin
sumreg1 <= sum1;
sumreg2 <= sum2;

end

// 3-bit additions

Altera Corporation 7–31
June 2004

Recommended HDL Coding Styles

assign sum1 = A + B + C;
assign sum2 = sumreg1 + D + E;

assign OUT = sumreg2;
endmodule

These examples apply to pipelined adders, but partitioning your addition
operations can help you achieve better results in non-pipelined adders as
well. If your design is not pipelined, a ternary tree provides much better
performance than a binary tree. For example, depending on your
synthesis tool, the HDL code sum = (A + B + C) + (D + E) is more
likely to create the optimal implementation of a 3-input adder for A + B +
C followed by a 3-input adder for sum1 + D + E than the code without the
parenthesis. If you don’t add the parenthesis, the synthesis tool may
partition the addition in a way that is not optimal for the architecture.

General Coding
Recommenda-
tions

This section provides general coding recommendations, specifically
regarding latches, state machines, and multiplexers.

Latches

When designing combinational logic, certain coding styles can create an
unintentional latch. For example, when CASE or IF statements do not
cover all possible input conditions, latches may be required to hold the
output if a new output value is not assigned. Check your synthesis tool
messages for references to latches being inferred.

The full_case attribute can be used in Verilog HDL designs to indicate
that non-specified cases can be treated as “don’t care.” However, using
the full_case attribute may lead to simulation mismatches because it is
a synthesis-only attribute.

f See the appropriate chapter in the Synthesis section in Volume 1 of the
Quartus II handbook for more information about using attributes in your
synthesis tool. The Quartus II Integrated Synthesis chapter provides an
example explaining possible simulation mismatches.

Omitting the final ELSE or WHEN OTHERS clause in an IF or CASE
statement can also generate a latch. “Don’t care” assignments on the
default conditions tend to prevent latch generation. Synthesis software
generally treats unknowns as “don’t care” conditions to optimize logic.
For the best logic optimization, assign the default CASE or final ELSE
value to “don’t care” instead of a logic value.

The following shows example VHDL code that prevents an unintentional
latch. Without the final ELSE clause, the code creates unintentional
latches to cover the remaining combinations of the sel inputs. When

7–32 Altera Corporation
June 2004

Quartus II Handbook, Volume 1

targeting a Stratix device with the following code, omitting the final ELSE
condition may cause the synthesis software to use up to six LEs instead of
the three it uses with the ELSE statement. Also, assigning the final ELSE
value to 1 instead of X may result in slightly more LEs.

VHDL Code Preventing Unintentional Latch Creation

LIBRARY ieee;
USE IEEE.std_logic_1164.all;

ENTITY nolatch IS
PORT (a,b,c : IN STD_LOGIC;

sel: IN STD_LOGIC_VECTOR (4 DOWNTO 0);
oput: OUT STD_LOGIC);

END nolatch;

ARCHITECTURE rtl OF nolatch IS
BEGIN

PROCESS (a,b,c,sel) BEGIN
IF sel = "00000" THEN

oput <= a;
ELSIF sel = "00001" THEN

oput <= b;
ELSIF sel = "00010" THEN

oput <= c;
ELSE --- Prevents latch inference

oput <= 'X'; --/
END IF;

END PROCESS;
END rtl;

State Machines

Synthesis tools can recognize and encode Verilog HDL and VHDL state
machines during synthesis. This section presents guidelines to ensure the
best results when using state machines.

To achieve the best results on average, synthesis tools often use one-hot
encoding for FPGA devices and minimal-bits encoding for CPLD devices,
although the choice of implementation may vary for different state
machines. See your synthesis tool’s documentation for tool-specific ways
to control how state machines are encoded.

f For information about state machine encoding in Quartus II integrated
synthesis, refer to the State Machine Processing section in Quartus II
Integrated Synthesis chapter in Volume 1 of the Quartus II Handbook.

Altera Corporation 7–33
June 2004

Recommended HDL Coding Styles

To ensure proper recognition and inference of state machines and to
improve performance, Altera recommends that you observe the
following guidelines (which apply to both Verilog HDL and VHDL):

■ Assign default values to outputs derived from the state machine to
avoid generation of unwanted latches during synthesis.

■ Assign a default clause to direct the state machine in case it
accidentally reaches an unused state.

■ Separate the state machine logic from all arithmetic functions and
data paths, including assigning output values.

■ If your design contains an operation that is used by more than one
state, define the operation outside the state machine and make the
output logic of the state machine use this value.

■ Use a simple asynchronous or synchronous reset to ensure a defined
power-up state. If your state machine design contains more elaborate
reset logic, such as an asynchronous reset and an asynchronous load
at the same time, the Quartus II software, for example, generates
regular logic rather than inferring a state machine.

f See the following sections for additional guidelines and coding examples
using “Verilog HDL State Machines” on page 7–33 and “VHDL State
Machines” on page 7–36.

Verilog HDL State Machines

To ensure proper recognition and inference of Verilog HDL state
machines, observe the following additional Verilog-specific guidelines.
The enforcement of some of these guidelines may be specific to the
Quartus II integrated synthesis tool. See your synthesis tool’s document
for more tool-specific coding recommendations.

■ Represent the status in a state machine with the parameter data
types and use the parameters to make state assignments. This
implementation makes the state machine easier to read and reduces
the risks of errors during coding.

1 Altera recommends against the direct use of integer values for
state variables such as next_state <=0. However, integer use
does not prevent inference in the Quartus II software.

■ No state machine is inferred in the Quartus II software if the state
transition logic uses arithmetic such as the following example:

case (state)
0: begin

if (ena) next_state <= state + 2;
else next_state <= state + 1;

end

7–34 Altera Corporation
June 2004

Quartus II Handbook, Volume 1

1: begin
...

endcase

■ No state machine is inferred in the Quartus II software if the state
variable is used to create an output as follows:

output out1
case (state)

state_0: begin
if (ena) out1 <= state_1;
else out1 <= state_2;
next_state <= state_2;

end
state_1: begin
...

endcase

Verilog HDL State Machine Coding Example

The module verilog_fsm that follows is an example of a typical Verilog
HDL state machine implementation.

This machine has five states. The asynchronous reset sets the variables
state to state_0. The sum of in_1 and in_2 is used as an output of the
state machine in the state state_1 and state_2. The difference of in_1
and in_2 is used in the state state_1 and state_3. The temporary
variables tmp_out_0 and tmp_out_1 are used to store the sum and the
difference of in_1 and in_2. The use of these temporary variables in the
various states of the state machine ensures proper resource sharing
between these mutually exclusive states.

Example State Machine in Verilog HDL
module verilog_fsm (clk, reset, in_1, in_2, out);

input clk;
input reset;
input [3:0] in_1;
input [3:0] in_2;

parameter state_0 = 3’b000;
parameter state_1 = 3’b001;
parameter state_2 = 3’b010;
parameter state_3 = 3’b011;
parameter state_4 = 3’b100;

reg [4:0] tmp_out_0, tmp_out_1, tmp_out_2;
reg [2:0] state, next_state;

always @ (posedge clk or posedge reset)

Altera Corporation 7–35
June 2004

Recommended HDL Coding Styles

begin
if (reset)

state <= state_0;
else

state <= next_state;
end

always @ (state or in_1, or in_2)
begin

tmp_out_0 <= in_1 + in_2;
tmp_out_1 <= in_1 - in_2;

case (state)
state_0: begin

tmp_out_2 <= in_1 + 5’b00001;
next_state <= state_1;

end
state_1: begin

if (in_1 < in_2) begin
next_state <= state_2;
tmp_out_2 <= tmp_out_0;

end
else begin

next_state <= state_3;
tmp_out_2 <= tmp_out_1;

end
end
state_2: begin

tmp_out_2 <= tmp_out_0 - 5’b00001
next_state <= state_3;

end
state_3: begin

tmp_out_2 <= tmp_out_1 + 5’b00001
next_state <= state_0;

end
state_4:begin

tmp_out_2 <= in_2 + 5’b00001
next_state <= state_0;

end
default:begin

tmp_out_2 <= 5’b00000
next_state <= state_0;

end
endcase

end
assign out = tmp_out_2

endmodule

7–36 Altera Corporation
June 2004

Quartus II Handbook, Volume 1

An equivalent implementation of this state machine could be achieved by
using ‘define instead of the parameter data type, as follows:

‘define state_0 3’b000
‘define state_1 3’b001
‘define state_2 3’b010
‘define state_3 3’b011
‘define state_4 3’b100

In this case, the state and next_state assignments are assigned a
‘state_0 instead of a state_0, as shown in the following example:

next_state <= ‘state_3;

Although the ‘define construct is supported, Altera strongly
recommends the use of the parameter data type because it conserves the
state names throughout synthesis.

VHDL State Machines

To ensure proper recognition and inference of VHDL state machines,
represent the states in a state machine with enumerated types and use the
corresponding types to make state assignments. This implementation
makes the state machine easier to read and reduces the risks of errors
during coding. If the state is not represented by an enumberated type, the
Quartus II synthesis software for example, does not recognize the state
machine. Instead, it is implemented as regular logic gates and registers,
and it is not listed as a state machine in the Analysis & Synthesis report.

VHDL State Machine Coding Example

The following entity vhd1_fsm is an example of a typical VHDL state
machine implementation.

This state machine has five states. The asynchronous reset sets the
variable state to state_0. The sum of in_1 and in_2 is used as an
output of the state machine in the states state_1 and state_2. The
difference (in1 - in2) is also used in the states state_1 and state_2.
The temporary variables tmp_out_0 and tmp_out_1 are used to store
the sum and the difference of in_1 and in_2. The use of these temporary
variables in the various states of the state machine ensures the proper
resource sharing between these mutually exclusive states.

Example State Machine in VHDL
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

Altera Corporation 7–37
June 2004

Recommended HDL Coding Styles

ENTITY vhdl_fsm IS
PORT(

clk: IN STD LOGIC;
reset: IN STD_LOGIC;
in1: IN STD_LOGIC_VECTOR(4 downto 0);
in2: IN STD_LOGIC_VECTOR(4 downto 0);
out_1: OUT STD_LOGIC_VECTOR(4 downto 0)

);
END vhd1_fsm;

ARCHITECTURE rtl OF vhd1_fsm IS
TYPE Tstate IS (state_0, state_1, state_2, state_3, state_4);

SIGNAL tmp_out_0: STD_LOGIC_VECTOR (4 downto 0);
SIGNAL tmp_out_1: STD_LOGIC_VECTOR (4 downto 0);
SIGNAL state: Tstate;
SIGNAL next_state: Tstate;

BEGIN
PROCESS(clk, reset)
BEGIN

IF reset = ‘1’ THEN
state <=state_0;

ELSIF rising edge(clk) THEN
state <= next_state;

END IF;
END PROCESS;

PROCESS (state, in1, in2, tmp_out_0, tmp_out_1)
BEGIN

tmp_out_0 <= STD_LOGIC_VECTOR’(UNSIGNED(in1)+UNSIGNED(in2));
tmp_out_1 <= STD_LOGIC_VECTOR’(UNSIGNED(in1)+UNSIGNED(in2));

CASE state IS
WHEN state_0 =>

out_1 <= in1;
next_state <= state_1;

WHEN state_1 =>
IF (in1 < in2) then

next_state <= state_2;
out_1 <= tmp_out_0;

ELSE
next_state <= state_3;
out_1 <= tmp_out_1;

END IF;
WHEN state_2 =>

IF (in1 <“0100”) then
out_1 <= tmp_out_0;

ELSE
out_1 <= tmp_out_1;

END IF;
next_states <= state_3;

7–38 Altera Corporation
June 2004

Quartus II Handbook, Volume 1

WHEN state 3 =>
out_1 <= “11111”;
next_state <= state_4;

WHEN state 4 =>
out_1 <= in2;
next_state <= state_0;

WHEN OTHERS =>
out_1 <= “00000”;
next_state <= state 0;

END CASE;
END PROCESS;

END rtl;

Multiplexers

Multiplexers form a large portion of the logic utilization in many FPGA
designs. By optimizing your multiplexing logic, you ensure the most
efficient implementation in your Altera device. This section discusses
some common pitfalls and provides design guidelines to achieve optimal
resource utilization for multiplexer designs. The section also describes the
different types of multiplexers, and how they are implemented in the
4-input look-up tables (LUTs) found in many FPGA architectures, such as
Altera’s Stratix devices.

1 Devices with 6-input LUTs (Stratix II devices) are not
specifically discussed here. Many of the principles and
techniques for optimization are similar, but the device
utilization is different in these devices. Devices with 6-input
LUTs can implement wider multiplexers in one ALM than can
be implemented in the 4-input LUT of an LE.

Types of Multiplexers

This first sub-section discusses how multiplexers or “muxes,” are created
from various types of HDL code. CASE statements, IF statements, and
state machines are all common sources of multiplexing logic in designs.
These HDL structures create different types of multiplexers including
binary multiplexers, selector multiplexers, and priority multiplexers.
Understanding how multiplexers arise from HDL code and how they
might be implemented during synthesis is the first step towards
optimizing multiplexer structures for best results.

Binary Multiplexers
Binary multiplexers select inputs based on binary-encoded selection bits.
The “Simple Binary-Encoded “Case” Statement” example below shows
Verilog HDL code that describes a simple 4:1 binary multiplexer.

Altera Corporation 7–39
June 2004

Recommended HDL Coding Styles

Simple Binary-Encoded “Case” Statement
case (sel)

2'b00: z = a;
2'b01: z = b;
2'b10: z = c;
2'b11: z = d;

endcase

A 4:1 binary multiplexer is efficiently implemented by using two 4-input
LUTs. Larger binary muxes can be constructed using the 4:1 mux;
constructing an N-input multiplexer (N:1 mux) from a tree of 4:1 muxes
can result in a structure using as few as 0.66*(N - 1) LUTs.

Selector Multiplexers
Selector multiplexers have a separate select line for each data input. The
select lines for the mux are essentially one-hot encoded. “Simple One-
Hot-Encoded “Case” Statement” example below shows a simple Verilog
HDL code samples that describes a one-hot selector multiplexer.

Simple One-Hot-Encoded “Case” Statement
case (sel)

4'b0001: z = a;
4'b0010: z = b;
4'b0100: z = c;
4'b1000: z = d;
default: z = "X";

endcase

Selector multiplexers are commonly built as a tree of AND and OR gates.
Using this scheme, two inputs can be selected, using two select lines, in a
single 4-input LUT using two AND gates and an OR gate. The outputs of
these LUTs can be combined using a wide OR gate. An N-input selector
multiplexer of this structure requires at least 0.66*(N-0.5) LUTs, which is
just slightly worse than the best binary multiplexer.

Priority Multiplexers
In priority multiplexers, the select logic implies a priority, so the options
to select the correct item must be checked in order. These structures
commonly arise from IF, ELSE, WHEN, SELECT, or ?: statements in
VHDL or Verilog HDL. The example VHDL code in the “IF Statement
Implying Priority” example below is likely to result in the
implementation illustrated schematically in Figure 7–1.

7–40 Altera Corporation
June 2004

Quartus II Handbook, Volume 1

IF Statement Implying Priority
IF cond1 THEN z <= a;
ELSIF cond2 THEN z <= b;
ELSIF cond3 THEN z <= c;
ELSE z <= d;
END IF;

Notice that the multiplexers shown in Figure 7–1 form a chain, evaluating
each condition, or select bit, one at a time.

Figure 7–1. Priority Multiplexer Implementation of the IF Statement in “IF
Statement Implying Priority” on page 7–40

An N-input priority mux uses a LUT for every 2:1 multiplexers in the
chain, requiring N-1 LUTs. In addition, this chain of multiplexers is
generally bad for delay since the critical path through the logic traverses
every multiplexer in the chain.

Avoid priority muxes where priority is not required. If the order of the
choices is not important to the design, use a CASE statement to implement
a binary or selector mux instead of the priority mux. If delay through the
structure is important in a multiplexing design that requires priority,
consider recoding the design to reduce the number of logic levels.

Default or Others Case Assignment

To fully specify the cases in a CASE statement, include a DEFAULT (Verilog
HDL) or OTHERS (VHDL) assignment. This assignment is especially
important in one-hot encoding schemes where many combinations of the

z

c d

1 0

1 0

cond3

cond2

cond1

b

a

1 0

Altera Corporation 7–41
June 2004

Recommended HDL Coding Styles

select lines are unused. Specifying a case for the unused select line
combinations directs the synthesis tool how to deal with these cases, and
is required by the Verilog HDL and VHDL language specifications.

Some designs do not have a requirement for the outcome in the unused
cases, often because it is assumed that these cases will not arise. In these
situations, you can choose any value for the DEFAULT or OTHERS
assignment. However, be aware that the assignment value you choose
can have a large effect on the logic utilization required to implement the
design due to the different ways synthesis tools treat different values for
the assignment, and how they use different speed and area optimizations.

In general, to obtain best results, explicitly define your invalid CASE
selections with a separate DEFAULT or OTHERS statement instead of
combining the invalid cases with one of the defined cases.

If you do not care about the value in the invalid cases, explicitly say so by
assigning the “X” logic value for these cases instead of choosing another
value. This assignment should allow your synthesis tool to make the best
area optimizations.

You may want to experiment with different DEFAULT or OTHERS
assignments for your HDL design and your synthesis tool to test the effect
they have on your logic utilization.

Implicit Defaults

The IF statements in Verilog HDL and VHDL can be a convenient way of
specifying conditions that don’t easily lend themselves to a CASE-type
approach. However, these statements can result in complicated
multiplexer trees that are not easy for synthesis tools to optimize.

In particular, every IF statement has an implicit ELSE condition, even if
it is not specified. These implicit defaults can cause additional complexity
in a multiplexing design.

The code sample in the “IF Statement with Implicit Defaults” example
below appears to represent a 4:1 multiplexer; there are four inputs (a, b, c,
d) and one output (z).

7–42 Altera Corporation
June 2004

Quartus II Handbook, Volume 1

IF Statement with Implicit Defaults
IF cond1 THEN

IF cond2 THEN
z <= a;

END IF;
ELSIF cond3 THEN

IF cond4 THEN
z <= b;

ELSIF cond5 THEN
z <= c;

END IF;
ELSIF cond6 THEN

z <= d;
END IF;

However, each of the three separate IF statements in the code has an
implicit ELSE condition that is not specified. Since the output values for
the ELSE cases are not specified, the synthesis tool assumes the intent is
to maintain the same output value for these cases. The code sample in the
“IF Statement with Default Conditions Explicitly Specified” example
shows code with the same functionality as the code in the “IF Statement
with Implicit Defaults” on page 7–42 example but specifies the ELSE
cases explicitly.

IF Statement with Default Conditions Explicitly Specified
IF cond1 THEN

IF cond2 THEN
z <= a;

ELSE
z <= z;

END IF;
ELSIF cond3 THEN

IF cond4 THEN
z <= b;

ELSIF cond5 THEN
z <= c;

ELSE
z <= z;

END IF;
ELSIF cond6 THEN

z <= d;
ELSE

z <= z;
END IF;

Figure 7–2 is a schematic representation of the code in the“IF Statement
with Default Conditions Explicitly Specified” example above, illustrating
that although there are only four inputs, the multiplexing logic is
significantly more complicated than a basic 4:1 mux.

Altera Corporation 7–43
June 2004

Recommended HDL Coding Styles

Figure 7–2. Multiplexer Implementation of the IF Statements in “IF Statement
with Implicit Defaults” on page 7–42 and “IF Statement with Default
Conditions Explicitly Specified” on page 7–42

You can do several things in these cases to simplify the multiplexing logic
and remove the unneeded defaults. The most optimal way may be to
recode the design so it takes the structure of a 4:1 CASE statement.
Alternately, or if the priority is important, you can restructure the code to
deduce default cases and flatten the multiplexer. In this example, instead
of IF cond1 THEN IF cond2, use IF (cond1 AND cond2) which
performs the same function. In addition, question whether the defaults
are don’t care cases. In this example, you can promote the last ELSIF
cond6 statement to an ELSE statement if no other valid cases can occur.

Avoid unnecessary default conditions in your multiplexer logic to reduce
the complexity and the logic utilization required to implement your
design.

Degenerate Multiplexers

A degenerate multiplexer is one in which not all of the possible cases are
used for unique data inputs. The unneeded cases tend to contribute to
inefficiency in the logic utilization for these multiplexers. You can recode
degenerate muxes so that they take advantage of the efficient logic
utilization possible with full binary muxes.

a

b

z

cz

z

d z

1 0

1 0

cond6

0 1cond4

0 1cond2

cond3

cond1

0 1cond5

1 0

7–44 Altera Corporation
June 2004

Quartus II Handbook, Volume 1

The number of select lines in a binary multiplexer normally dictates how
big a mux is needed to implement the desired function. For example, the
mux structure represented in Figure 7–3 on page 7–44 has four select lines
and could implement a binary multiplexer with 16 inputs. However, the
figure does not use all 16 inputs and thus is considered a “degenerate”
16:1 mux.

CASE Statement Describing a Degenerate Multiplexer
CASE sel[3:0] IS

WHEN “0101” => z <= a;
WHEN “0111” => z <= b;
WHEN “1010” => z <= c;
WHEN OTHERS => z <= d;

END CASE;

Figure 7–3. Binary Multiplexer Implementation of “CASE Statement Describing
a Degenerate Multiplexer” on page 7–44

In the example in Figure 7–3, the first and fourth muxes in the top level
can easily be eliminated since all four inputs to each mux are the same
value, and the number of inputs to the other multiplexers can be reduced,
as shown in Figure 7–4.

sel[1:0]

z

Binary mux
sel[3:2]

"10xx""01xx"

"00xx" "11xx"

a db c

Altera Corporation 7–45
June 2004

Recommended HDL Coding Styles

Figure 7–4. Optimized Version of the Degenerate Binary Multiplexer from
Figure 7–3

Implementing this version of the multiplexer still requires at least 5
4-input LUTs, two for each of the remaining 3:1 muxes and one for the 2:1
mux. This design selects an output from only four inputs, a 4:1 binary
mux can be implemented optimally in 2 LUTs, so this degenerate
multiplexer tree is reducing the efficiency of the logic.

You can improve the logic utilization of this type of structure by recoding
the select lines to implement a full 4:1 binary mux. “Recoder Design for
Degenerate Binary Multiplexer” below provides code for a recoder
design that translates the original select lines into a signal z_sel with
binary encoding, and “4:1 Binary Multiplexer Design” below provides
code to implement the full binary mux.

Recoder Design for Degenerate Binary Multiplexer
CASE sel[3:0] IS

WHEN “0101” => z_sel <= “00”;
WHEN “0111” => z_sel <= “01”;
WHEN “1010” => z_sel <= “10”;
WHEN OTHERS => z_sel <= “11”;

END CASE;

4:1 Binary Multiplexer Design
CASE z_sel[1:0] IS

WHEN “00” => z <= a;
WHEN “01” => z <= b;
WHEN “10” => z <= c;
WHEN “11” => z <= d;

END CASE;

sel[1:0]

z

sel[3:2]

"10xx""01xx"

"00xx" "11xx"

a db c

3:1

3:1

2:1

7–46 Altera Corporation
June 2004

Quartus II Handbook, Volume 1

Use the new z_sel control signal from the recoder to control the 4:1
binary multiplexer that chooses between the four inputs a, b, c, and d, as
illustrated in Figure 7–5. The complexity of the select lines is handled in
the recoder, and the data multiplexing is performed with simple binary
select lines enabling the most efficient implementation.

Figure 7–5. Binary Multiplexer with Recorder

The recoder design can be implemented in two LUTs and the efficient 4:1
binary mux uses two LUTs, for a total of four LUTs. The original
degenerate mux required five LUTs, so the recoded version uses 20% less
logic than the original.

You can often improve the logic utilization of multiplexers by recoding
the select lines into full binary cases. Although logic is required to do the
encoding, more logic may be saved performing the data multiplexing.

Buses of Multiplexers

The inputs to multiplexers are often buses of data inputs where the same
multiplexing function is performed on a set of data inputs in the form of
buses. In these cases, any inefficiency in the multiplexer is multiplied by
the number of bits in the bus. The issues described in the previous
sections become even more important for wide mux buses.

For example, the recoding technique discussed in the previous section
can often be used in buses that involve multiplexing. Recoding the select
lines may only need to be done once for all the multiplexers in the bus. By
sharing the recoder logic among all the bits in the bus, you can greatly
improve the logic efficiency of a bus of muxes.

The degenerate multiplexer in the previous section requires five LUTs to
implement. If the inputs and output are 32-bits wide, the function could
require 32 x 5 or 160 LUTs for the whole bus. The recoded design uses
only two LUTs, and the select lines only need to be recoded once for the
entire bus. The binary 4:1 mux requires two LEs per bit of the bus. The

sel[3:0] a b c d

4:1

z

z_sel[1:0]

Recoder

Altera Corporation 7–47
June 2004

Recommended HDL Coding Styles

total logic utilization for the recoded version could be 2 + (2 x 32) or 66
LUTs for the whole bus, as compared to 160 LUTs for the original version!
The savings in logic become much more obvious when the mux works
across wide buses.

Using techniques to optimize degenerate muxes, removing unneeded
implicit defaults, and choosing the optimal DEFAULT or OTHERS case can
play an important role when optimizing buses of multiplexers.

Quartus II Option for Multiplexers Restructuring

The Quartus II integrated synthesis provides the Restructure
Multiplexers logic option that can help extract and optimize buses of
muxes during synthesis. In certain situations, this option performs some
of the recoding functions described above automatically without actually
changing your HDL code. For details, refer to the Restructure
Multiplexers subsection in the Quartus II Integrated Synthesis chapter in
Volume 1 of the Quartus II Handbook.

Conclusion Keep the targeted device architecture in mind when selecting your coding
style, as certain coding styles can dramatically improve performance
results. To improve your design’s performance and area utilization, take
advantage of advanced device features such as memory and DSP blocks,
as well as the specific architecture of the targeted Altera device, and
follow the coding recommendations presented in this chapter.

f For additional optimization recommendations, see the Design
Optimization for Altera Devices chapter in Volume 2 of the Quartus II
Handbook.

7–48 Altera Corporation
June 2004

Quartus II Handbook, Volume 1

Altera Corporation Section III–1
Preliminary

Section III. Synthesis

As programmable logic devices (PLDs) become more complex and
require increased performance, advanced design synthesis has become an
important part of the design flow. In the Quartus® II software you can use
the Quartus II Analysis & Synthesis module of the Compiler to analyze
your design files and create the project database. You can also use other
EDA synthesis tools to synthesize your designs, and then generate EDIF
netlist files or VQM files that can be used with the Quartus II software.
This section explains the options that are available for each of these flows,
and how they are supported in the Quartus II software.

This section includes the following chapters:

■ Chapter 8, Quartus II Integrated Synthesis

■ Chapter 9, Synplicity Synplify & SynplifyPro Support

■ Chapter 10, Mentor Graphics LeonardoSpectrum Support

■ Chapter 11, Mentor Graphics Precision RTL Synthesis Support

■ Chapter 12, Synopsys FPGA Compiler II BLIS & Quartus II
LogicLock Design Flow

■ Chapter 13, Synopsys Design Compiler FPGA Support

■ Chapter 14, Analyzing Designs with the Quartus II RTL Viewer &
Technology Map Viewer

Section III–2 Altera Corporation
Preliminary

Synthesis Quartus II Handbook, Volume 1

Revision History The table below shows the revision history for Chapters 8 to 14.

Chapter(s) Date / Version Changes Made

8 June 2004 v2.0 ● Updates to tables, figures.
● New functionality for Quartus 4.1.

Feb. 2004 v1.0 Initial release.

9 June 2004 v2.0 ● Updates to tables, figures.
● New functionality for Quartus 4.1.

Feb. 2004 v1.0 Initial release.

10 June 2004 v2.0 ● Updates to tables, figures.
● New functionality for Quartus 4.1.

Feb. 2004 v1.0 Initial release.

11 June 2004 v2.0 ● Updates to tables, figures.
● New functionality for Quartus 4.1.

Feb. 2004 v1.0 Initial release.

12 June 2004 v1.0 No change to document.

Feb. 2004 v1.0 Initial release.

13 June 2004 v1.0 Initial release.

14 June 2004 v 2.0 ● Updates to tables, figures.
● New functionality for Quartus 4.1.

Feb. 2004 v1.0 Initial release.

Altera Corporation 8–1
June 2004 Preliminary

8. Quartus II Integrated
Synthesis

Introduction As programmable logic designs become more complex and require
increased performance, advanced synthesis has become an important
part of the design flow. The Quartus® II software includes advanced
integrated synthesis that fully supports the Verilog and VHDL hardware
description languages (HDLs), as well as Altera-specific design entry
languages, and provides options to control the synthesis process. With
this synthesis support, the Quartus II software provides a complete, easy-
to-use, standalone solution for system-on-a-programmable-chip (SOPC)
designs.

This chapter documents the HDL support in the Quartus II software, and
explains how to improve and control your Quartus II synthesis results by
using Quartus II synthesis options, setting other Quartus II options in
your Verilog HDL or VHDL source code, and controlling the interface of
architecture-specific megafunctions.

Verilog HDL &
VHDL Support

This section explains the Quartus II software’s integrated synthesis
support for the Verilog HDL and VHDL synthesizable language features,
as well as some synthesis directives and attributes.

f For information on specific syntax features and language constructs, see
Quartus II Verilog HDL Support and Quartus II VHDL Support in
Quartus II Help. Quartus II Help also describes the full support for
Altera Hardware Description Language (AHDL) Text Design Files (.tdf)
and schematic entry Block Design Files (.bdf), as well as how to import
Graphical Design Format (.gdf) files from the MAX+PLUS® II software.
These Altera-specific file formats are not described in this chapter.

Verilog HDL

The Quartus II Compiler’s analysis and synthesis module supports the
Verilog-1995 standard (IEEE Std. 1364-1995) and the Verilog-2001
standard (IEEE Std. 1364-2001) constructs. You can select which standard
to use in the Verilog version section of the Verilog HDL Input page
under Analysis & Synthesis Settings in the Settings dialog box
(Assignments menu). The Quartus II Compiler uses the Verilog-2001
standard by default.

1 The Verilog HDL code samples provided in this document
follow the Verilog-2001 standard.

qii51008-2.0

8–2 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Supported Verilog-2001 standard constructs include:’

■ Generate statements: generate and genvar
■ localparam constants
■ Pre-processor statements such as ̀ elsif, ̀ line, ̀ ifdef, ̀ file,

and `default_nettype
■ Signed declarations for all variables
■ Operators such as **, <<<, and >>>
■ Attributes using the syntax (* name = value *)
■ Indexed part selects using +: and -:
■ Combinational logic sensitivity wild card token @*
■ Combined port and data type declarations
■ ANSI-style port lists
■ In-line parameter passing by name (explicit redefinition using #)
■ Multi-dimensional arrays

Unsupported Verilog-2001 standard constructs include the following:

■ Libraries and configurations

f See Quartus II Help for a complete listing of supported constructs.

The Quartus II software supports case-sensitive Verilog HDL code, in
accordance with the Verilog HDL standard.

The Quartus II software supports the ̀ include construct to include files
with absolute paths (with either / or \ as the separator), or relative paths
(relative to project root or current file location). When searching for a
relative path, the Quartus II software first searches relative to the project
directory. If the software cannot find the file, it searches relative to the
directory location of the file.

VHDL

The Quartus II Compiler's analysis and synthesis module supports the
VHDL 1987 (IEEE Std. 1076-1987) and VHDL 1993 (IEEE Std. 1076-1993)
standards. You can select which standard to use in the VHDL version
section of the VHDL Input page under Analysis & Synthesis Settings in
the Settings dialog box (Assignments menu). The Quartus II Compiler
uses the VHDL 1993 standard by default.

1 The VHDL code samples provided in this document follow the
VHDL 1993 standard.

Altera Corporation 8–3
June 2004 Preliminary

Types of Synthesis Options

The Quartus II software supports VHDL libraries differently from the
MAX+PLUS® II software or versions of the Quartus II software earlier
than version 2.1. In the Quartus II software version 2.1 and later, standard
IEEE and vendor VHDL libraries and packages can be called from VHDL
code in the Quartus II software.

The IEEE library includes the standard VHDL packages
std_logic_1164, numeric_std, and numeric_bit. The STD library
is part of the VHDL language standard and includes packages standard
(included in every project by default) and textio. For compatibility with
older designs, the Quartus II software also supports the following
vendor-specific packages and libraries:

■ Synopsys packages such as std_logic_arith and
std_logic_unsigned in the IEEE library

■ Mentor Graphics® packages such as std_logic_arith in the
ARITHMETIC library

■ Altera packages such as maxplus2, altera_mf_components, and
lpm_components in the ALTERA library

f For a complete listing of library and package support, see Using
Quartus II Packages in the Quartus II Help.

The Quartus II software does not support user-defined precompiled
libraries.

To call a user-defined VHDL package in the Quartus II software, specify
the library and package name using the LIBRARY and USE commands.
You can use any name for your library, including work; therefore, you can
use current software versions for projects developed with older versions
of Altera software that used precompiled libraries without the need to
modify any code. To compile using a VHDL package projects, include the
VHDL package in your Quartus II project on the Files page of the
Settings dialog box (Assignments menu). The package must be listed
before other files that use the package because it must be analyzed by the
Quartus II Compiler first.

Types of
Synthesis
Options

The Quartus II software provides a number of options to guide the
synthesis process and achieve optimal results. You can use synthesis
directives, synthesis attributes, and Quartus II logic options to control
synthesis.

8–4 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

1 Versions of Quartus II software earlier than 2.1 did not support
synthesis directives or attributes; the software treated these
options as comments. The behavior of the Quartus II software is
different if designs compiled in earlier versions of the software
included these synthesis options. You may need to change older
code to take into account that the software recognizes these
options.

This section defines three types of synthesis options: synthesis directives,
synthesis attributes, and Quartus II logic options. The following section,
“Quartus II Synthesis Options”, describes the most common and useful
of the synthesis options in the Quartus II software, and provides HDL
examples of how to use each option where applicable.

Synthesis Directives

The Quartus II software supports synthesis directives, also commonly
called pragmas. You can include synthesis directives in Verilog HDL or
VHDL code as comments. These directives are not Verilog HDL or VHDL
commands; however, synthesis tools use them to control the synthesis
process in a particular manner. Other tools such as simulators ignore
these directives and treat them as comments.

You can enter synthesis directives in your code using the following
syntax, where directive and value are variables, and the entry in brackets is
optional.

Verilog HDL
// synthesis <directive> [=<value>]
or
/* synthesis <directive> [=<value>] */

VHDL
-- synthesis <directive> [=<value>]

In addition to the synthesis keyword shown above, the pragma,
synopsys, and exemplar keywords are supported in both Verilog HDL
and VHDL for compatibility with other synthesis tools in this chapter.
The examples demonstrate each syntax form.

Altera Corporation 8–5
June 2004 Preliminary

Types of Synthesis Options

Synthesis Attributes

The Quartus II software supports synthesis attributes for Verilog HDL
and VHDL, also commonly called pragmas. Synthesis attributes are
similar to synthesis directives in that they drive the synthesis process.
However, attributes always apply to a specific design element. Some
synthesis attributes are also available as Quartus II logic options.

The Verilog-2001 and VHDL language definitions provide specific syntax
for specifying attributes. However in Verilog-1995 HDL, you must use
comments similar to synthesis directives. You can enter attributes in your
code using the following syntax, where attribute, attribute type, value,
object, and object type are variables, and the entry in brackets is optional.

Verilog-1995 HDL
// synthesis <attribute> [= <value>]
or
/* synthesis <attribute> [= <value>] */

1 You cannot use the open one-line comment in Verilog HDL
when a semicolon is required at the end of the line because it is
not clear to which HDL element the attribute applies. For
example, you cannot make an attribute assignment such as
reg r; // synthesis <attribute> because the attribute could
be read as part of the next line.

To apply multiple attributes to the same instance, separate the attributes
with spaces, as follows:

//synthesis <attribute1> [= <value>] <attribute2> [= <value>]

For example, to set the maxfan attribute to 16 (See the “Maximum Fan-
Out” section for details) and set the preserve attribute (See the
“Preserve Registers” on page 8–11 for details) on a register called
my_reg, use the following syntax:

reg my_reg /* synthesis maxfan = 16 preserve */;

In addition to the synthesis keyword as shown above, the keywords
pragma, synopsys, and exemplar are supported for compatibility with
other synthesis tools.

8–6 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Verilog-2001 HDL
(* <attribute> [= <value>] *)

To apply multiple attributes to the same instance, separate the attributes
with commas, as follows:

(* <attribute1> [= <value1>], <attribute2> [= <value2>] *)

For example, to set the maxfan attribute to 16 (See the “Maximum Fan-
Out”section for details) and set the preserve attribute (See the
“Preserve Registers” section for details) on a register called my_reg, use
the following syntax:

(* preserve, maxfan = 16 *) reg my_reg;

VHDL
attribute <attribute> : <attribute type> ;
attribute <attribute> of <object> : <object type> is <value> ;

In this chapter, the examples demonstrate each syntax form.

Assignments or settings made with synthesis attributes take precedence
over assignments or settings made through the Quartus II user interface,
the Quartus Settings File (.qsf), and the Tcl interface.

Quartus II Logic Options

Quartus II logic options control many aspects of the synthesis and place-
and-route process. You can set logic options in the Quartus II graphical
user interface (GUI) through the Assignment Editor (Assignments
menu). Quartus II logic options allow you to set the associated attributes
without editing the source HDL code. Logic options can be used with all
design entry languages supported by the Quartus II software:
Verilog HDL, VHDL, and schematic entry.

Quartus II
Synthesis
Options

This section discusses many common Quartus II synthesis options. These
options help you control the synthesis process within the Quartus II
software, and can help you acheive the optimal results for your design.
Some options are simply synthesis directives, some are only available as
either attributes or logic options, and some are available as both synthesis
attributes and logic options.

f For information on using other Quartus II synthesis attributes to make
pin-related assignments and set other options (that are only available as
logic options) in your Verilog HDL or VHDL code, see “Setting Other
Quartus II Options in Your HDL Source Code” on page 8–23.

Altera Corporation 8–7
June 2004 Preliminary

Quartus II Synthesis Options

1 Because Verilog HDL is case-sensitive, synthesis directives and
attributes are also case sensitive.

Translate Off & On

The translate_off and translate_on synthesis directives indicate
whether the Quartus II software or a third-party synthesis tool should
compile a portion of HDL code that is not relevant for synthesis. The
translate_off directive marks the beginning of code that the
synthesis tool should ignore; the translate_on directive indicates that
synthesis should resume. A common use of these directives is to indicate
a portion of code that is intended for simulation only. The synthesis tool
reads synthesis-specific directives and processes them during synthesis;
however, third-party simulation tools read the directives as comments
and ignore them. The following are examples of these directives.

Verilog HDL Example of Translate Off & On
// synthesis translate_off
parameter tpd = 2; // Delay for simulation

#tpd;
// synthesis translate_on

VHDL Example of Translate Off & On
-- synthesis translate_off
use std.textio.all;
-- synthesis translate_on

Read Comments as HDL

The read_comments_as_HDL synthesis directive indicates that the
Quartus II software should compile a portion of HDL code that is
commented out. This directive allows you to comment out portions of
HDL source code that are not relevant for simulation, while instructing
the Quartus II software to read and synthesize that same source code.
Setting the read_comments_as_HDL directive to on marks the
beginning of commented code that the synthesis tool should read; setting
the read_comments_as_HDL directive to off indicates the end of the
code.

1 You can use the directive with translate_off and
translate_on to create one HDL source file that includes both
a megafunction instantiation for synthesis and a behavioral
description for simulation.

8–8 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

In the following examples, the commented code enclosed by
read_comments_as_HDL is visible to the Quartus II Compiler and is
synthesized.

1 Because synthesis directives are case-sensitive in Verilog HDL,
you must match the case of the directive, as shown below.

Verilog HDL Example of Read Comments as HDL
// synthesis read_comments_as_HDL on
// my_rom lpm_rom (.address (address),
// .data (data));
// synthesis read_comments_as_HDL off

VHDL Example of Read Comments as HDL
-- synthesis read_comments_as_HDL on
-- my_rom : entity lpm_rom
-- port map (
-- address => address,
-- data => data,);
-- synthesis read_comments_as_HDL off

Full Case

A Verilog HDL case statement is considered full when its case items cover
all possible binary values of the case expression or when a default case
statement is present. A full_case attribute attached to a case statement
header that is not full forces the unspecified states to be treated as logic
“don’t care” values. Using this attribute on a case statement that is not full
avoids the latch inference problems discussed in the Design
Recommendations for Altera Devices chapter in Volume 1 of the Quartus II
Handbook. VHDL case statements must be full, so the attribute does not
apply.

When using the full_case attribute, there is a potential cause for
simulation-mismatch between Verilog HDL functional and post-
Quartus II simulation because unknown case statement cases may still
function like latches during functional simulation. For example, a
simulation mismatch may occur with the code in the following example
when sel is 2'b11 because a functional HDL simulation output behaves
like a latch while the Quartus II simulation output behaves like “don’t
care.”

1 Altera recommends making the case statement “full” in your
regular HDL code, instead of using the full_case attribute.

Altera Corporation 8–9
June 2004 Preliminary

Quartus II Synthesis Options

The case statement in the following example is not full because not all
binary values for sel are specified. Because the full_case attribute is
used, synthesis treats the output as “don’t care” when the sel input is
2'b11.

Sample Verilog HDL Code with a full_case Attribute
module full_case (a, sel, y);

input [3:0] a;
input [1:0] sel;
output y;
reg y;
always @ (a or sel)
case (sel) // synthesis full_case

2'b00: y=a[0];
2'b01: y=a[1];
2'b10: y=a[2];

endcase
endmodule

Verilog-2001 syntax also accepts the following statements in the case
header instead of the comment form shown in the example above.

(* full_case *) case (sel)

Parallel Case

The parallel_case attribute indicates that a Verilog HDL case
statement should be considered parallel, that is, only one case item can be
matched at a time. Case statements in Verilog HDL case statements may
overlap. To resolve multiple matching case items, the Verilog language
defines a priority relationship among case items in which the case
statement always executes the first case item that matches the case
expression value. By default, the Quartus II software implements the
extra logic required to honor this priority relationship.

Attaching a parallel_case attribute to a case statement header allows
the Quartus II software to consider its case items as inherently parallel,
that is, at most one case item matches the case expression value. Parallel
case items reduce the complexity of the generation logic (allowing
implementations such as multiplexing logic instead of a priority
encoder).

In VHDL, the individual case items in a case statement may not overlap,
so they are always parallel and this attribute does not apply.

Use this attribute only when the case statement is truly parallel. If you
use the attribute in any other situation, the generated logic will not match
the functional simulation behavior of the Verilog HDL.

8–10 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

1 Altera recommends that you avoid use of the parallel_case
attribute, due to the possibility of introducing mismatches
between Verilog HDL functional and post-Quartus II
simulation.

The following example shows a casez statement with overlapping case
items. In functional HDL simulation , the three case items have a priority
order that depends on the bits in sel. For example, sel[2] takes
priority over sel[1] which takes priority over sel[0]. However the
synthesized design may simulate differently because the
parallel_case attribute eliminates this priority order. If more than
one bit of sel is high, then more than one output (a, b, c) will be high as
well, a situation that cannot occur in functional HDL simulation.

Sample Verilog HDL Code with a parallel_case Attribute
module parallel_case (sel, a, b, c);

input [2:0] sel;
output a, b, c;
reg a, b, c;

always @ (sel)
begin

{a, b, c} = 3'b0;
casez (sel) // synthesis parallel_case

3'b1??: a = 1'b1;
3'b?1?: b = 1'b1;
3'b??1: c = 1'b1;

endcase
end

endmodule

Verilog-2001 syntax also accepts the following statements in the case (or
casez) header instead of the comment form shown in the example
above.

(* parallel_case *) casez (sel)

Keep Combinational Node/Implement as Output of Logic Cell

This synthesis attribute and corresponding logic option direct the
Compiler to keep a wire or combinational node through logic synthesis
minimizations and netlist optimizations. A wire that has a keep attribute
or a node that has the Implement as Output of Logic Cell logic option
applied becomes the output of a logic cell in the final synthesis netlist, and
the name of the logic cell will be the same as the name of the wire or node.
You can use this directive to make combinational nodes visible to the
SignalTap® II logic analyzer.

Altera Corporation 8–11
June 2004 Preliminary

Quartus II Synthesis Options

1 The option cannot keep nodes that have no fan-out. Node names
cannot be maintained for wires with tri-state drivers, or if the
signal feeds a top-level pin of the same name (in this case the
node name is changed to a name such as <net name>~reg0).

You can set the Implement as Output of Logic Cell logic option in the
Quartus II GUI, or you can set the keep attribute in your HDL code as
shown below. In this example, the Compiler maintains the node name
my_wire.

1 In addition to keep, the Quartus II software supports the
syn_keep attribute name for compatibility with other synthesis
tools.

Verilog HDL
wire my_wire /* synthesis keep = 1 */;

Verilog-2001
(* keep = 1 *) wire my_wire;

VHDL
signal my_wire: bit;

attribute syn_keep: boolean;
attribute syn_keep of my_wire: signal is true;

Preserve Registers

This attribute and logic option direct the Compiler not to minimize or
remove a specified register during synthesis optimizations or register
netlist optimizations. Optimizations can eliminate redundant registers
and registers with constant drivers. This option can preserve a register so
you can observe it during simulation or with the SignalTap II logic
analyzer. Additionally, it can preserve registers if you are creating a
preliminary version of the design in which secondary signals are not
specified. You can also use the attribute to preserve a duplicate of an I/O
register so that one copy can be placed in an I/O cell and the second can
be placed in the core. By default, the software removes one of the two
duplicate registers in this case; the preserve attribute can be added to
both registers to prevent this.

1 The option cannot preserve registers that have no fan-out.

You can set the Preserve Registers logic option in the Quartus II GUI or
you can set the preserve attribute in your HDL code as shown below.
In this example, the my_reg register is preserved.

8–12 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

1 In addition to preserve, the Quartus II software supports the
syn_preserve attribute name for compatibility with other
synthesis tools.

Verilog HDL
reg my_reg /* synthesis preserve = 1 */;

Verilog-2001
(* preserve = 1 *) reg my_reg;

VHDL
signal my_reg : stdlogic;

attribute preserve : boolean;
attribute preserve of my_reg : signal is true;

1 Setting the Preserve Registers logic option does not affect
registers that are removed during the analysis and elaboration
stage of compilation (before logic synthesis). To fully preserve
the register throughout compilation, use the HDL attribute
instead of the logic option.

Maximum Fan-Out

This attribute and logic option directs the Compiler to control the number
of destinations fed by a node. The Compiler duplicates a node and splits
its fan-out until the individual fan-out of each copy falls below the
maximum fan-out restriction. You can apply this option to a register or a
logic cell buffer. You can also use this option to reduce the load of critical
signals, which can improve performance. You can use this option to
instruct the Compiler to duplicate (or replicate) a register that feeds nodes
in different locations on the target device. Duplicating the register may
allow the PowerFit™ Fitter to place these new registers closer to their
destination logic, minimizing routing delay.

This option is available for all devices supported in the Quartus II
software except MAX® 3000, MAX 7000, FLEX 10K®, ACEX® 1K, and
Mercury™ devices. The maximum fan-out constraint is honored as long
as the following conditions are met:

■ The node is not part of a cascade, carry, or register cascade chain
■ The node does not feed itself
■ The node feeds other logic cells, DSP blocks, RAM blocks and/or

pins through data, address, clock enable, etc, but not through any
asynchronous control ports (such as asynchronous clear)

Altera Corporation 8–13
June 2004 Preliminary

Quartus II Synthesis Options

The software does not create duplicate nodes in these cases either because
there is no clear way to duplicate the node, or, in the third condition above
where asynchronous control signals are involved, to avoid the possible
situation that small differences in timing could produce functional
differences in the implementation. If the constraint cannot be applied
because one of these conditions is not met, the Quartus II software issues
a message indicating that it ignored maximum fan-out assignment.

1 If you have enabled any of the Quartus II netlist optimizations
that affect registers, add the preserve attribute to any registers
to which you have set a maxfan attribute. The preserve
attribute ensures that the registers are not affected by any of the
netlist optimization algorithms such as register re-timing.

f For details on netlist optimizations, see the Netlist Optimization &
Physical Synthesis chapter in Volume 2 of the Quartus II Handbook.

You can set the Maximum Fan-Out logic option in the Quartus II GUI, or
you can set the maxfan attribute in your HDL code as shown below. In
this example, the Compiler duplicates the clk_gen register, so its fan-out
is not greater than 50.

1 In addition to maxfan, the Quartus II software supports the
syn_maxfan attribute name for compatibility with other
synthesis tools.

Verilog HDL
reg clk_gen /* synthesis maxfan = 50 */;

Verilog-2001
(* maxfan = 50 *) reg clk_gen;

VHDL
signal clk_gen : stdlogic;

attribute maxfan : signal ;
attribute maxfan of clk_gen : signal is 50;

Optimization Technique

This logic option specifies the goal for logic optimization during
compilation, i.e., whether to attempt to achieve maximum speed
performance or minimum area usage, or a balance between the two.
Table 8–1 lists the settings for this logic option, which you can apply only

8–14 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

to a design entity. You can also set this logic option for your whole project
on the Analysis & Synthesis Settings page in the Settings dialog box
(Assignments menu).

The default setting varies by target device family, and is generally
optimized for the best area/speed trade-off. Results are design-
dependent and can vary depending on which device family you use.

State Machine Processing

This logic option specifies the processing style used to compile a state
machine. Table 8–2 lists the settings for this logic option, which you can
apply to a state machine name or to a design entity containing a state
machine. You can also set this option for your whole project on the
Analysis & Synthesis Settings page in the Settings dialog box
(Assignments menu).

The default state machine encoding, Auto, uses one-hot encoding for
FPGA devices and minimal-bits encoding for complex programmable
logic devices (CPLDs). These settings achieve the best results on average,
but another encoding style might be more appropriate for your design, so
these options allows you to control the state machine encoding.

Table 8–1. Optimization Technique Settings

Setting Description

Area The Compiler makes the design as small as possible to minimize
resource usage.

Speed The Compiler chooses a design implementation that has the fastest
fMAX.

Balanced The Compiler maps part of the design for area and part for speed,
providing better area utilization than optimizing for speed, with only a
slightly slower fMAX than optimizing for speed.

Table 8–2. State Machine Processing Settings

Setting Description

Auto (Default) Allows the Compiler to choose what it determines to be the best
encoding for the state machine.

Minimal Bits Uses the least number of bits to encode the state machine.

One-Hot Encodes the state machine in the one-hot style.

User-Encoded Encodes the state machine in the manner specified by the user.

Altera Corporation 8–15
June 2004 Preliminary

Quartus II Synthesis Options

1 See the Recommended HDL Coding Styles chapter in the Quartus II
Handbook for guidelines to ensure that your state machine is
inferred and encoded correctly.

In addition, in VHDL designs, the state assignments created
automatically by the Quartus II software can be overridden by using
specific state assignments with the enum_encoding attribute. The
enum_encoding attribute must follow the associated type declaration
and precede any associated signal declarations. To use the
enum_encoding attribute during compilation, set the State Machine
Processing logic option to User-Encoded on the Analysis & Synthesis
Settings page of the Settings dialog box (Assignments menu), or use the
Assignment Editor (Assignments menu).

f For more information, see the Manually Specifying State Assignments topic
in the Quartus II Help.

Preserve Hierarchical Boundary

This logic option determines how strictly the hierarchical boundaries
between design entities should be maintained during logic synthesis.
Table 8–3 lists the settings for the option, which you can only apply to a
design entity. Lower-level entities do not inherit their parent entity's
setting for this option.

The Relaxed setting means that the Compiler preserves hierarchical
boundaries. However, certain signals such as VCC and GND are
propagated and optimized through the boundaries. The Firm setting
does not allow optimization across boundaries, and keeps each
hierarchical block separate.

Table 8–3. Preserve Hierarchical Boundary Settings

Setting Description

Off Completely ignores boundaries and therefore allows unlimited
optimization. This setting provides the greatest logic minimization.

Relaxed Allows only partial cross-boundary optimization, which may reduce
the compilation time. Non-trivial inputs and outputs of the entity are
visible during simulation and timing analysis.

Firm Strictly maintains hierarchical boundaries. This setting may increase
compilation time, increase logic cell count, and negatively affect
design performance.

8–16 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Restructure Multiplexers

This option specifies whether the Quartus II software should extract and
optimize buses of muxes during synthesis.

This option is useful if your design contains buses of fragmented
multiplexers. This option restructures multiplexers more efficiently for
area, allowing the design to implement multiplexers with a reduced
number of logic elements (LEs) or adaptive logic modules (ALMs). This
option is available for Cyclone™, Cyclone II, MAX II, Stratix®, Stratix GX,
and Stratix II devices.

The Restructure Multiplexers option works on entire trees of
multiplexers. Multiplexers may arise in different parts of the design
through Verilog HDL or VHDL constructs such as "if", "case", or
"?:". When multiplexers from one part of the design feed multiplexers
in another part of the design, trees of multiplexers are formed.
Multiplexer buses occur most often as a result of multiplexing together
vectors in Verilog HDL, or STD_LOGIC_VECTORs in VHDL. The
Restructure Multiplexers option identifies buses of multiplexer trees that
have a similar structure. When turned on, the Restructure Multiplexers
option optimizes the structure of each multiplexer bus for the target
device to reduce the overall amount of logic used in the design.

Results of the multiplexer optimizations are design-dependent, but area
reductions as high as 20% are possible. The option may negatively affect
your design's clock speed, fMAX.

Altera Corporation 8–17
June 2004 Preliminary

Quartus II Synthesis Options

Table 8–4 lists the settings for the logic option, which you can only apply
to a design entity. You can also set this option for your whole project on
the Analysis & Synthesis Settings page in the Settings dialog box
(Assignments menu).

Once you have compiled your design, you can view multiplexer
restructuring information in the Multiplexer Restructuring Statistics
report in the Multiplexer Statistics folder under Analysis & Synthesis
Optimization Results in the Analysis & Synthesis section of the
Compilation Report. Table 8–5 describes the information that is listed in
the Multiplexer Restructuring Statistics report table for each bus of
multiplexers.

Table 8–4. Restructure Multiplexers Settings

Setting Description

On Enables multiplexer restructuring to minimize your design
area. This setting may reduce the fM A X.

Off Disables multiplexer restructuring to avoid possible reductions
in fM A X.

Auto (Default) Allows the Compiler to determine whether to enable the
option based on your other Quartus II synthesis settings. The
option is On when the Optimization Technique option is set
to Area, and Off when the Optimization Technique option is
Balanced or Speed. (Note that since the default Optimization
Technique is Balanced for many device families including
Stratix and Stratix II devices, this option is turned Off by
default for those families).

Table 8–5. Multiplexer Information in the Multiplexer Restructuring Statistics Report

Heading Description

Multiplexer Inputs The number of different choices being multiplexed together.

Bus Width The width of the bus in bits.

Baseline Area An estimate of how many logic cells are needed to implement the bus of
multiplexers (before any multiplexer restructuring takes place). This estimate can
be used to identify any large multiplexers in the design.

Area if Restructured An estimate of how many logic cells are needed to implement the bus of
multiplexers if Multiplexer Restructuring is applied.

Saving if Restructured An estimate of how many logic cells are saved if Multiplexer Restructuring is
applied.

8–18 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

f For more information on optimizing for multiplexers, refer to the
Multiplexers section of the Design Recommendations for Altera Devices
chapter in Volume 1 of the Quartus II Handbook.

Power-Up Level

This logic option causes a register (flipflop) to power up with the
specified logic level, either High (1) or Low (0). You can apply this option
to any register or to a pin with the logic configurations described below:

■ If this option is turned on for an input pin, the option is transferred
automatically to the register that is driven by the pin if the following
conditions are present:

● There is no logic, other than inversion, between the pin and the
register

● The input pin drives the data input of the register
● The input pin does not fan out to any other logic

■ If this option is turned on for an output or bidirectional pin, it is
transferred automatically to the register that feeds the pin, if the
following conditions are present:

● There is no logic, other than inversion, between the register and
the pin

● The register does not fan out to any other logic

For the register to power up to with the specified logic level, the Compiler
may perform NOT gate push-back on the register.

Registered An indication of whether registers are present on the multiplexer outputs.
Multiplexer Restructuring uses the secondary control signals of a register (such
as synchronous-clear and synchronous-load) to further reduce the amount of
logic needed to implement the bus of multiplexers.

Example Multiplexer
Output

The name of one of the multiplexers' outputs. This name can help determine
where in the design the multiplexer bus originated.

Table 8–5. Multiplexer Information in the Multiplexer Restructuring Statistics Report

Heading Description

Altera Corporation 8–19
June 2004 Preliminary

Quartus II Synthesis Options

Power-Up Don’t Care

This logic option causes registers to power up with a “don’t care” logic
level (X), or the logic level most appropriate for the design. This option
allows the Compiler to change the power-up condition of a register to, for
example, minimize your design’s area usage. This option is turned on by
default.

For example, a register may have its D input tied to VCC. If you turn this
option off, the register powers up low even though it goes high at the first
clock signal. If you turn this option on, the Compiler sets the power-up
value of the register to high and, therefore, can eliminate the register and
connect the output of the register to VCC. If the Compiler makes this type
of optimization, it issues a message indicating it is doing so.

This project-wide option does not apply to registers that have the Power-
Up Level logic option set to either High or Low.

1 Versions of the Quartus II software earlier than version 2.1 did
not include this option. If you compile an older design that relies
on registers to power-up to a specific level, the Compiler may
synthesize the design differently. Turn off the Power-Up Don't
Care option if you want your design to use the power-up
behavior of older versions of Quartus II software.

Remove Duplicate Logic

If you turn on this option, the Compiler removes logic that is identical to
other logic in the design. If two functions generate the same logic, the
Compiler removes the second one, and the first one fans out to the second
one’s destinations. Additionally, if the deleted logic function has different
logic option assignments, the Compiler ignores them. This option is
turned on by default.

When turned on, this option also removes all duplicate registers like the
Remove Duplicate Registers option. If you do not want the Compiler to
remove certain registers when this option is turned on, turn off the
Remove Duplicate Registers option for those registers. See Table 8–6 for
more details.

Even if you turn this option on, the Compiler does not remove duplicate
logic that you inserted deliberately. If a function’s output feeds an LCELL
buffer, the Compiler always treats it as a unique signal and the Remove
Duplicate Logic option does not apply (i.e., the Compiler does not
remove an LCELL buffer if you turn on this option).

8–20 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Remove Duplicate Registers

If you turn on this logic option, the Compiler removes registers that are
identical to another register. If two registers generate the same logic, the
Compiler removes the second one, and the first one fans out to the second
one's destinations. Also, if the deleted register has different logic option
assignments, the Compiler ignores them. This option is turned on by
default.

The Compiler only recognizes this option if you turned on the Remove
Duplicate Logic option. When turned on, the Remove Duplicate Logic
option also removes duplicate registers. Therefore, you should use this
option only if you want to prevent the Compiler from removing duplicate
registers that you have used deliberately. That is, you should use this
option only with the Off setting. See Table 8–6. You can apply this option
to an individual register or a design entity that contains registers.

Remove Redundant Logic Cells

This logic option removes redundant LCELL primitives or WYSIWYG
cells. If you turn on this option, the Compiler optimizes a circuit for area
and speed. The project-wide option is turned off by default.

Megafunction Inference Control

The Quartus II Compiler automatically recognizes certain types of HDL
code and infers the appropriate megafunction when a megafunction
provides optimal results. That is, the software uses the Altera
megafunction code when compiling your design even though you did
not specifically instantiate the megafunction. The software infers
megafunctions resulting in logic that is optimized for Altera devices. The
area and/or performance of such logic may be better than the results
obtained by inferring generic logic from the same HDL code.
Additionally, you must use megafunctions to access certain architecture-

Table 8–6. Settings for Remove Duplicate Logic & Remove Duplicate Registers

Remove Duplicate
Logic Setting

Remove Duplicate
Registers Setting Description

On (Default) On (Default) Removes logic (including registers) if it is identical to other logic in
the design.

On Off Preserves all registers for which the Remove Duplicate Registers
option is turned off. Removes logic (including any other registers) if
it is identical to other logic in the design.

Off On or Off Preserves duplicate logic and registers.

Altera Corporation 8–21
June 2004 Preliminary

Quartus II Synthesis Options

specific features, such as RAM, digital signal processing (DSP) blocks,
and shift registers, that generally provide improved performance
compared with basic logic elements.

f For details on coding style recommendations when targeting
megafunctions in Altera devices, see the Recommended HDL Coding Styles
chapter in Volume 1 of the Quartus II Handbook.

The Quartus II software provides options to control the inference of
certain types of megafunctions, as described in the following sub-
sections.

Multiply-Accumulators & Multiply-Adders

Use the Auto DSP Block Replacement logic option to control DSP block
inference for multiply-accumulations and multiply-adders. This option is
turned on by default. To disable inference, turn off this option for your
whole project on the Analysis & Synthesis Settings page of the Settings
dialog box (Assignment menu), or disable the option for a specific block
using the Assignment Editor (Assignments menu).

1 Any registers that the software maps to the altmult_accum
and altmult_add megafunctions and places in DSP blocks are
not available in the Simulator because their node names do not
exist after synthesis.

Shift Registers

Use the Auto Shift Register Replacement logic option to control shift
register inference. This option is turned on by default. To disable
inference, turn off this option for your whole project on the Analysis &
Synthesis Settings page of the Settings dialog box (Assignments menu),
or for a specific block using the Assignment Editor. The software may not
infer small shift registers because small shift registers typically do not
benefit from implementation in dedicated memory. However, you can
use the Allow Any Shift Register Size for Recognition logic option to
instruct synthesis to infer a shift register even when its size is considered
too small.

1 The registers that the software maps to the altshift_taps
megafunction and places in RAM are not available in the
Simulator because their node names do not exist after synthesis.

8–22 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

RAM and ROM

Use the Auto RAM Replacement and Auto ROM Replacement logic
options to control RAM and ROM inference, respectively. These options
are turned on by default. To disable inference, turn off the appropriate
option for your whole project on the Analysis & Synthesis Settings page
of the Settings dialog box (Assignment menu), or disable the option for a
specific block using the Assignment Editor (Assignments menu).

The software may not infer very small RAM or ROM blocks because very
small memory blocks can typically be implemented more efficiently by
using the registers in the logic. However, you can use the Allow Any
RAM Size for Recognition and Allow Any ROM Size for Recognition
logic options to instruct synthesis to infer a memory block even when its
size is considered too small.

RAM Style

This attribute specifies the type of TriMatrix™ embedded memory block
that the Compiler should use when implementing an inferred RAM, and
is only supported for device families with TriMatrix embedded memory
blocks.

The ramstyle attribute takes a single string value (in quotation marks)
to specify the type of memory block: "M512", "M4K", or "M-RAM". In
Verilog HDL, set the ramstyle attribute on the declaration of the
multidimensional variable that represents an inferred RAM. In VHDL,
set the ramstyle attribute on a signal or variable declaration that
represents an inferred RAM.

1 In addition to ramstyle, the Quartus II software supports the
syn_ramstyle attribute name for compatibility with other
synthesis tools.

The following examples specify that the inferred ram my_ram should be
implemented using an M512 embedded memory block.

Sample Verilog-1995 Code with a ramstyle Attribute
reg [0:7] my_ram[0:63] /* synthesis ramstyle = "M512" */;

Sample Verilog-1995 Code with a ramstyle Attribute
(* ramstyle = "M512" *) reg [0:7] my_ram[0:63];

Sample VHDL Code with a ramstyle Attribute
type memory_t is array (0 to 63) of std_logic_vector(0 to 7);
signal my_ram : memory_t;

Altera Corporation 8–23
June 2004 Preliminary

Setting Other Quartus II Options in Your HDL Source Code

attribute ramstyle : string;
attribute ramstyle of my_ram : signal is "M512";

Setting Other
Quartus II
Options in Your
HDL Source
Code

This section describes Quartus II synthesis attributes that can be used to
set other Quartus II options and settings in your HDL source code. The
attributes described in the “Chip Pin” and “Use I/O Flip-Flops” sections
can help you make pin-related assignments in your HDL code, and the
attribute described in the “Altera Attribute” section can be used to make
any other Quartus II option or setting assignments in your HDL code.
Assignments made with these synthesis attributes take precedence over
assignments made through the Quartus II user interface, the .qsf, and the
Tcl interface.

Use I/O Flip-Flops

This attribute directs the Quartus II software to implement input, output,
and output enable flip-flops (or registers) in I/O cells that have fast, direct
connections to an I/O pin, when possible. Applying the useioff
synthesis attribute can improve I/O performance by minimizing setup,
clock-to-output, and clock-to-output enable times. This synthesis
attribute is supported using the Fast Input Register, Fast Output
Register, and Fast Output Enable Register logic options that can also be
set in the Assignment Editor (Assignments menu).

1 For more information on which device families support fast
input, output, and output enable registers, refer to your device
family data sheet or handbook or to Quartus II Help.

The useioff synthesis attribute takes a Boolean value and can only be
applied to the port declarations of a top-level Verilog HDL module or
VHDL entity (it is ignored if applied elsewhere). Setting the value to 1
(Verilog HDL) or TRUE (VHDL) instructs the Quartus II software to pack
registers into I/O cells. Setting the value to 0 (Verilog HDL) or FALSE
(VHDL) prevents register packing into I/O cells.

In the following examples, the useioff synthesis attribute directs the
Quartus II software to implement the registers a_reg, b_reg, and o_reg
in the I/O cells corresponding to the ports a, b, and o respectively.

8–24 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Sample Verilog HDL Code with a useioff Attribute
module top_level(clk, a, b, o);

 input clk;
input [1:0] a, b /* synthesis useioff = 1 */;
output [2:0] o /* synthesis useioff = 1 */;

reg [1:0] a_reg, b_reg;
reg [2:0] o_reg;

always @ (posedge clk)
begin

a_reg <= a;
b_reg <= b;
o_reg <= a_reg + b_reg;

end

assign o = o_reg;
endmodule

Verilog-2001 syntax also accepts the following type of statements instead
of the comment form shown in the example above.

(* useioff = 1 *) input [1:0] a, b;
(* useioff = 1 *) output [2:0] o;

Altera Corporation 8–25
June 2004 Preliminary

Setting Other Quartus II Options in Your HDL Source Code

Sample VHDL Code with a useioff Attribute
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity top_level is
port (

clk : in std_logic;
a, b : in unsigned(1 downto 0);
o : out unsigned(1 downto 0));

attribute useioff : boolean;
attribute useioff of a : signal is true;
attribute useioff of b : signal is true;
attribute useioff of o : signal is true;

end top_level;

architecture rtl of top_level is
signal o_reg, a_reg, b_reg : unsigned(1 downto 0);

begin
process(clk)
begin

a_reg <= a;
b_reg <= b;
o_reg <= a_reg + b_reg;

end process;

 o <= o_reg;
end rtl;

Altera Attribute

This attribute enables you to apply Quartus II options and assignments to
an object (entity, instance, or net) in your HDL source code. With
altera_attribute, you can control synthesis options from your HDL
source even when the options lack a specific HDL synthesis attribute (like
many of the logic options presented earlier in this chapter). You can also
use this attribute to pass option settings and assignments to phases of the
Compiler flow beyond Analysis & Synthesis, such as Fitting. The syntax
for setting this attribute is the syntax defined in the section “Synthesis
Attributes” on page 8–5 for HDL attributes (examples are provided
below).

Assignments and settings made with the Altera Attribute take
precedence over assignments and settings made through the Quartus II
user interface, the Quartus Settings File (.qsf), and the Tcl interface.

8–26 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

The attribute value is a single string containing a list of QSF variable
assignments separated by semicolons, as follows:

"<variable_1>=<value_1>;<variable_2>=<value_2>[;…]"

If the Quartus II option or assignment includes a target, source, and/or
section tag, you can use the following syntax (similar to the syntax of the
QSF file) before the QSF assignment variable and value:

{ -from "<source>" -to "<target>" -section_id "<section>" }

Each of the tags above is optional, but if any tags are included then you
need to use the braces {}. The syntax for the full attribute value,
including the optional target, source, and section tags for two different
QSF assignments is as follows:

"[{ [-from "<source_1>"] [-to "<target_1>"] [-section_id "<section_1>"] }]
<variable_1>=<value_1>; [{ [-from "<source_2>"] [-to "<target_2>"] [
section_id "<section_2>"] }] <variable_2>=<value_2>"

If a variable’s assigned value is a string of text, you must use escaped
quotes around the value, as in the following examples (using non-existent
variable and value terms):

Verilog HDL:
"VARIABLE_NAME=\"STRING_VALUE\""

VHDL:
"VARIABLE_NAME =""STRING_VALUE"""

To find the QSF variable name or value corresponding to a specific
Quartus II option or assignment, you can make the option setting or
assignment in the Quartus II user interface and then note the changes in
the QSF file.

The following examples use altera_attribute to set the power-up
level of an inferred register. Note that for inferred instances, you cannot
apply the attribute to the instance directly so you should apply the
attribute to one of the instance's output nets. The Quartus II software
automatically moves the attribute to the inferred instance.

Verilog-1995 Example of Applying Altera Attribute to an Instance
reg my_reg /* synthesis altera_attribute = "POWER_UP_LEVEL=HIGH" */;

Verilog-2001 Example of Applying Altera Attribute to an Instance
(* altera_attribute = "POWER_UP_LEVEL=HIGH" *) reg my_reg;

Altera Corporation 8–27
June 2004 Preliminary

Setting Other Quartus II Options in Your HDL Source Code

VHDL Example of Applying Altera Attribute to an Instance
signal my_reg : std_logic;
attribute altera_attribute : string;
attribute altera_attribute of my_reg: signal is "POWER_UP_LEVEL=HIGH";

The following examples use the altera_attribute to disable the Auto
Shift Register Replacement synthesis option for an entity. To apply the
Altera Attribute to a VHDL entity, you must set the attribute on its
architecture rather than on the entity itself.

Verilog-1995 Example of Applying Altera Attribute to an Entity
module my_entity(…) /* synthesis altera_attribute =
"AUTO_SHIFT_REGISTER_RECOGNITION=OFF" */;

Verilog-2001 Example of Applying Altera Attribute to an Entity
(* altera_attribute = "AUTO_SHIFT_REGISTER_RECOGNITION=OFF" *) module
my_entity(…) ;

VHDL Example of Applying Altera Attribute to an Entity
entity my_entity is
-- Declare generics and ports
end my_entity;

architecture rtl of my_entity is

 attribute altera_attribute : string;
 -- Attribute set on architecture, not entity
 attribute altera_attribute of rtl: architecture
is "AUTO_SHIFT_REGISTER_RECOGNITION=OFF";

begin
 -- The architecture body
end rtl;

Chip Pin

This attribute enables you to assign pins to the ports of an entity or
module in your HDL source. You may only assign pins to single-bit or
one-dimensional bus ports in your design.

For single-bit ports, the value of the chip_pin attribute is the name of
the pin on the target device, as specified by the device’s pin table.

8–28 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

1 In addition to chip_pin, the Quartus II software supports the
altera_chip_pin_lc attribute name for compatibility with
other synthesis tools. When using this attribute in other
synthesis tools, some older device families require an “@”
symbol in front of each pin assignment. In the Quartus II
software, the “@” is optional.

The following examples show different ways of assigning input pin
my_pin1 to Pin C1 and my_pin2 to Pin 4 on a target device.

Verilog-1995 Example of Applying Chip Pin to a Single Pin
input my_pin1 /* synthesis chip_pin = "C1" */;
input my_pin2 /* synthesis altera_chip_pin_lc = "@4" */;

Verilog-2001 Example of Applying Chip Pin to a Single Pin
(* chip_pin = "C1" *) input my_pin1;
(* altera_chip_pin_lc = "@4" *) input my_pin2;

VHDL Example of Applying Chip Pin to a Single Pin
entity my_entity is
 port(my_pin1: in std_logic; my_pin2: in std_logic;…);
end my_entity;
attribute chip_pin : string;
attribute altera_chip_pin_lc : string;
attribute chip_pin of my_pin1 : signal is "C1";
attribute altera_chip_pin_lc of my_pin2 : signal is "@4"

For bus I/O ports, the value of the chip pin attribute is a comma-
delimited list of pin assignments. The order in which you declare the
port’s range determines the mapping of assignments to individual bits in
the port. To leave a particular bit unassigned, simply leave its
corresponding pin assignment blank.

The following examples assign my_pin[2] to Pin_4, my_pin[1] to
Pin_5, and my_pin[0] to Pin_6.

Verilog-1995 Example of Applying Chip Pin to a Bus of Pins
input [2:0] my_pin /* synthesis chip_pin = "4, 5, 6" */;

Verilog-2001 Example of Applying Chip Pin to Part of a Bus of Pins
input [0:2] my_pin /* synthesis chip_pin = "4, ,6" */;

The following example reverses the order of the signals in the bus,
assigning my_pin[0] to Pin 4 and my_pin[2] to Pin 6, but leaves
my_pin[1] unassigned.

Altera Corporation 8–29
June 2004 Preliminary

Scripting Support

VHDL Example of Applying Chip Pin to Part of a Bus of Pins
entity my_entity is
 port(my_pin: in std_logic_vector(2 downto 0);…);
end my_entity;

attribute chip_pin of my_pin: signal is "4, , 6";

Scripting
Support

You can run procedures and make settings described in this chapter in a
Tcl script.

For detailed information about specific scripting command options and
Tcl API packages, type quartus_sh --qhelp at a system command
prompt to run the Quartus II Command-Line and Tcl API Help utility.

f For more information on Quartus II scripting support, including
examples, refer to the Tcl Scripting and Command-Line Scripting chapters
of the Quartus II Handbook.

You can specify many of the options described in this section either on an
instance, or at a global level, or both.

Use the following Tcl command to make a global assignment:

set_global_assignment -name <QSF Variable Name> <Value>

Use the following Tcl command to make an instance assignment:

set_instance_assignment -name <QSF Variable Name> <Value> -to <Instance Name>

Quartus II Synthesis Options

Table 8–7 lists the QSF variable name and applicable values for the
settings discussed in this chapter. The QSF variable name is used in the
Tcl assignment to make the setting along with the appropriate value. The
Type column indicated whether the setting is supported as a Global
setting, or an Instance setting, or both.

Table 8–7. Quartus II Synthesis Options

Setting Name QSF Variable Values Type

Implement as
Output of Logic Cell

IMPLEMENT_AS_OUTPUT_OF_LOGIC_CELL ON, OFF Instance

Preserve Registers PRESERVE_REGISTER ON, OFF Instance

Maximum Fanout MAX_FANOUT <Maximum Fan-out
Value>

Instance

8–30 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

State Machine
Processing

STATE_MACHINE_PROCESSING AUTO “MINIMAL
BITS”, ”ONE HOT”,
“USER-ENCODED”

Global,
Instance

Optimization
Technique

<device name>_OPTIMIZATION_TECHNIQUE Area, Speed,
Balanced

Global,
Instance

Power-Up Level POWER_UP_LEVEL HIGH, LOW Instance

Preserve
Hierarchical
Boundary

PRESERVE_HIERARCHICAL_BOUNDARY Off, Relaxed, Firm Instance

Restructure
Multiplexers

MUX_RESTRUCTURE On, Off, Auto Global,
Instance

Power-Up Don’t
Care

ALLOW_POWER_UP_DONT_CARE ON, OFF Global

Remove Duplicate
Registers

REMOVE_DUPLICATE_REGISTERS ON, OFF Global,
Instance

Remove Duplicate
Logic

REMOVE_DUPLICATE_LOGIC ON, OFF Global,
Instance

Remove Redundant
Logic Cells

REMOVE_REDUNDANT_LOGIC_CELLS ON, OFF Global

Auto DSP Block
Replacement

AUTO_DSP_RECOGNITION ON, OFF Global,
Instance

Auto RAM
Replacement

AUTO_RAM_RECOGNITION ON, OFF Global,
Instance

Auto ROM
Replacement

AUTO_ROM_RECOGNITION ON, OFF Global,
Instance

Allow Any RAM Size
for Recognition

ALLOW_ANY_RAM_SIZE_FOR_RECOGNITION ON, OFF Global,
Instance

Allow Any ROM
Size for Recognition

ALLOW_ANY_ROM_SIZE_FOR_RECOGNITION ON, OFF Global,
Instance

Auto Shift-Register
Replacement

AUTO_SHIFT_REGISTER_RECOGNITION ON, OFF Global,
Instance

Allow Any Shift
Register Size for
Recognition

ALLOW_ANY_SHIFT_REGISTER_SIZE_FOR_
RECOGNITION

ON, OFF Global,
Instance

Fast Input Register FAST_INPUT_REGISTER ON, OFF Instance

Fast Output
Register

FAST_OUTPUT_REGISTER ON, OFF Instance

Fast Output Enable
Register

FAST_OUTPUT_ENABLE_REGISTER ON, OFF Instance

Table 8–7. Quartus II Synthesis Options

Setting Name QSF Variable Values Type

Altera Corporation 8–31
June 2004 Preliminary

Conclusion

Assigning a Pin

Use the following Tcl command to assign a signal to a pin or device
location.

set_location_assignment -to <signal name> <location>

For example, set_location_assignment -to data_input
Pin_A3

Valid locations are pin location names. Some device families also support
edge and I/O bank locations. Edge locations are EDGE_BOTTOM,
EDGE_LEFT, EDGE_TOP, and EDGE_RIGHT. I/O bank locations include
IOBANK_1 up to IOBANK_n, where n is the number of I/O banks in a
particular device.

Conclusion The Quartus II software includes complete Verilog HDL and VHDL
language support, as well as support for Altera-specific languages,
making it an easy-to-use, standalone solution for Altera designs. This
document describes methodologies that you can use to improve synthesis
results and obtain optimum performance in your target Altera device.

8–32 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Altera Corporation 9–1
June 2004 Preliminary

9. Synplicity Synplify &
SynplifyPro Support

Introduction As programmable logic device (PLD) designs become more complex and
require increased performance, advanced synthesis has become an
important part of the design flow. This chapter documents key design
flows, methodologies, and techniques for achieving good performance in
Altera® devices using the Synplicity Synplify and Synplify Pro software
with the Quartus® II software, including the following:

■ General design flow with the Synplify and Quartus II software
■ Synplify optimization strategies, including timing-driven

compilation settings, optimization options, and Altera-specific
attributes

■ Exporting designs to the Quartus II software using NativeLink®
integration

■ Cross-probing with the Quartus II software
■ Guidelines for Altera Megafunctions and LPM Functions,

instantiating them in a clear box or black box flow using the
MegaWizard® Plug-In manager and tips for inferring them from
HDL code

■ Block-based design with the Quartus II LogicLock™ methodology,
including the SynplifyPro Multipoint flow

This chapter assumes that you have set up, licensed, and are familiar with
the Synplify or Synplify Pro software.

The content in this chapter applies to both the Synplify and Synplify Pro
software unless otherwise specified.

f To obtain and license the Synplify software, and for more information on
using the software, see the Synplicity web site at www.synplicity.com.

Design Flow The basic steps in a Quartus II design flow using the Synplify software are
the following:

1. Create Verilog HDL and/or VHDL design files in the Quartus II
design software, in the Synplify software, or with a text editor.

2. Set up a project and add the HDL design files in the Synplify
software for synthesis.

qii51009-2.0

9–2 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

3. Select a target device and add timing constraints and compiler
directives to optimize the design during synthesis.

4. Create a Quartus II project and import the technology-specific
netlist and the Tcl constraint file generated by the Synplify software
to the Quartus II software for placement and routing, and for
performance evaluation.

5. After obtaining place-and-route results that meet your needs,
configure or program the Altera device.

Figure 9–1 shows the recommended design flow when using the Synplify
and Quartus II software.

Altera Corporation 9–3
June 2004 Preliminary

Design Flow

Figure 9–1. Recommended Design Flow

The Synplify and Synplify Pro software tools support both VHDL and
Verilog HDL source files. Synplify Pro also supports mixed synthesis,
allowing a combination of VHDL and Verilog HDL source files.

Gate-Level
Functional
Simulation

Configure / Program

Yes

No

VHDL Verilog HDL

Post Place-and-Route
Simulation Files

(.vho / .vo)

Gate-Level
Timing

Simulation

Post Synthesis
Simulation Files

(.vhm / .vm)

Configuration / Programming Files
(.sof / .pof)

Quartus II
Software

Functional/RTL
Simulation

Constraints
&

Settings

Technology
Specific Netlist

(.vqm / .edf)

Forward Annotated
Timing Constraints
(.tcl / .acf)

Synplify
Software

Device

Constraints
&

Settings

Timing
and Area

Requirements
Satisfied?

9–4 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Specify timing constraints and attributes for the design in a Synplify
constraints file (.sdc) by using the SCOPE editor in the Synplify software
or the HDL source file. Complier directives can also be defined in the
HDL source file. Many of these constraints are forward-annotated for use
by the Quartus II software in the Tcl file. You can save all project options
and included files in a Synplify project file (.prj).

The HDL Analyst included in the Synplify software is a graphical tool for
generating schematic views of the technology-independent RTL view
netlist (.srs) and technology-view netlist (.srm) files. You can use the HDL
Analyst to visually analyze and debug the design. The HDL Analyst
supports cross probing between the RTL and Technology views, the HDL
source code, and the Finite State Machine (FSM) viewer. See “Finite State
Machine (FSM) Compiler” on page 9–9.

1 A separate license file is required to enable the HDL Analyst in
the Synplify software. The Synplify Pro software comes with the
HDL Analyst.

Once synthesis is complete, import the EDIF or VQM netlist to the
Quartus II software for place-and-route. You can use the Tcl file generated
by the Synplify software to forward-annotate your constraints.

If the area and timing requirements are satisfied, use the files generated
from the Quartus II software to program or configure the Altera device.
As shown in Figure 9–1, if your area or timing requirements are not met,
you can change the constraints in the Synplify software or Quartus II
software and re-run the synthesis. Repeat the process until the area and
timing requirements are met.

While simulation may be performed at various points in the process,
detailed timing analysis should be performed after placement and
routing is complete. Formal verification may also be performed at various
stages of the design process.

f For more information on how the Synplify software supports formal
verification, refer to the Formal Verification section in Volume 3 of the
Quartus II Handbook.

You can also use other options and techniques in the Quartus II software
to meet area and timing requirements. One such option is called
WYSIWYG Primitive Resynthesis, which can perform optimizations on
your VQM netlist within the Quartus II software.

f For information on netlist optimizations, see the Netlist Optimizations and
Physical Synthesis chapter in Volume 2 of the Quartus II Handbook.

Altera Corporation 9–5
June 2004 Preliminary

Design Flow

In some cases, source code may also need modification if area and timing
requirements cannot be met using options in the Synplify and Quartus II
software.

After synthesis, the Synplify software produce several intermediate and
output files. Table 9–1 lists these files with a short description of each file.

Table 9–1. Synplify Intermediate & Output Files

File Extensions File Description

.srs Technology independent register transfer level (RTL) netlist that can be read only
by Synplify

.srm Technology view netlist

.vm/.vhm Post-synthesis output design file in Verilog HDL/VHDL format that you can use
for post-synthesis simulation

.srr (1) Synthesis report file

.edf/.vqm (2) Technology-specific netlist in electronic design interchange format (EDIF) (.edf)
or Verilog Quartus Mapping (.vqm) file format

.acf/.tcl (3) Forward-annotated constraints file containing constraints and assignments

Notes to Table 9–1
(1) This report file includes performance estimates which are often based on pre-place-and-route information. Use the

fMAX reported by the Quartus II software after place-and-route, as it is the only reliable source of timing
information. This report file includes post-synthesis device resource utilization statistics which may inaccurately
predict resource usage after place-and-route. The Synplify software does not account for black-box functions nor
for logic usage reduction achieved through register packing performed by the Quartus II software. Register
packing combines a single register and look-up table (LUT) into a single logic cell, reducing the logic cell utilization
below the Synplify software estimate. Use the device utilization reported by the Quartus II software after place-
and-route.

(2) An EDIF output file (.edf) is only created for ACEX® 1K, FLEX® 10K, FLEX 10KA, FLEX 10KE, FLEX 6000,
FLEX 8000, MAX® 7000, MAX 9000, and MAX 3000 devices. A Verilog Quartus Mapping (.vqm) file is created for
all other Altera device families

(3) An assignment and configuration file (.acf) file is only created for ACEX 1K, FLEXR 10K, FLEX 10KA, FLEX 10KE,
FLEX 6000, FLEX 8000, MAX 7000, MAX 9000, and MAX 3000 devices. The .acf is generated for backward
compatibility with the MAX+PLUS® II software. A tool command language (Tcl) file (.tcl) for the Quartus II
software is created for all devices, which also contains Tcl commands to create a Quartus II project and, if
applicable, the MAX+PLUS II assignments are imported from the .acf file.

9–6 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Synplify
Optimization
Strategies

As designs become more complex and require increased performance,
using different optimization strategies has become important. Combining
Synplify software constraints with VHDL and Verilog HDL coding
techniques and Altera Quartus II software options can help obtain the
required results.

f For additional design and optimization techniques, see the Design
Recommendations for Altera Devices chapter in Volume 1 and the Design
Optimization for Altera Designs chapter in Volume 2 of the Quartus II
Handbook.

The Synplify software offers many constraints and optimization
techniques to improve your design's performance. The Synplify Pro
software adds some additional techniques that are not supported in the
basic Synplify software. Wherever this document describes Synplify
support, this includes the basic Synplify and the Synplify Pro software;
Synplify Pro-only features are labelled as such. This section provides an
overview of some of the techniques you can use to help improve the
quality of your results.

f For more information on applying the attributes discussed in this
section, see the Adding Attributes and Directives section of chapter 3: Tasks
and Tips in the Synplify User Guide.

Implementations in Synplify Pro

Use the New Implementation option (Project menu) in the Synplify Pro
software to create different synthesis results without overwriting the
others. For each implementation, specify the target device, synthesis
options, and constraint files. Each implementation generates its own
subdirectory that contains all the resulting files, including .vqm and .tcl
files, from a compilation of the particular implementation. You can then
compare the results of the different implementations to find the optimal
set of synthesis options and constraints for a design.

Timing-driven Synthesis Settings

The Synplify software supports timing-driven synthesis through
user-assigned timing constraints to optimize the performance of the
design. The Synplify software optimizes the design to attempt to meet
these constraints.

The NativeLink feature allows timing constraints, such as clock
frequencies, multi-cycle paths, and false paths, that are applied in the
Synplify software to be forward-annotated to the Quartus II software
using a Tcl script file for timing-driven place-and-route.

Altera Corporation 9–7
June 2004 Preliminary

Synplify Optimization Strategies

1 The Synplify synthesis report file (.srr) contains timing reports
of estimated place-and-route delays. Altera's Quartus II
software can perform further optimizations on a post-synthesis
netlist from a synthesis vendor such as Synplicity. In addition,
designs may contain black boxes or IP functions that have not
been optimized by the third-party synthesis software. Actual
timing results are only obtained after the design has gone
through full place-and-route in the Quartus II software. For
these reasons, the Quartus II post place-and-route timing
reports provide a more accurate representation of the design.
The statistics in these reports should be used to evaluate design
performance.

Clock Frequencies

For single-clock designs, specify a global frequency when using the
push-button flow. While this flow is simple and provides good results,
often it does not meet the performance requirements for more advanced
designs. You can use timing constraints, compiler directives, and other
attributes to help optimize the performance of a design. You can enter
these attributes and directives directly in the HDL code. Alternatively,
you can enter attributes (not directives) into a constraint file (.sdc) with
the SCOPE editor in the Synplify software.

Use the SCOPE editor to set global frequency requirements for the entire
design and individual clock settings. Use the Clocks tab in the SCOPE
editor to specify frequency (or period), rise times, fall times, duty cycle,
and other settings. Assigning individual clock settings, rather than
over-constraining the global frequency, helps the Quartus II and Synplify
software achieve the fastest clock frequency for the overall design. The
define_clock attribute assigns clock constraints.

Multiple Clock Domains

The Synplify software can perform timing analysis on unrelated clock
domains. Each clock group is a different clock domain and is treated as
unrelated to the clocks in all other clock groups. All the clocks in a single
clock group are assumed to be related and the Synplify software
automatically calculates the relationship between the clocks. By default,
all clocks are in different groups so paths with different registers using
more than one clock signal are not analyzed by default. You can assign
clocks to a new clock group, or put related clocks in the same clock group,
by using the Clocks tab in the SCOPE editor or with the define_clock
attribute.

9–8 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Input/Output Delays

Specify the input and output delays for the ports of a design in the
Input/Output tab of the SCOPE editor or with the
define_input_delay and define_output_delay attributes. The
Synplify software does not allow you to assign the TCO and TSU values
directly to inputs and outputs. However, a TCO value can be inferred by
setting an external output delay, and a TSU value can be inferred by
setting an external input delay. The following equations illustrate the
relationship between TCO/TSU and the input/output delays:

TCO = Clock period - external output delay

TSU = Clock period - external input delay

When the syn_forward_io_constraints attribute is set to 1, the
Synplify software passes the external input and output delays to the
Quartus II software through NativeLink integration. The Quartus II
software then uses the external delays to calculate the maximum system
frequency.

Multi-Cycle Paths

Specify any multi-cycle paths in the design in the Multi-Cycle Paths tab
of the SCOPE editor or with the define_multicycle_path attribute.
A multi-cycle path is one that requires more than one clock cycle to
propagate. It is important to specify which paths are multi-cycle to avoid
having the Quartus II and Synplify compilers work excessively on a
non-critical path. Not specifying these paths can also result in an
inaccurate critical path being reported during timing analysis.

False Paths

False paths are paths that should not be considered during timing
analysis and/or which should be assigned low (or no) priority during
optimization. Some examples of false paths are slow asynchronous resets
and test logic added to the design. Set these paths in the False Paths tab
of the SCOPE editor or with the define_false_path attribute.

Altera Corporation 9–9
June 2004 Preliminary

Synplify Optimization Strategies

Finite State Machine (FSM) Compiler

If the FSM Compiler is turned on, the compiler automatically detects state
machines in a design. The compiler can then extract and optimize the
state machine. The FSM Compiler analyzes the state machine and decides
to implement sequential, gray, or one-hot encoding based on the number
of states. It also performs unused-state analysis, optimization of
unreachable states, and minimization of transition logic.

If the FSM Compiler is turned off, the compiler does not infer state
machines. The state machines are implemented as coded in the HDL
code. Thus, if the coding style for the state machine was sequential, then
the implementation is also sequential. If the FSM Compiler is turned on,
the compiler infers the state machines. The implementation is based on
the number of states regardless of the coding style in the HDL code.

You can use the syn_state_machine complier directive to specify or
prevent a state machine from being extracted and optimized. To override
the default encoding of the FSM Compiler, use the syn_encoding
directive.

The values for this directive are shown in Table 9–2.

The example below, “VHDL Code for syn_encoding”, shows sample
VHDL code for applying the syn_encoding directive.

VHDL Code for syn_encoding
SIGNAL current_state : STD_LOGIC_VECTOR(7 DOWNTO 0);
ATTRIBUTE syn_encoding : STRING;
ATTRIBUTE syn_encoding OF current_state : SIGNAL IS "sequential";

Table 9–2. syn_encoding Directive Values

Value Description

Sequential Generates state machines with the fewest possible flip-flops. Sequential, also called binary,
state machines are useful for area-critical designs when timing is not as much of a concern.

Gray Generates state machines where only one flip-flop changes during each transition.
Gray-encoded state machines tend to be glitchless.

One-hot Generates state machines containing one flip-flop for each state. One-hot state machines
provide the best performance and shortest clock-to-output delays. However, one-hot
implementations are usually larger than binary implementations.

Safe Generate extra control logic to force the state machine to the reset state if an invalid state is
reached. The safe value can be used in conjunction with the other three values, which results in
the state machine being implemented with the requested encoding scheme and the generation
of the reset logic.

9–10 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

The default is to optimize state machine logic for speed and area, but this
is potentially undesirable for critical systems. The safe value generates
extra control logic to force the state machine to the reset state if an invalid
state is reached.

FSM Explorer in Synplify Pro

The Synplify Pro software can use the FSM Explorer to automatically
explore different encoding styles for a state machine and then implement
the best encoding based on the overall design constraints. The FSM
Explorer uses the FSM Compiler to identify and extract state machines
from a design. However, unlike the FSM Compiler which chooses the
encoding style based on the number of states, the FSM Explorer tries
several different encoding styles before choosing a specific one. The
trade-off is that the compilation requires more time to perform the
analysis of the state machine but finds an optimal encoding scheme for
the state machine.

General Optimization Attributes & Options

The following sections list other options that you can modify in the
Synplify software to affect your design performance.

Maximum Fan-out

When dealing with critical path nets with high fan-outs, you can use the
syn_maxfan attribute to control the fan-out of the net. Setting this
attribute for a specific net results in the replication of the driver of the net
to reduce the overall fan-out. The syn_maxfan attribute takes an integer
value and applies to inputs or registers. (The syn_maxfan attribute
cannot be used to duplicate control signals, and the minimum-allowed
value of the attribute is 4.) Using this attribute may result in increased
logic resource utilization, thus putting a strain on routing resources and
leading to long compile times and difficult fitting.

If you need to duplicate an output register or output enable register, you
can create a register for each output pin by using the syn_useioff
attribute (see the “Register Packing” on page 9–11 section).

Preserving Nets

During synthesis, the compiler maintains ports, registers, and
instantiated components. However, some nets may not be maintained in
order to create an optimized circuit. Applying the syn_keep directive
overrides the optimization of the compiler and preserves the net during

Altera Corporation 9–11
June 2004 Preliminary

Synplify Optimization Strategies

synthesis. The syn_keep directive takes a Boolean value and can be
applied to wires (Verilog HDL) and signals (VHDL). Setting the value to
“true” preserves the net through synthesis.

Register Packing

Altera devices allow for the packing of registers into I/O cells. Altera
recommends allowing the Quartus II software to make the I/O register
assignments. However, it is possible to control register packing with the
syn_useioff attribute. The syn_useioff attribute takes a Boolean
value and can be applied to ports or entire modules. Setting the value to
“1” instructs the compiler to pack the register into an I/O cell. Setting the
value to “0” prevents register packing in both the Synplify and Quartus II
software.

Preserving Hierarchy

The Synplify software performs cross-boundary optimization by default.
This results in the flattening of the design to allow optimization. Use the
syn_hier attribute to over-ride the default compiler settings. The
syn_hier attribute takes a string value and can be applied to
modules/architectures. Setting the value to “hard” maintains the
boundaries of a module/architecture and prevent cross-boundary
optimization.

By default, the Synplify software generates a hierarchical .vqm file. To
flatten the file, set the syn_netlist_hierarchy attribute equal to 0.

Retiming in Synplify Pro

The Synplify Pro software can retime a design. Retiming can improve the
timing performance of sequential circuits by automatically moving
registers (register balancing) across combinational elements. Be aware
that retimed registers incur name changes. Turn on the retiming option in
the Device tab in the Implementation Options section or by using the
syn_allow_retiming attribute.

Altera Specific Attributes

The following attributes are for use with specific Altera device features.
These attributes are forward-annotated to the Quartus II project and are
used during the place-and-route process.

9–12 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

altera_chip_pin_lc

Use this attribute to make pin assignments. This attribute takes a string
value and can be applied to inputs and outputs. This attribute is not
supported for any of the MAX device families. Figure 9–2 shows how to
set the attribute in the SCOPE editor.

Figure 9–2. altera_chip_pin_lc with SCOPE Editor

“altera_chip_pin_lc with VHDL for ACEX 1K and FLEX 10KE Devices”
shows VHDL code for making location assignments to ACEX 1K and
FLEX 10KE devices.

1 The “@” is used to specify pin locations for ACEX 1K and
FLEX 10KE devices. For these devices the pin location
assignments are written to the output EDIF.

altera_chip_pin_lc with VHDL for ACEX 1K and FLEX 10KE Devices
ENTITY sample (data_in : IN STD_LOGIC_VECTOR (3 DOWNTO 0);

data_out: OUT STD_LOGIC_VECTOR (3 DOWNTO 0));
ATTRIBUTE altera_chip_pin_lc : STRING;
ATTRIBUTE altera_chip_pin_lc OF data_out : SIGNAL IS "@14, @5,

@16, @15";

“altera_chip_pin_lc with Other Devices” shows VHDL code for making
location assignments for other Altera devices. The pin location
assignments for these devices are written to the output Tcl script.

altera_chip_pin_lc with Other Devices
ENTITY sample (data_in : IN STD_LOGIC_VECTOR (3 DOWNTO 0);

data_out: OUT STD_LOGIC_VECTOR (3 DOWNTO 0));
ATTRIBUTE altera_chip_pin_lc : STRING;
ATTRIBUTE altera_chip_pin_lc OF data_out : SIGNAL IS "14, 5, 16,

15";

1 The data_out signal is a 4-bit signal; data_out[3] is
assigned to pin 14 and data_out[0] is assigned to pin 15.

Altera Corporation 9–13
June 2004 Preliminary

Exporting Designs to the Quartus II Software Using NativeLink Integration

altera_implement_in_esb or altera_implement_in_eab

Use this attribute to implement logic in ESB/EABs rather than logic
resources to improve area utilization. The modules cannot have feedback
paths, and either all or none of the inputs/outputs must be registered.
This attribute takes a Boolean value and can be applied to instances. (This
option is applicable for devices with ESB/EABs only. For example, the
Stratix® architecture is not supported by this option. For designs targeting
devices with no ESB/EABs, this has no effect.)

altera_io_powerup

Use this attribute to define the power-up value of an I/O register which
has no set or reset. The attribute takes a string value (“high|low”) and can
be applied to ports that have I/O registers.

altera_io_opendrain

Use this attribute to specify open-drain mode I/O ports. The attribute
takes a Boolean value and can be applied to outputs or bidirectional ports
for devices that support open-drain mode.

Exporting
Designs to the
Quartus II
Software Using
NativeLink
Integration

After a design is synthesized in the Synplify software, a .vqm (or .edf) file
and Tcl files are used to import the design into the Quartus II software for
place-and-route. You can run the Quartus II software from within the
Synplify software or as a standalone application. Once you have
imported the design into the Quartus II software, you can specify
different options to further optimize the design.

1 When using NativeLink integration, the path to your project
must not contain white space. The Synplify software uses Tcl
scripts to communicate with the Quartus II software, and the Tcl
language does not accept arguments with white space in the
path.

You can use NativeLink integration to integrate the Synplify software and
Quartus II software with a single graphical user interface (GUI) interface
for both the synthesis and place-and-route operations. NativeLink
integration allows you to run the Quartus II software from within the
Synplify software GUI or to run the Synplify software from within the
Quartus II software GUI.

9–14 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Running the Quartus II Software from within the Synplify
Software

To use the Quartus II software from within the Synplify software, follow
the steps below:

1. Verify that the QUARTUS_ROOTDIR environment variable
contains the Quartus II software installation directory. This
environment variable is required to use the Synplify and Quartus II
software together.

2. Choose one of the following commands from the Quartus II
submenu under the Options menu in the Synplify software:

a. Launch Quartus: Opens the Quartus II software GUI and
places the synthesized output file, forward-annotated timing
constraints, and pin assignments in a named Quartus II project.
You can then configure options for the project and execute any
Quartus II commands.

b. Run Background Compile: Runs the Quartus II software in
command-line mode with the project settings from the
synthesis run. The results of the place-and-route are written to a
log file.

The <project_name>_cons.tcl file is used to set up the Quartus II project
and calls the <project_name>.tcl file to pass constraints from the Synplify
software to the Quartus II software. The <project_name>.tcl file contains
device, timing, and location assignments.

Using the Quartus II Software to Launch the Synplify Software

You can set up the Quartus II software to run the Synplify software for
synthesis using NativeLink integration.

f For detailed information on using NativeLink integration with the
Synplify software, go to Specifying EDA Tool Settings in the Quartus II
Help index.

1 Running the Synplify software through Natvelink integration
requires a floating network license (as opposed to a node-locked
single-PC license), because batch mode compilation is
supported only with floating licenses.

Altera Corporation 9–15
June 2004 Preliminary

Cross-Probing with the Quartus II Software

You can also import the results of the Synplify synthesis and use them
from within the Quartus II software. Among other methods, a Quartus II
project can be created and compiled by running the
<project_name>_cons.tcl script file. This is done by executing the
following Tcl command in the Tcl Console:

source <project_name>_cons.tcl r

1 To open the Tcl Console, select Utility Windows > Tcl Console
(View menu) in the Quartus II software.

Cross-Probing
with the
Quartus II
Software

The Quartus II and Synplify software support bidirectional cross-probing
in the Windows operating system environment. With cross-probing,
selecting an object in one application highlights the same object in the
other. This feature thus provides the ability to connect
post-place-and-route timing results to the source code. Cross-probing is
supported for all Altera devices that generate a VQM netlist when
compiled in the Synplify software (an EDIF netlist is generated instead of
a VQM for designs targeting ACEX® 1K, FLEX 10K®, FLEX® 6000,
MAX® 7000, and MAX 3000 devices). The cross-probing capability
provides a truly integrated flow between your front-end and back-end
EDA tools and reduces debugging time.

Some examples of cross-probing uses include the following:

■ NativeLink integration allows you to cross-probe to the Synplicity
HDL Analyst viewer when selecting a node in the Quartus II
Floorplan. From the HDL Analyst, you can then cross-probe to the
source code that generated the post-synthesis nodes.

■ Selecting an AND primitive in the HDL Analyst RTL view highlights
the corresponding logic elements in the Quartus II Floorplan so that
you can find the location where it is being placed in the Altera device.

■ A critical path in the Quartus II message window and in the
Quartus II Timing Analyzer can be cross-probed to the source code
in the Synplicity synthesis tools with the Quartus II Floorplan.

■ You can cross-probe from the Synplicity synthesis tools to the
Quartus II Floorplan and view the placement and timing for state
machines or view the routing of high fan-out nodes.

Enabling Cross-Probing

You must enable cross-probing in both applications. In order to activate
the cross-probing capability in Synplicity's synthesis tools and the
Quartus II software, both tools must be open and have the design or
project loaded.

9–16 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

To enable cross-probing in the Synplify software, open a schematic view,
and select External Cross Probing Engaged (HDL Analyst menu).

To enable cross-probing in the Quartus II software, turn on Enable
cross-probing between Quartus II and other EDA tools option on the
EDA Tool Options page under General in the Options dialog box (Tools
menu).

The Synplify and the Quartus II software interface with each other
through a process called xprobe_server.exe. From the Quartus II
Floorplan and the Synplify HDL Analyst, the nodes can be further probed
internally within the respective tools.

Cross-Probing from the Quartus II Software

To perform cross-probing from the Quartus II software, highlight the
desired nodes in the Quartus II Floorplan. When you highlight the objects
in the Quartus II Floorplan, they are simultaneously highlighted in the
Technology view of the Synplify HDL Analyst.

To cross-probe from the Quartus II message window, right-click on the
appropriate message in the messages window and select Locate. This
highlights the appropriate nodes in the Quartus II Floorplan and in the
Synplify HDL Analyst.

To locate critical paths of timing violations by cross-probing from the
Quartus II Timing Analyzer, right-click an entry in the Quartus II Timing
Analyzer and select Locate in Timing Closure Floorplan. This highlights
the appropriate nodes in the Quartus II Floorplan and in the Synplify
HDL Analyst.

Cross-Probing from the Synplify Software

To perform cross-probing from Synplify software, open the HDL Analyst
view and select Technology and Flattened View (HDL Analyst menu) in
the Synplify software. Highlight the objects you want to cross-probe in
the Quartus II software. When objects are highlighted in the HDL
Analyst, they are simultaneously highlighted in the Quartus II Floorplan
and any open HDL Analyst window.

You can locate source code in the Synplify software from the HDL
Analyst by double-clicking the selected node. If the VHDL or Verilog
HDL source file is not open, the Synplify software automatically opens
the file.

Altera Corporation 9–17
June 2004 Preliminary

Guidelines for Altera Megafunctions & Architecture-Specific Features

You can also cross-probe from the Synplify software source code to the
HDL Analyst RTL view by selecting RTL and Flattened View (HDL
Analyst menu) in the Synplify software. Highlight the desired source
code in the Synplify software by right-clicking and selecting Highlight in
Analyst.

In the Synplify Pro software, you can cross-probe from the Synplify Pro
timing report or log file. To do this, open the HDL Analyst RTL view and
highlight the appropriate text in the Synplify Pro text editor. Right-click
and choose Select Port/Net/Instance.

Guidelines for
Altera
Megafunctions
& Architecture-
Specific
Features

Altera provides parameterizable megafunctions including the library of
parameterized modules (LPMs), device-specific Altera megafunctions,
intellectual property (IP) available as Altera MegaCore® functions, and IP
available through the Altera Megafunction Partners Program (AMPP).
You can use megafunctions by instantiating them in your HDL code or
inferring them from generic HDL code.

f For more information on specific Altera megafunctions, see the
Quartus II Help. For more information on IP functions, consult the
appropriate IP documentation.

If you decide to instantiate a megafunction in your HDL code, you can do
so by using the MegaWizard Plug-In Manager to parameterize the
function or instantiating the function using the port and parameter
definition. The MegaWizard Plug-In Manager provides a graphical
interface within the Quartus II software for customizing and
parameterizing any available megafunction for the design. “Instantiating
Altera Megafunctions Using the MegaWizard Plug-In Manager” on
page 9–18 describes the MegaWizard flow with the Synplify software

The Synplify software also automatically recognizes certain types of HDL
code and infers the appropriate megafunction when a megafunction
provides optimal results. The Synplify software provides options to
control inference of certain types of megafunctions, as described in
“Inferring Altera Megafunctions from HDL Code” on page 9–23.

9–18 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

f For a detailed discussion on instantiating vs. inferring on megafunctions,
see the Recommended HDL Coding Styles chapter in Volume 1 of the
Quartus II Handbook. The Recommended HDL Coding Styles chapter also
provides details on using the MegaWizard Plug-In Manager in the
Quartus II software and explains the files generated by the wizard, as
well as providing coding style recommendations and examples for
inferring megafunctions in Altera devices.

Instantiating Altera Megafunctions Using the MegaWizard
Plug-In Manager

When you use the MegaWizard to set up and parameterize a
megafunction, the MegaWizard either creates a VHDL or Verilog HDL
wrapper file that instantiates the megafunction (a black box
methodology), or for some megafunctions can generate a fully
synthesizeable netlist for improved results with EDA synthesis tools such
as Synplify (a clear box methodology). Both clear box and black box
methodologies are described in the following sections.

Clear Box Methodology

Using the MegaWizard-generated fully synthesizeable netlist is referred
to as a clear box methodology because the Synplify software can “see”
into the megafunction file. The clear box feature enables the synthesis tool
to report more accurate timing estimates and take better advantage of
timing driven optimization than a black box methodology.

This clear box feature of the MegaWizard can be turned on by checking
the Generate clear box body (for EDA tools only) in the MegaWizard
Plug-In Manager (Tools menu) for certain megafunctions. If the option
above does not appear, then clear box models are not supported for the
selected megafunction. The Synplify software supports clear box models
for Stratix and Cyclone™ devices. Turning on this option causes the
Quartus II MegaWizard to generate a synthesizeable clear box netlist
instead of the megafunction wrapper file described in the “Black Box
Methodology” on page 9–19.

Using MegaWizard-generated Verilog HDL Files for Clear Box
Megafunction Instantiation
If you check the <output file>_inst.v option on the last page of the wizard,
the MegaWizard generates a Verilog HDL instantiation template file for
use in your Synplify design. This file can help you instantiate the
megafunction clear box netlist file, <output file>.v, in your top-level
design. Include the megafunction clear box netlist file in your Synplify
project. Also include the stratix.v library file from the lib/altera directory
of the Synplify installation directory; this file provides the port and

Altera Corporation 9–19
June 2004 Preliminary

Guidelines for Altera Megafunctions & Architecture-Specific Features

parameter definitions of the clear box primitives. Finally, include the
megafunction clear box netlist file, <output file>.v, along with your
Synplify-generated VQM netlist in your Quartus II project.

Using MegaWizard-generated VHDL Files for Clear Box
Megafunction Instantiation
If you check the <output file>.cmp and <output file>_inst.vhd options on
the last page of the wizard, the MegaWizard generates a VHDL
Component declaration file and a VHDL Instantiation template file for
use in your design. These files help to instantiate the megafunction clear
box netlist file, <output file>.vhd, in your top-level design. Include the
megafunction clear box netlist file in your Synplify project. Finally,
include the megafunction clear box netlist file, <output file>.vhd, along
with your Synplify-generated VQM netlist in your Quartus II project.

Black Box Methodology

Using the MegaWizard-generated wrapper file is referred to as a
black-box methodology because the megafunction is treated as a “black
box” in the Synplify software. The black box wrapper file is generated by
default in the MegaWizard Plug-In Manager (Tools menu) and is
available for all megafunctions.

The black-box methodology does not allow the synthesis tool any
visibility into the function module thus not taking full advantage of the
synthesis tool's timing driven optimization. For better timing
optimization, especially if the black box does not have registered inputs
and outputs, add timing models to black boxes. See “Other Synplify
Software Attributes for Black-boxing” on page 9–22 for details.

Using MegaWizard-generated Files for Certain LPM Functions in the
Synplify LPM timing flow
For the LPM_MULT, LPM_RAM_DP, LPM_RAM_DQ, LPM_ROM,
LPM_LATCH, and LPM_FF megafunctions, you don't need take any
steps to manually create a black-box declaration. The Synplify LPM
timing flow allows you to directly instantiate these LPMS in your
Synplify project. By directly instantiating these LPMs, the Synplify
software can estimate timing for these functions during synthesis using
Altera-provided timing models.

1 For other megafunctions, follow the black-box methodologies
described in the following sections.

9–20 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

For Verilog HDL designs, include the altera_lpm.v library file from the
lib/altera directory of the Synplify installation directory. Include the
Megafunction variation wrapper file <output file>.v or <output file>.vhd
generated by the MegaWizard in the Synplify project, and compile it as a
normal block in your design.

Using MegaWizard-generated Verilog HDL Files for Black-Box
Megafunction Instantiation
If you check the <output file>_inst.v and <output file>_bb.v options on the
last page of the wizard, the MegaWizard generates a Verilog HDL
instantiation template file and a hollow-body black-box module
declaration for use in your Synplify design. The instantiation template file
helps to instantiate the Megafunction variation wrapper file, <output
file>.v, in your top-level design. Do not include the Megafunction
variation wrapper file in your Synplify project, but add it along with your
Synplify-generated VQM netlist in your Quartus II project. Add the
hollow-body black-box module declaration <output file>_bb.v to your
Synplify project to describe the port connections of the black box.

You can use the syn_black_box compiler directive to declare a module
as a black box. The top-level design files must contain the megafunction
port mapping and hollow-body module declaration, as described above.
You can apply the syn_black_box directive to the module declaration
in the top-level file or a separate file included in the project (such as the
<output file>_bb.v file) to instruct the Synplify software that this is a black
box. The software compiles successfully without this directive, but
reports an additional warning message. Using this directive allows you to
add other directives as discussed in “Other Synplify Software Attributes
for Black-boxing” on page 9–22.

“Top-level Verilog HDL Code with Black Box Instantiation of
LPM_COUNTER” below shows a sample top-level file that instantiates
verilogCount.v, which is a customized variation of the LPM_COUNTER
generated by the MegaWizard Plug-In Manager.

Top-level Verilog HDL Code with Black Box Instantiation of
LPM_COUNTER
module topCounter (clk, count);

input clk;
output[7:0] count;

verilogCounter verilogCounter_inst (
.clock (clk),
.q (count)

);
endmodule

// Module declaration found in verilogCounter_bb.v
// The syn attribute below is added to

Altera Corporation 9–21
June 2004 Preliminary

Guidelines for Altera Megafunctions & Architecture-Specific Features

// black box this module.
module verilogCounter (

clock,
q) /* synthesis syn_black_box */;

input clock;
output[7:0] q;

endmodule

Using MegaWizard-generated VHDL Files for Black-Box
Megafunction Instantiation
If you check the <output file>.cmp and <output file>_inst.vhd options on
the last page of the wizard, the MegaWizard generates a VHDL
component declaration file and a VHDL instantiation template file for use
in your Synplify design. These files can help you instantiate the
megafunction variation wrapper file, <output file>.vhd, in your top-level
design. Do not include the megafunction variation wrapper file in your
Synplify project, but add it along with your Synplify-generated VQM
netlist in your Quartus II project.

You can use the syn_black_box compiler directive declare a
component as a black box. The top-level design files must contain the
megafunction variation component declaration and port mapping, as
described above. Apply the syn_black_box directive to the component
declaration in the top-level file. The software compiles successfully
without this directive, but reports an additional warning message. Using
this directive allows you to add other directives such as the ones in the
section Other Synplify Software Attributes for Black-boxing.

“Top-level VHDL Code with Black Box Instantiation of
LPM_COUNTER” below shows a sample top level file that instantiates
vhdlCount.vhd, which is a customized variation of the LPM_COUNTER
generated by the MegaWizard Plug-In Manager.

Top-level VHDL Code with Black Box Instantiation of
LPM_COUNTER
LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY testCounter IS

PORT
(

clk: IN STD_LOGIC ;
count: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)

);
END testCounter;

ARCHITECTURE top OF testCounter IS
component vhdlCount

PORT (
clock: IN STD_LOGIC ;
q: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)

);

9–22 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

end component;
attribute syn_black_box : boolean;
attribute syn_black_box of vhdlCount: component is true;
BEGIN

vhdlCount_inst : vhdlCount PORT MAP (
clock => clk,
q => count

);
END top;

Other Synplify Software Attributes for Black-boxing
The black-box methodology does not allow the synthesis tool any
visibility into the function module thus does not take full advantage of
the synthesis tool's timing driven optimization. For better timing
optimization, especially if the black box does not have registered inputs
and outputs, add timing models to black boxes. This can be done with a
“gray box” methodology by adding the syn_tpd, syn_tsu, and
syn_tco attributes. See “Verilog HDL Example” on page 9–22 for a
Verilog HDL example.

Verilog HDL Example
module ram32x4(z,d,addr,we,clk);
/* synthesis syn_black_box syn_tco1="clk->z[3:0]=4.0"

syn_tpd1="addr[3:0]->z[3:0]=8.0"
syn_tsu1="addr[3:0]->clk=2.0"
syn_tsu2="we->clk=3.0" */

output[3:0]z;
input[3:0]d;
input[3:0]addr;
input we
input clk
endmodule

The following other attributes are supported by the Synplify to
communicate details about the characteristics of the black-box module
within the HDL code:

■ syn_resources: specifies the resources used in a particular black
box

■ black_box_pad_pin: prevents mapping to I/O cells
■ black_box_tri_pin: indicates a tri-stated signal

f For more information on applying these attributes, see the Adding
Attributes and Directives section of Chapter 3: Tasks and Tips in the Synplify
User Guide.

Altera Corporation 9–23
June 2004 Preliminary

Guidelines for Altera Megafunctions & Architecture-Specific Features

Inferring Altera Megafunctions from HDL Code

The Synplify software uses Behavior Extraction Synthesis Technology
(B.E.S.T.) algorithms to infer high-level structures such as RAMs, ROMs,
operators, FSMs, etc. It then keeps the structures abstract for as long as
possible in the synthesis process. This allows for the use of
technology-specific resources to implement these structures by inferring
the appropriate Altera megafunction when a megafunction provides
optimal results. The following sections outline some of the
Synplify-specific details when inferring Altera megafunctions. The
Synplify software provides options to control inference of certain types of
megafunctions, which is also described in the following sections.

f For coding style recommendations and examples for inferring
megafunctions in Altera devices, see the Recommended HDL Coding Styles
chapter in Volume 1 of the Quartus II Handbook.

Multipliers

Figure 9–3 provides the RTL view of an unsigned 8×8 multiplier with two
pipeline stages after synthesis as seen in HDL Analyst in the Synplify
software. This multiplier is converted into an lpm_mult megafunction.
For devices with DSP blocks, the software may implement the lpm_mult
function in a DSP block instead of LEs, depending on device utilization.

Figure 9–3. HDL Analyst View of lpm_mult Megafunction (Unsigned 8x8
Multiplier with Pipeline=2)

Resource Balancing
While mapping multipliers to DSP blocks, the Synplify software
performs resource balancing for optimum performance.

Altera devices have a fixed number of DSP blocks, which implies a fixed
number of embedded multipliers. If the design uses more multipliers
than are available, then the Synplify software automatically maps the
extra multipliers to LEs.

D[7:0] Q[7:0]

D[7:0] Q[7:0]

a_reg[7:0]

b_reg[7:0]

[7:0]

*
D[7:0] Q[7:0]

out[15:0]

clk

out[15:0]a[7:0]

b[7:0] [7:0] [7:0]

[7:0] [15:0]

mult_out[15:0]

9–24 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

If a design has more multipliers than are available in the DSP blocks, the
Synplify software maps the multipliers in the critical paths to DSP blocks.
Next, any wide multipliers, which may or may not be in the critical paths,
are mapped to DSP blocks. Smaller multipliers and/or multipliers that
are not in the critical paths may then be implemented in LEs. This ensures
that the design fits successfully in the device.

Controlling the Inferring of DSP Blocks
Multipliers can be implemented in DSP blocks or in logic elements in
certain Altera devices. The user can control this implementation through
attribute settings in the Synplify software.

Signal Level Attribute
You can control the implementation of individual multipliers by using the
syn_multstyle attribute as shown below:

<signal_name> /* synthesis syn_multstyle = "logic" */

where signal_name is the name of the signal.

1 This setting applies to wires only; it cannot be applied to
registers.

Table 9–3 shows the values for the signal level attribute in the Synplify
software that controls the implementation of the multipliers in the DSP
blocks or LEs.

The following examples show simple Verilog HDL and VHDL code using
the syn_multstyle attribute.

Signal Attributes for Controlling DSP Block Inference in Verilog HDL
module mult(a,b,c,r,en);

input [7:0] a,b;
output [15:0] r;
input [15:0] c;
input en;
wire [15:0] temp /* synthesis syn_multstyle="logic" */;

Table 9–3. Attribute Settings for DSP Block in the Synplify Software

Attribute Name Value Description

syn_multstyle lpm_mult LPM Function inferred and multipliers
implemented in DSP block

syn_multstyle logic LPM function not inferred and multipliers
implemented LEs by the Synplify software

Altera Corporation 9–25
June 2004 Preliminary

Guidelines for Altera Megafunctions & Architecture-Specific Features

assign temp = a*b;
assign r = en ? temp : c;
endmodule

Signal Attributes for Controlling DSP Block Inference in VHDL Code
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity onereg is port (
r : out std_logic_vector(15 downto 0);
en : in std_logic;
a : in std_logic_vector(7 downto 0);
b : in std_logic_vector(7 downto 0);
c : in std_logic_vector(15 downto 0)
);

end onereg;

architecture beh of onereg is

signal temp : std_logic_vector(15 downto 0);
attribute syn_multstyle : string;
attribute syn_multstyle of temp : signal is "logic";

begin
temp <= a * b;

r <= temp when en='1' else c;
end beh;

RAM

Follow the guidelines below for the Synplify software to successfully
infer RAM in a design:

■ The address line must be at least 2 bits wide.
■ Resets on the memory are not supported. See your device family

documentation for information on whether read and write ports
must be synchronous.

■ Some Verilog HDL statements with blocking assignments may not be
mapped to RAM blocks, so avoid blocking statements when
modeling RAMs in Verilog HDL.

For certain device families, the syn_ramstyle attribute specifies the
implementation to use for an inferred RAM. You can apply
syn_ramstyle globally, to a module, or to a RAM instance, to specify
registers or block_ram. To turn off RAM inference, set the attribute
value to registers.

When inferring RAM for certain Altera device families, the Synplify
software generates additional bypass logic. This logic is generated to
resolve a half-cycle read/write behavior difference between the RTL and

9–26 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

post-synthesis simulations. The RTL simulation shows the memory being
updated on the positive edge of the clock, and the post-synthesis
simulation shows the memory being updated on the negative edge. To
eliminate the bypass logic, the output of the RAM must be registered. By
adding this register, the output of the RAM is seen after a full clock cycle,
by which time the update has occurred thus eliminating the need for the
bypass logic.

For Stratix designs, you can disable the creation of glue logic by setting
the syn_ramstyle value to no_rw_check. Use syn_ramstyle with a
value of no_rw_check to disable the creation of glue logic in dual-port
mode.

“VHDL Code for Inferred Dual-Port RAM” below shows sample VHDL
code for inferring dual-port RAM.

VHDL Code for Inferred Dual-Port RAM
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_signed.all;

ENTITY dualport_ram IS
PORT (data_out: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);

data_in: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
wr_addr, rd_addr: IN STD_LOGIC_VECTOR (6 DOWNTO 0);
we: IN STD_LOGIC;
clk: IN STD_LOGIC);

END dualport_ram;

ARCHITECTURE ram_infer OF dualport_ram IS
TYPE Mem_Type IS ARRAY (127 DOWNTO 0) OF STD_LOGIC_VECTOR (7
DOWNTO 0);
SIGNAL mem: Mem_Type;
SIGNAL addr_reg: STD_LOGIC_VECTOR (6 DOWNTO 0);

BEGIN
data_out <= mem (CONV_INTEGER(rd_addr));
PROCESS (clk, we, data_in) BEGIN

IF (clk='1' AND clk'EVENT) THEN
IF (we='1') THEN
mem(CONV_INTEGER(wr_addr)) <= data_in;
END IF;

END IF;
END PROCESS;

END ram_infer;

“VHDL Code for Inferred Dual-Port RAM Preventing Bypass Logic” on
page 9–27 shows sample VHDL code preventing bypass logic for
inferring dual-port RAM. The extra latency behavior stems from the
inferring methodology and is not required when instantiating a
megafunction.

Altera Corporation 9–27
June 2004 Preliminary

Guidelines for Altera Megafunctions & Architecture-Specific Features

VHDL Code for Inferred Dual-Port RAM Preventing Bypass Logic
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_signed.all;

ENTITY dualport_ram IS
PORT (data_out: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);

data_in : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
wr_addr, rd_addr : IN STD_LOGIC_VECTOR (6 DOWNTO 0);
we : IN STD_LOGIC;
clk : IN STD_LOGIC);

END dualport_ram;

ARCHITECTURE ram_infer OF dualport_ram IS
TYPE Mem_Type IS ARRAY (127 DOWNTO 0) OF STD_LOGIC_VECTOR (7
DOWNTO 0);
SIGNAL mem : Mem_Type;
SIGNAL addr_reg : STD_LOGIC_VECTOR (6 DOWNTO 0);
SIGNAL tmp_out : STD_LOGIC_VECTOR(7 DOWNTO 0); --output register

BEGIN
tmp_out <= mem (CONV_INTEGER(rd_addr));
PROCESS (clk, we, data_in) BEGIN

IF (clk='1' AND clk'EVENT) THEN
IF (we='1') THEN
mem(CONV_INTEGER(wr_addr)) <= data_in;
END IF;
data_out <= tmp_out; --registers output preventing

 -- bypass logic generation.
END IF;

END PROCESS;
END ram_infer;

Inferring ROM

Follow the guidelines below for the Synplify software to successfully
infer ROM in a design:

■ The address line must be at least 2 bits wide.
■ ROM must be at least half full.
■ A CASE or IF statement must make 16 or more assignments using

constant values of the same width.

9–28 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Block-Based
Design with the
Quartus II
LogicLock
Methodology

As designs become more complex and designers work in teams, a
block-based hierarchical design flow is often an effective design
approach. In this approach, you perform optimization on individual
sub-blocks and each sub-block has its own output netlist file. After you
optimize all of the sub-blocks, you integrate them into a final design and
optimize it at the top level.

You can use the Synplify software with the LogicLock design
methodology in the Quartus II software to perform block-based or
team-based compilation. The Synplify Pro software also offers the
MultiPoint Synthesis feature to provide an incremental synthesis flow
with the LogicLock design methodology.

MultiPoint synthesis, which is available for certain device technologies in
the SynplifyPro software, provides an automated incremental synthesis
flow and can reduce runtime. The MultiPoint feature manages a design
hierarchy to let you design incrementally and synthesize designs that
take too long for top-down synthesis. MultiPoint synthesis allows
different netlist files to be created for different sections of a design
hierarchy, supporting the LogicLock design methodology. It also ensures
that only those sections of a design that have been updated are
resynthesized when the design is compiled, reducing synthesis run time
and preserving the results for the unchanged blocks. A designer can
change and resynthesize their section of a design without affecting other
sections of a design.

You can also create different netlist files manually with the Synplify
software (basic Synplify and Synplify Pro). Different netlist files mean
that each section is independent of the others. When synthesizing the
entire project, only portions of a design that have been updated have to
be resynthesized when you compile the design. You can make changes,
optimize and resynthesize your section of a design without affecting
other sections.

Using the LogicLock design methodology, you can place each block's
logic into a fixed or floating region in an Altera device. You then have the
opportunity to maintain the placement and the performance of your
blocks in the Altera device. If all the netlists are contained in one
Quartus II project, you can use the LogicLock flow to back-annotate the
logic within the other regions. In this case, when you recompile with one
new VQM netlist file, the placement and assignments for unchanged
netlist files assigned to different LogicLock regions are not affected.
Therefore, one designer can make changes to a piece of code that exists in
an independent block and not interfere with another designer's changes,
even if all the blocks are integrated in a top-level design. With the
LogicLock design methodology, separate pieces of a design can evolve
from development to testing without affecting other areas of a design.

Altera Corporation 9–29
June 2004 Preliminary

Block-Based Design with the Quartus II LogicLock Methodology

f For more information on using the LogicLock feature in the Quartus II
software, see LogicLock Design Methodology chapter in Volume 2 of the
Quartus II Handbook. For more information on hierarchical design
methodologies and design flows using the Quartus II software, see
Hierarchical Block-Based and Team-Based Design Flow chapter in Volume 1
of the Quartus II Handbook.

Hierarchy & Design Considerations with Multiple VQM Files

To ensure the proper functioning of the synthesis flow, you can create
separate netlist files only for modules and entities. In addition, each
module or entity should have its own design file. If two different modules
are in the same design file but are defined as being part of different
regions, it is difficult to maintain incremental synthesis since both regions
would have to be recompiled when you change one of the modules or
entities.

If you use boundary tri-states in a lower-level block, the Synplify software
pushes (or “bubbles”) the tri-states through the hierarchy to the top level
to make use of the tri-state drivers on output pins of Altera devices.
Because bubbling tri-states requires optimizing through hierarchies,
lower-level tri-states are not supported with a block-based design
methodology. You should use tri-state drivers only at the external output
pins of the device and at the top-level block in the hierarchy.

Creating a Design with Multiple VQM Files

The first stage of a hierarchical design flow is to generate multiple VQM
files, enabling you to take advantage of the LogicLock incremental design
flow and the incremental fitter in the Quartus II software. If the whole
design is in one VQM file, changes in one block affect other blocks
because of possible node name changes.

You can generate multiple VQM files either by using the Multipoint
synthesis flow and LogicLock attributes in the Synplify Pro software, or
by manually creating separate Synplify projects and black-boxing each
block that you want to be part of a LogicLock region.

In the Multipoint synthesis flow (Synplify Pro only), you create multiple
VQMs from one easy-to-manage top-level synthesis project. Using the
manual black-boxing method (Synplify or Synplify Pro), you have
multiple synthesis projects, which may be required for certain
team-based or bottom-up designs where a single top-level project is not
desired.

9–30 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Once you have created multiple VQM files using one of these two
methods, you need to create the appropriate Quartus II project(s) to
place-and-route the design.

Creating a Design with Multiple VQM Files using Multipoint
Synthesis (Synplify Pro only)

This section describes how to generate multiple VQM files using the
Synplify Pro MultiPoint synthesis flow. You must first set up your
compile points, constraint files, and Synplify Pro options, then apply
Altera-specific attributes to create LogicLock regions.

Set Compile Points & Create Constraint Files

The MultiPoint flow lets you segment a design into smaller synthesis
units, called compile points. The synthesis software treats each compile
point as a block for incremental mapping, which allows you to isolate and
work on individual compile point modules as independent segments of
the larger design without impacting other design modules. A design can
have any number of compile points, and compile points can be nested.
The top-level module is always treated as a compile point.

Figure 9–4 shows an example of a design hierarchy that can be split into
multiple compile points.

Figure 9–4. Design Hierarchy

D

Designer 1

F

Designer 2 Designer 3

E

A

CB

Altera Corporation 9–31
June 2004 Preliminary

Block-Based Design with the Quartus II LogicLock Methodology

In this case, modules A, B, and C are considered compile points, and there
is a separate netlist file for each block.

Compile points are optimized in isolation from their parent, which could
be another compile point or a top-level design. Each block created with a
compile point is unaffected by critical paths or constraints on its parent or
other blocks. A compile point stands on its own, with its own individual
constraints. During synthesis, any compile points that have not yet been
synthesized are synthesized before the top level. Nested compile points
are synthesized before the parent compile points that contain them. When
you apply the appropriate LogicLock constraints to a compile point
module, then a separate netlist is created for that compile point, isolating
that logic from any other logic in the design.

Compile points are applied to the module or architecture in the Synplify
Pro SCOPE spreadsheet or the constraint file (.sdc). You cannot set a
compile point in the Verilog/VHDL source code. You can set the
constraints manually using TCL or by editing the SDC file. You can also
use the graphical user interface (GUI) which provides two methods,
manual or automated as shown below.

Defining Compile Points Using Tcl or SDC
To set compile points using Tcl and an SDC file, use the
define_compile_point command:

define_compile_point [-disable] [-comment <comment>] \
<objname> [-type <compile point type>]

In the syntax statement above, objname represents any module in the
design. Currently, locked is the only compile point type supported.

Each compile point has a set of constraint files that begin with the
define_current_design command to set up the SCOPE
environment.

define_current_design {<my_module>}

Manually Defining Compile Points from the GUI
The manual method requires you to separately create constraint files for
the top-level and the lower-level compile points. To use the manual
method:

1. From the top-level, select the Compile Points tab in the SCOPE
spreadsheet

2. Select the modules which you want to define as compile points.

9–32 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Currently, locked compile points is the only type supported. All compile
points must be defined from the top-level because the Compile Points tab
is not available in the SCOPE spreadsheet from lower level modules.

3. Manually create a constraint file for each module.

To ensure that changes to a compile point do not affect the top-level
parent module, disable the Update Compile Point Timing Data option
on the Implementation Options dialog box. If this option is enabled,
updates to a child module can impact the top-level module.

Automatically Defining Compile Points from the GUI
When you use the automated process, the lower-level constraint file is
created automatically. This eliminates the manual step that you need to
do to set up each compile point. To use the automated method:

1. Select New under the File menu and choose to create a new
Constraint File, or click the SCOPE icon in the tool bar. Select
Compile Point from the Select File Type tab of the Create a New
SCOPE File dialog box.

2. Select the module you want to designate as a compile point. The
software automatically sets the compile points in the top-level
constraint file and creates a lower-level constraint file for each
compile point.

To ensure that changes to a compile point do not affect the top-level
parent module, disable the Update Compile Point Timing Data option
on the Implementation Options dialog box. If this option is enabled,
updates to a child module can impact the top-level module.

1 When using compile points with the LogicLock design flow,
keep the following restrictions in mind:

● To use compile points effectively, you must provide timing
constraints (timing budgeting) for each compile point; the more
accurate the constraints, the better your results. Constraints are
not automatically budgeted, so manual time budgeting is
essential.

● When using the Synplify Pro attribute syn_useioff to pack
registers in the I/O Elements (IOEs) of Altera devices, these
registers must be in the top-level module, not a lower level.
Otherwise, you must allow the Quartus II software to perform
I/O register packing instead of the syn_useioff attribute.
You can use the Fast Input Register or Fast Output Register
options, or set I/O timing constraints and turn on Optimize I/O

Altera Corporation 9–33
June 2004 Preliminary

Block-Based Design with the Quartus II LogicLock Methodology

cell register placement for timing on the Fitter Settings page of
the Settings dialog box in the Quartus II software.

● You must put tri-state buffers in the top-level module because
tri-state drivers are located at the outputs of Altera devices.
Tri-states coded in lower-level files do not get automatically
pushed to the top-level.

● There is no incremental synthesis support for top-level logic;
any logic in the top-level is resynthesized during every run.

f For further details about compile points, see the Synplify Pro User Guide
and Reference Manual at www.synplicity.com/literature/index.html.

Apply the LogicLock Attributes

To instruct the Synplify Pro software to create a separate VQM netlist file
for each compile point, you must indicate that the compile point is used
with the LogicLock design methodology. When you apply the
appropriate LogicLock attributes, the Synplify Pro software also writes
out Tcl commands for the Quartus II software to create a LogicLock
region for each netlist.

LogicLock regions in the Quartus II software have both size and location
properties. The region's size is defined by the height and width of the
rectangular area. If the region is specified as auto-size, then the Quartus II
software determines the appropriate size to fit the logic assigned to the
region. When you specify the size, you must include enough device
resources to accommodate the assigned logic. The location of a region is
defined by its origin, the position of its bottom-left corner or top-left
corner, depending on the target device family. In the Quartus II software,
this location can be specified as locked or floating. If the location is
floating, the Quartus II software determines the location during its
optimization process. Floating locations are the only type currently
supported in the Synplify Pro software.

9–34 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Table 9–4 shows the valid combinations of the LogicLock attributes.

You can apply these attributes to the top-level constraint file or to the
individual constraint files for each lower-level module. Attributes can be
set in the attribute tab of the SCOPE spreadsheet.

Synplify Pro offers another attribute, syn_allowed_resources, which
restricts the number of resources for a given module. You can apply the
syn_allowed_resources attribute to any compile point view.

f For specific information regarding these attributes, see the Synplify Pro
online help or reference manual.

During compilation, the Synplify Pro software creates a <top-level
project>.tcl file that provides the Quartus II software with the appropriate
LogicLock assignments, creating a region for each VQM file along with
the information to set up a Quartus II project.

The Tcl file contains the following commands for each LogicLock region.
This example is for module A (instance u1) in the project named top
where the region name cpll_1 was selected by Synplify Pro for the
compile point.

project add_assignment "top" "cpll_1" "" "" "LL_AUTO_SIZE" "ON"
project add_assignment "top" "cpll_1" "" "" "LL_STATE" "FLOATING"
project add_assignment "top" "cpll_1" "" "|A:u1" "LL_MEMBER_OF" "cpll_1"

These commands create a LogicLock region with Auto Size and Floating
Origin properties. This flexible LogicLock region allows the Quartus II
Compiler to select the size and location of the region.

f For more information on Tcl commands, see the Tcl Scripting chapter in
Volume 2 of the Quartus II Handbook.

Table 9–4. LogicLock Location and Size Properties

altera_logiclock_location Attribute altera_logiclock_size Attribute Description

Floating Auto The most flexible kind of LogicLock
constraint. Allows the Quartus II
software to choose appropriate region
size and location

Floating Fixed Assumes size of LogicLock constraint
area is already optimal in existing
Quartus II project.

Altera Corporation 9–35
June 2004 Preliminary

Block-Based Design with the Quartus II LogicLock Methodology

Creating a Quartus II Project for Multiple VQM Files

You can use the following methods to import the VQM files into the
Quartus II software.

■ Use the <top-level project>.tcl file that contains the SynplifyPro
assignments for all blocks within the project. This method allows the
top-level designer to import all the blocks into one Quartus II project
for an incremental flow. You can optimize all modules within the
project at once. Figure 9–5 shows a visual representation of the
design flow.

1 If additional optimization is required for individual blocks, each
designer can take their VQM file and create a separate
Quartus II project at that time with the appropriate assignments.
New assignments would then have to be added to the top-level
project through the LogicLock import function.

Figure 9–5. Design Flow Using Multiple VQM Files with One Quartus II Project

■ Generate multiple Quartus II projects, one for each block in the
design. Each designer in the project can optimize their block
separately within the Quartus II software and back-annotate their
blocks. Figure 9–6 shows a visual representation of the design flow.
The optimized sub-designs can be brought into one top-level
Quartus II project using the LogicLock import function.

1 Each designer has to manually enter their assignments into
the Quartus II software because Synplify Pro doesn't create
a Tcl file for the lower-level modules.

a.vqm

b.vqm c.vqm

Quartus II Project

Use a.tcl to Import
Synplify Pro Assignments

9–36 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Figure 9–6. Design Flow Using Multiple VQM Files with Multiple Quartus II Projects

f For more information on importing LogicLock assignments, see the
LogicLock Design Methodology chapter in Volume 2 of the Quartus II
Handbook.

Generating a Design with Multiple VQM Files Using Black Boxes

This section describes how to manually generate multiple VQM files
using a black boxing technique. The following manual flow was
supported in previous versions of the Synplify Pro software, and is
discussed here because some designers or teams may want more control
over the project for each submodule. In addition, this manual flow is
supported in the Synplify software that does not include the Multipoint
Synthesis feature.

Manually Creating Multiple VQM Files Using Black Boxes

To create multiple VQM files manually in the Synplify software, create a
separate project for each module and top-level design that you want to
maintain as a separate VQM file. Implement black-box instantiations of
lower-level modules in your top-level project. When synthesizing the
projects for the lower-level modules and the top-level design, follow
these general guidelines.

For lower-level modules:

1. Turn on Disable I/O Insertion for the target technology in the
Implementation Options dialog box.

Quartus II Project Quartus II Project

a.vqm

b.vqm c.vqm

Quartus II Project

Use a.tcl to Import
SynplifyPro Assignments

Manually Enter
Assignments

Manually Enter
Assignments

Altera Corporation 9–37
June 2004 Preliminary

Block-Based Design with the Quartus II LogicLock Methodology

2. Read the HDL files for the modules.

1 Modules may include black-box instantiations of
lower-level modules that are also maintained as separate
VQM files.

3. Add constraints with the SCOPE constraint editor.

4. Enter the clock frequency to ensure that the sub-design is correctly
optimized.

5. In the Attributes tab, set syn_netlist_hierarchy to 0.

For top-level designs:

1. Turn off Disable I/O Insertion for the target technology.

2. Read the HDL files for top-level designs.

3. Black-box lower-level modules in the top-level design.

4. Add constraints with the SCOPE constraint editor.

5. Enter the clock frequency to ensure that the design is correctly
optimized.

6. In the Attributes tab, set syn_netlist_hierarchy to 0.

The sections below describe an example of black-boxing modules using
the files described in Hierarchical Block-Based & Team-Based Design Flows
chapter in Volume 1 of the Quartus II Handbook. One netlist is created for
the top-level module A, another netlist is created for B and its
submodules D and E, while another netlist is created for C and its
submodule F. To create multiple VQM files:

1. Generate a VQM file for module B. Use B.v/.vhd, D.v/.vhd, and
E.v/.vhd as the source files.

2. Generate a VQM file for module C. Use C.v/.vhd and F. v/.vhd as
the source files.

3. Generate a top-level VQM file A.v/.vhd for module A. Ensure that
you black box modules B and C, which were optimized separately
in the previous steps.

9–38 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Black Boxing in Verilog HDL
Any design block that is not defined in the project, or included in the list
of files to be read for a project, are treated as a black box by the software.
Use the syn_black_box attribute to indicate that you intended to
black-box the given module. In Verilog HDL, you must provide an empty
module declaration for the module that is treated as a black box.

“Black-Boxing Example for Top-Level File A.v” below shows an example
of the A.v top-level file. If any of your lower-level files also contain a
black-boxed lower-level file in the next level of hierarchy, follow the same
procedure.

Black-Boxing Example for Top-Level File A.v
module A (data_in, clk, e, ld, data_out);

input data_in, clk, e, ld;
output [15:0] data_out;

wire [15:0] cnt_out;

B U1 (.data_in (data_in),.clk(clk), .ld (ld),.data_out(cnt_out));
C U2 (.d(cnt_out), .clk(clk), .e(e), .q(data_out));

// Any other code in A.v goes here.

endmodule

// Empty Module Declarations of Sub-Blocks B and C follow here.
// These module declarations (including ports) are required for black boxing.

module B (data_in, clk, ld, data_out) /*synthesis syn_black_box */ ;
input data_in, clk, ld;
output [15:0] data_out;

endmodule

module C (d, clk, e, q) /*synthesis syn_black_box */ ;
input [15:0] d;
input clk, e;
output [15:0] q;

endmodule

Black Boxing in VHDL
Any design block that is not defined in the project, or included in the list
of files to be read for a project, are treated as a black box by the software.
Use the syn_black_box attribute to indicate that you intended to
black-box the given component. In VHDL, you need a component
declaration for the black box just like any other block in the design.

Altera Corporation 9–39
June 2004 Preliminary

Block-Based Design with the Quartus II LogicLock Methodology

1 Although VHDL is not case-sensitive, VQM (a subset of
Verilog HDL) is case-sensitive. Entity names and their port
declarations are forwarded to the VQM. Black-box names and
port declarations are similarly forwarded to the VQM. To
prevent case-sensitive mismatches between VQM, use the same
capitalization for black-box and entity declarations in VHDL
designs.

“Black-Boxing Example for Top-Level File A.vhd” shows an example of
the A.vhd top-level file. If any lower-level files also contain a black-boxed
lower-level file in the next level of hierarchy, follow the same procedure.

Black-Boxing Example for Top-Level File A.vhd
LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY synplify;
use synplify.attributes.all;

ENTITY A IS
PORT (data_in : IN INTEGER RANGE 0 TO 15;

clk, e, ld : IN STD_LOGIC;
data_out : OUT INTEGER RANGE 0 TO 15);

END A;

ARCHITECTURE a_arch OF A IS

COMPONENT B PORT(
data_in : IN INTEGER RANGE 0 TO 15;
clk, ld : IN STD_LOGIC;
d_out : OUT INTEGER RANGE 0 TO 15);

END COMPONENT;

COMPONENT C PORT(
d : IN INTEGER RANGE 0 TO 15;
clk, e: IN STD_LOGIC;
q : OUT INTEGER RANGE 0 TO 15);

END COMPONENT;

attribute syn_black_box of B: component is true;
attribute syn_black_box of C: component is true;

-- Other component declarations in A.vhd go here

signal cnt_out : INTEGER RANGE 0 TO 15;

BEGIN

U1 : B
PORT MAP (

data_in => data_in,
clk => clk,
ld => ld,
d_out => cnt_out);

U2 : C

9–40 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

PORT MAP (
d => cnt_out,
clk => clk,
e => e,
q => data_out);

-- Any other code in A.vhd goes here

END a_arch;

After you have completed the steps outlined in this section, you will have
different VQM netlist files for each block of code. These files can now be
used in the LogicLock incremental design methodology in the Quartus II
software.

Creating a Quartus II Project for Multiple VQM Files

The Synplify software creates a Tcl file for each VQM file, providing the
Quartus II software with the information to set up a project. Altera
recommends the following method for bringing each VQM and
corresponding Tcl file into the Quartus II software.

Use the Tcl file that is created for each VQM file by the Synplify software
for each Synplify project. This method generates multiple Quartus II
projects, one for each block in the design. Each designer in the project can
optimize their block separately within the Quartus II software and
back-annotate their blocks. Figure 9–7 shows a visual representation of
the design flow. Designers should create a LogicLock region for each
block; the top-level designer should then import all the blocks and
assignments into the top-level project. This method allows each block in
the design to be treated separately; each block can be back-annotated and
brought into one top-level project.

Altera Corporation 9–41
June 2004 Preliminary

Conclusion

Figure 9–7. Design Flow Using Multiple Synplify Projects & Multiple Quartus II Projects

f For more information on creating and importing LogicLock assignments,
see the LogicLock Design Methodology chapter in Volume 2 of the
Quartus II Handbook.

Conclusion Advanced synthesis is an important part of the design flow. Taking
advantage of the Synplicity Synplify and Quartus II design flow allows
you to control how your design files are prepared for the Quartus II place-
and-route process, as well as improve performance and optimize a design
for use with Altera devices. Several of the methodologies outlined in this
chapter can help optimize a design to achieve performance goals and
save design time.

Quartus II Project Quartus II Project

a.vqm

b.vqm c.vqm

Quartus II Project

Use a.tcl to Import
Synplify Assignments

Use c.tcl to Import
Synplify Assignments

Use b.tcl to Import
Synplify Assignments

9–42 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Altera Corporation 10–1
June 2004 Preliminary

10. Mentor Graphics
LeonardoSpectrum

Support

Introduction As programmable logic device (PLD) designs become more complex and
require increased performance, advanced synthesis has become an
important part of the design flow. Combining hardware description
language (HDL) coding techniques, Mentor Graphics®
LeonardoSpectrum™ software constraints, and Altera® Quartus® II
software options can provide the performance increase needed for
today's system-on-a-programmable-chip (SOPC) designs.

This chapter documents key design methodologies and techniques for
achieving better performance in Altera devices using the
LeonardoSpectrum and Quartus II software design flow.

1 This chapter assumes that you have set up, licensed, and are
familiar with the LeonardoSpectrum software.

f To obtain and license the LeonardoSpectrum software, see the
Mentor Graphics web site at http://www.mentor.com. For information
on installing the LeonardoSpectrum software and setting up your
working environment, see the LeonardoSpectrum Installation Guide and
the LeonardoSpectrum User's Manual.

Design Flow The basic steps in a LeonardoSpectrum-Quartus II design flow are as
follows:

1. Create Verilog HDL or VHDL design files in the LeonardoSpectrum
software or a text editor.

2. Import the Verilog HDL or VHDL design files to the
LeonardoSpectrum software for synthesis.

3. Select a target device and add timing constraints and compiler
directives to help optimize the design during synthesis.

4. Synthesize the project in the LeonardoSpectrum software.

5. Create a Quartus II project and import the technology-specific EDIF
Input File (.edf) netlist and the Tool Command Language (.tcl) file
generated by the LeonardoSpectrum software into the Quartus II
software for placement and routing, and for performance
evaluation.

qii51010-2.0

10–2 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

6. After obtaining place-and-route results that meet your needs,
configure or program the Altera device.

Figure 10–1 shows the recommended design flow using the
LeonardoSpectrum and Quartus II software.

If your area and timing requirements are satisfied, use the programming
files generated from the Quartus II software to program or configure the
Altera device. As shown in Figure 10–1, if the area or timing requirements
are not met, change the constraints in the LeonardoSpectrum software
and re-run the synthesis. Repeat the process until the area and timing
requirements are met. You can also use other Quartus II software options
and techniques to meet the area and timing requirements.

Figure 10–1. Recommended Design Flow Using LeonardoSpectrum & Quartus II Software

Gate-Level
Functional
Simulation

Gate-Level
Timing

Simulation

Configure / Program

Yes

No

VHDL Verilog HDL

Forward Annotated
Timing Constraints

(.tcl / .acf)

Technology
Specific Netlist

(.edf)

Post Place-and-Route
Simulation Files

(.vho / .vo)

Post Synthesis
Simulation Files

(.vhd / .v)

Configuration / Programming Files
(.sof / .pof)

Quartus II
Software

Leonardo-
Spectrum
Software

Functional/RTL
Simulation

Constraints
& Settings

Timing
and Area

Requirements
Satisfied?

Constraints
 & Settings

Device

Altera Corporation 10–3
June 2004 Preliminary

Design Flow

The LeonardoSpectrum software supports both VHDL and Verilog HDL
source files. With the appropriate license, it also supports mixed
synthesis, allowing a combination of VHDL and Verilog HDL source files.
After synthesis, the LeonardoSpectrum software produces several
intermediate and output files. Table 10–1 lists these file extensions with a
short description of each file.

1 Altera recommends that you do not use project directory names
that includes spaces. Some file operations in the
LeonardoSpectrum software may not work correctly if the path
name contains spaces.

Specify timing constraints and compiler directives for the design in the
LeonardoSpectrum software, or in a constraint file (.ctr). Many of these
constraints are forward-annotated in the TCL file for use by the
Quartus II software.

The LeonardoInsightTM Schematic Viewer is an add on graphical tool for
schematic views of the technology-independent RTL netlist (.xdb) and
the technology-specific gate-level result. You can use the Schematic
Viewer to visually analyze and debug the design. It also supports cross
probing between the RTL and gate-level schematics, the design browser,
and the source code in the HDL InventorTM text editor.

Table 10–1. LeonardoSpectrum Intermediate & Output Files

File Extension(s) File Description

.xdb Technology independent register transfer level (RTL) netlist
file that can only be read by the LeonardoSpectrum software

.v/.vh Post-synthesis output design file in Verilog HDL and VHDL
format that you can use for post-synthesis simulation

.edf Technology-specific output netlist in electronic design
interchange format (EDIF)

.acf/.tcl (1) Forward-annotated constraint file containing constraints and
assignments

Note to Table 10–1:
(1) An assignment and configuration file (.acf) file is created only for ACEX® 1K,

FLEX®10K, FLEX 6000, FLEX 8000, MAX® 7000, MAX 9000, and MAX 3000
devices. The ACF is generated for backward compatibility with the
MAX+PLUS® II software. A tool command language (Tcl) file (.tcl) is generated
for the Quartus II software which also contains Tcl commands to create a
Quartus II project.

10–4 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Optimization
Strategies

You can configure most general settings in the Quick Setup tab in the
LeonardoSpectrum user interface. Other Flow tabs provide additional
options, and some Flow tabs include multiple Power tabs (at the bottom
of the screen) with still more options. Advanced optimization options in
the LeonardoSpectrum software include timing-driven synthesis,
encoding style, resource sharing, and mapping I/O registers.

Timing-Driven Synthesis

The LeonardoSpectrum software supports timing-driven synthesis
through user-assigned timing constraints to optimize the performance of
the design. Setting constraints in the LeonardoSpectrum software are
straightforward. Constraints such as clock frequency can be specified
globally or for individual clock signals. The following “Global Power
Tab”, “Clock Power Tab”, and “Input & Output Power Tabs” sections
describe how to set the different types of timing constraints in
LeonardoSpectrum.

The timing constraints described in the “Global Power Tab” section can
be set in the Constraints Flow tab. In this tab, there are different
Power tabs at the bottom, such as Global and Clock, for setting the
different constraints.

Global Power Tab

The Global tab is the default Power tab in the Constraints Flow tab.
Specify the global clock frequency here. The Clock Frequency on the
Quick Setup tab is equivalent to the Registers to Registers delay setting.
You can also specify the following: Input Ports to Registers, Registers to
Output Ports, and Inputs to Outputs delays that correspond to global
tSU, tCO and tPD requirements, respectively, in the Quartus II software. The
timing diagram on this tab reflects the settings you have made.

Clock Power Tab

Various constraints can be set for each clock in your design. First, select
the clock name in the Clock(s) window. The clock names appear after the
design is read from the Input Flow tab. Configure settings for that
particular clock and click Apply. If necessary you can also set the Duty
Cycle to a value other than the default 50%. The timing diagram shows
these settings.

If a clock has an Offset from the main clock, which is considered to be
time “0”, this constraint corresponds to the
OFFSET_FROM_BASE_CLOCK setting in the Quartus II software.

Altera Corporation 10–5
June 2004 Preliminary

Optimization Strategies

You can specify the pin number for the clock input pin in the Pin Location
field. This pin number is passed to the Quartus II software for place-and-
route, but does not affect synthesis in the LeonardoSpectrum software.

Input & Output Power Tabs

Configure settings to individual input or output pins in the Input and
Output tabs. First, select a name from the Input Ports or Output Ports
window. The names appear after the design is read from the Input Flow
tab. Then make the setting for that pin as described below.

The Arrival Time setting indicates that the input signal arrives a specified
time after the rising clock edge (time “0”). This setting constrains the path
from the pin to the first register by including the arrival time in the total
delay, and corresponds to the EXTERNAL_INPUT_DELAY assignment in
the Quartus II software.

The Required Time setting indicates the maximum delay after time “0”
that the output signal should arrive at the output pin. This setting directly
constrains the register to output delay, and corresponds with the
EXTERNAL_OUTPUT_DELAY assignment in the Quartus II software.

Specify the pin number for the I/O pin in the Pin Location field. This pin
number is passed to the Quartus II software for place-and-route, but does
not affect synthesis in the LeonardoSpectrum software.

Other Constraints

The following sections describe other constraints that can be set with the
LeonardoSpectrum user interface.

Encoding Style

The LeonardoSpectrum software encodes state machines during the
synthesis process. To improve performance when coding state machines,
separate state machine logic from all arithmetic functions and data paths.
Once encoded, a design cannot be re-encoded later in the optimization
process. You must follow a particular VHDL or Verilog HDL coding style
for the LeonardoSpectrum software to identify the state machine.

10–6 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Table 10–2 shows the state machine encoding styles supported by the
LeonardoSpectrum software.

The Encoding Style setting is made in the Input Flow tab. It instructs the
software to use a particular state machine encoding style for all state
machines. The default Auto selection implements binary or one-hot
encoding, depending on the size of enumerated types in the state
machine.

f To ensure proper recognition and improve performance when coding
state machines, refer to the Recommended HDL Coding Styles chapter in
Volume 1 of the Quartus II Handbook for design guidelines.

Resource Sharing

You can also enable the Resource Sharing setting in the Input Flow tab.
This setting allows optimization to reduce device resources. You should
generally leave this setting turned on.

Table 10–2. State Machine Encoding Styles in the LeonardoSpectrum
Software

Style Description

Binary Generates state machines with the fewest possible flip-flops.
Binary state machines are useful for area-critical designs when
timing is not as much of a concern.

Gray Generates state machines where only one flip-flop changes
during each transition. Gray-encoded state machines tend to be
glitchless.

One-hot Generates state machines containing one flip-flop for each state.
One-hot state machines provide the best performance and
shortest clock-to-output delays. However, one-hot
implementations are usually larger than binary implementations.

Random Generates state machines using random state machine
encoding. Only use random state machine encoding when no
other implementation achieves the desired results.

Auto (default) Implements binary or one-hot encoding, depending on the size
of enumerated types in the state machine.

Altera Corporation 10–7
June 2004 Preliminary

Timing Analysis with the Leonardo-Spectrum Software

Mapping I/O Registers

The Map I/O Registers option is located in the Technology Flow tab. The
Map I/O Registers option applies to Altera FPGA devices containing I/O
cells or I/O elements. If the option is turned on, input or output registers
are moved into the device's I/O cells for faster setup or
clock-to-output times.

Timing Analysis
with the
Leonardo-
Spectrum
Software

LeonardoSpectrum software reports successful synthesis with an
information message in the Transcript or Information window.
Estimated device usage and timing results are reported in the Device
Utilization section of this window. Figure 10–2 shows an example of a
LeonardoSpectrum compilation report.

Figure 10–2. LeonardoSpectrum Compilation Report

LeonardoSpectrum software estimates the timing results based on timing
models. The LeonardoSpectrum software does not know how the design
is placed and routed in the Quartus II software, so it cannot report
accurate routing delays. Additionally, if the design includes any black-
boxed Altera-specific functions, the LeonardoSpectrum software does not
report timing information for these functions.

Final timing results are generated from the Quartus II software and are
reported separately in the Transcript or Information window if the Run
Integrated Place and Route option is turned on.

10–8 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

f See “Integration with the Quartus II Software” on page 10–9 for more
information.

Exporting
Designs Using
NativeLink
Integration

You can use NativeLink® integration to integrate the LeonardoSpectrum
software and Quartus II software with a single graphical user interface
(GUI) for both the synthesis and place-and-route operations. NativeLink
integration allows you to run the Quartus II software from within the
LeonardoSpectrum software GUI or to run the LeonardoSpectrum
software from within the Quartus II software GUI.

Generating Netlist Files

The LeonardoSpectrum software generates an EDIF netlist file readable
as an input file in the Quartus II software for place-and-route. Select the
EDIF file option name in the Output Flow tab. The EDIF netlist is also
generated if the Auto option is turned on in the Output Flow tab.

Including Design Files for Black-Boxed Modules

If the design has black-boxed megafunctions, be sure to include the
MegaWizard®-generated custom megafunction variation design file in
the Quartus II project directory or add it to the list of project files for
place-and-route.

Passing Constraints Via Scripts

The LeonardoSpectrum software can write out a Tcl file called
<project name>.tcl. This file contains commands to create a Quartus II
project along with constraints and other assignments. To output a Tcl
script, turn on the Write Vendor Constraint Files option in the Output
Flow tab.

To create and compile a Quartus II project using the Tcl file generated
from the LeonardoSpectrum software, perform the following steps in the
Quartus II software:

1. Place the EDIF netlist files and Tcl scripts in the same directory.

2. Open the Quartus II Tcl Console by selecting Utility > Tcl Console
(View menu).

3. At a Tcl Console command prompt, type source <path>/<project
name>.tcl r.

4. Open the new project by selecting Open Project (File menu) and
start compilation by selecting Start Compilation (Processing menu).

Altera Corporation 10–9
June 2004 Preliminary

Guidelines for Altera Megafunctions & LPM Functions

Integration with the Quartus II Software

The Place And Route section in the Quick Setup tab allows you to
launch the Quartus II software from within the LeonardoSpectrum
software. Turn on the Run Integrated Place and Route option to start the
compilation using the Quartus II software and show the fitting and
performance results. You can also run the place-and-route software by
turning on the Run Quartus option on the Physical Flow tab and clicking
Run PR.

To use integrated place-and-route software, select
Place and Route Path >Tools (Options menu) and specify the location of
the Quartus II software executable file. Browse to <Quartus II software
installation directory>/bin.

Guidelines for
Altera
Megafunctions
& LPM
Functions

Altera provides parameterizable megafunctions ranging from simple
arithmetic units, such as adders and counters, to advanced phase-locked
loop (PLL) blocks, multipliers, and memory structures. These functions
are performance-optimized for Altera devices. Megafunctions include
the library of parameterized modules (LPMs), device-specific embedded
megafunctions such as PLLs, LVDS, and digital signal processing (DSP)
blocks, intellectual property (IP) available as Altera MegaCore functions,
and IP available through the Altera Megafunction Partners Program
(AMPP).

1 Some IP cores may require that you synthesize them in the
LeonardoSpectrum software. Refer to the user guide for the
specific IP for more information.

There are two methods for handling megafunctions in the
LeonardoSpectrum software: inference and instantiation.

The LeonardoSpectrum software supports inferring some of the Altera
megafunctions, such as multipliers, DSP functions, and RAM and ROM
blocks. The LeonardoSpectrum software supports all Altera
megafunctions through instantiation.

Instantiating Altera Megafunctions

There are two methods of instantiating Altera megafunctions in the
LeonardoSpectrum software. The first and least common method is to
directly instantiate the megafunction in the Verilog HDL or VHDL code.
The second method, to maintain target technology awareness, is to use
the MegaWizard Plug-In Manager in the Quartus II software to setup and
parameterize a megafunction variation. The MegaWizard creates a
wrapper file that instantiates the megafunction. The benefits of using the

10–10 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

MegaWizard are that all the parameters are properly set and you do not
need any synthesizer library support such as is needed in the direct
instantiation method. This is referred to as the black-box methodology.

f When directly instantiating megafunctions, see the Quartus II Help to
obtain a list of the ports and parameters. Altera recommends using the
MegaWizard to ensure that the ports and parameters are set correctly.

Inferring Altera Memory Elements

The LeonardoSpectrum software can infer memory blocks from
Verilog HDL or VHDL code. When the LeonardoSpectrum software
detects a RAM or ROM from the style of the RTL code at a technology-
independent level, it then maps the element to a generic module in the
RTL database. During the technology-mapping phase of synthesis, the
LeonardoSpectrum software maps the generic module to the most
optimal primitive memory cells, or Altera megafunction, for the target
Altera technology.

f For more information on inferring RAM and ROM megafunctions,
including examples of VHDL and Verilog HDL code, see the
Recommended HDL Coding Styles chapter in Volume 1 of the Quartus II
Handbook.

Inferring RAM
The LeonardoSpectrum software supports RAM inference for various
device families. The restrictions for the LeonardoSpectrum software to
successfully infer RAM in a design are listed below:

■ The write process must be synchronous
■ The read process can be asynchronous or synchronous depending on

the target Altera architecture
■ Resets on the memory are not supported

Table 10–3 shows a summary of the minimum memory sizes and
minimum address widths for inferring RAM in various device families.

Table 10–3. Inferring RAM Summary

Cyclone II, Stratix GX,
Stratix & Cyclone

APEX 20K, APEX 20KE, APEX 20K, APEX II,
Excalibur & Mercury

FLEX 10KE,
ACEX 1K

RAM primitive altsyncram altdpram altdpram

Minimum RAM size 2 bits 64 bits 128 bits

Minimum address
width

1 bit 4 bits 5 bits

Altera Corporation 10–11
June 2004 Preliminary

Guidelines for Altera Megafunctions & LPM Functions

To disable RAM inference, set the extract_ram and infer_ram
variables to “false.” You can use the Variable Editor (Tools menu) to enter
the value “false” when synthesizing in the user interface with the
Advanced Flow tabs, or add the commands set extract_ram false
and set infer_ram false to your synthesis script.

Inferring ROM
You can implement ROM behavior in HDL source code with CASE
statements or specify the ROM as a table. LeonardoSpectrum infers both
synchronous and asynchronous ROM depending on the target Altera
device. For example, Stratix memory must be synchronous to be inferred.

To disable ROM inference, set the extract_rom variable to “false.” You
can use the Variable Editor (Tools menu) to enter the value “false” when
synthesizing in the user interface with the Advanced Flow tabs, or add
the commands set extract_rom false to your synthesis script.

Inferring Multipliers & DSP Functions

Some Altera devices include dedicated DSP blocks optimized for DSP
applications. The following Altera megafunctions are used with DSP
block modes:

■ lpm_mult
■ altmult_accum
■ altmult_add

You can instantiate these megafunctions in the design or have the
LeonardoSpectrum software infer the appropriate megafunction by
recognizing a multiplier, multiplier accumulator (MAC), or multiplier-
adder in the design. The Quartus II software maps the functions to the
DSP blocks in the device during place-and-route.

f For more information on inferring multipliers and DSP functions,
including examples of VHDL and Verilog HDL code, see the
Recommended HDL Coding Styles chapter in Volume 1 of The Quartus II
Handbook.

Simple Multipliers

The lpm_mult megafunction implements the DSP block in the simple
multiplier mode. The following functionality is supported in this mode:

■ The DSP block includes registers for the input and output stages and
an intermediate pipeline stage

■ Signed and unsigned arithmetic is supported

10–12 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Multiplier Accumulators

The altmult_accum megafunction implements the DSP block in the
multiply-accumulator mode. The following functionality is supported in
this mode:

■ The DSP block includes registers for the input and output stages and
an intermediate pipeline stage

■ The output registers are required for the accumulator
■ The input and pipeline registers are optional
■ Signed and unsigned arithmetic is supported

1 If the design requires input registers to be used as shift registers,
use the black-boxing method to instantiate the
altmult_accum megafunction.

Multiplier Adders

The LeonardoSpectrum software can infer multiplier adders and map
them to either the two-multiplier adder mode or the four-multiplier
adder mode of the DSP blocks. The LeonardoSpectrum software maps the
HDL code to the correct altmult_add function.

The following functionality is supported in these modes:

■ The DSP block includes registers for the input and output stages and
an intermediate pipeline stage

■ Signed and unsigned arithmetic is supported, but support for the
Verilog HDL “signed” construct is limited

Controlling DSP Block Inference

In devices that include dedicated DSP blocks, multipliers,
multiply-accumulators, and multiply-adders can be implemented either
in DSP blocks, or in logic. You can control this implementation through
attribute settings in the LeonardoSpectrum software.

Altera Corporation 10–13
June 2004 Preliminary

Guidelines for Altera Megafunctions & LPM Functions

As shown in Table 10–4, attribute settings in the LeonardoSpectrum
software control the implementation of the multipliers in DSP blocks or
logic at the signal block (or module), and project level.

Global Attribute

You can set the global attribute extract_mac to control the
implementation of multipliers in DSP blocks for the entire project. You
can set this attribute using the script interface. The script command is:

set extract_mac <value>

Module Level Attributes

You can control the implementation of multipliers inside a module or
component by setting attributes in the HDL source code. The attribute
used is extract_mac. Setting his attribute for a module affects only the
multipliers inside that module.

//synthesis attribute <module name> extract_mac <value>

Table 10–4. Attribute Settings for DSP Blocks in the LeonardoSpectrum Software Note (1)

Level Attribute Name Value Description

Global extract_mac (2) TRUE All multipliers in the project mapped to DSP blocks

FALSE All multipliers in the project mapped to logic

Module extract_mac (3) TRUE Multipliers inside the specified module mapped to DSP blocks

FALSE Multipliers inside the specified module mapped to logic

Signal dedicated_mult ON LPM inferred and multipliers implemented in DSP block

OFF LPM inferred, but multipliers implemented in logic by the Quartus II
software

LCELL LPM not inferred and multipliers implemented in logic by the
LeonardoSpectrum software

AUTO LPM inferred, but the Quartus II software automatically maps the
multipliers to either logic or DSP blocks based on the Quartus II
software place-and-route

Notes to Table 10–4:
(1) The extract_mac attribute takes precedence over the dedicated_mult attribute.
(2) For devices with DSP blocks, the extract_mac attribute is set to TRUE by default for the entire project.
(3) For devices with DSP blocks, the extract_mac attribute is set to TRUE by default for all modules.

10–14 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

The following Verilog and VHDL codes samples show how to use the
extract_mac attribute.

Using Module Level Attributes in Verilog HDL Code
module mult_add (dataa, datab, datac, datad, result);
//synthesis attribute mult_add extract_mac FALSE
// Port Declaration
input [15:0] dataa;
input [15:0] datab;
input [15:0] datac;
input [15:0] datad;

output [32:0] result;

// Wire Declaration
wire [31:0] mult0_result;
wire [31:0] mult1_result;

// Implementation
// Each of these can go into one of the 4 mults in a
// DSP block
assign mult0_result = dataa * `signed datab;
//synthesis attribute mult0_result preserve_signal TRUE

assign mult1_result = datac * datad;

// This adder can go into the one-level adder in a DSP
// block
assign result = (mult0_result + mult1_result);

endmodule

Using Module Level Attributes in VHDL Code
library ieee ;
USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

entity mult_acc is
 generic (size : integer := 4) ;
 port (
 a: in std_logic_vector (size-1 downto 0) ;
 b: in std_logic_vector (size-1 downto 0) ;
 clk : in std_logic;

accum_out: inout std_logic_vector (2*size downto 0)
) ;
 attribute extract_mac : boolean;
 attribute extract_mac of mult_acc : entity is FALSE;
end mult_acc;

Altera Corporation 10–15
June 2004 Preliminary

Guidelines for Altera Megafunctions & LPM Functions

architecture synthesis of mult_acc is
 signal a_int, b_int : signed (size-1 downto 0);
 signal pdt_int : signed (2*size-1 downto 0);
 signal adder_out : signed (2*size downto 0);

begin
 a_int <= signed (a);
 b_int <= signed (b);
 pdt_int <= a_int * b_int;
 adder_out <= pdt_int + signed(accum_out);
 process (clk)
 begin
 if (clk'event and clk = '1') then
 accum_out <= std_logic_vector (adder_out);
 end if;
 end process;
end synthesis ;

Signal Level Attributes

You can control the implementation of individual lpm_mult multipliers
by using the dedicated_mult attribute as shown below:

//synthesis attribute <signal_name> dedicated_mult <value>

1 The dedicated_mult attribute only works with signals or
wires; it does not work with registers.

Table 10–5 shows the acceptable values for the dedicated_mult
attribute.

Table 10–5. Values for the dedicated_mult Attribute

Value Description

ON LPM inferred and multipliers implemented in DSP block

OFF LPM inferred and multipliers synthesized, implemented in logic, and
optimized by the Quartus II software (1)

LCELL LPM not inferred and multipliers synthesized, implemented in logic,
and optimized by the LeonardoSpectrum software (1)

AUTO LPM inferred but Quartus II maps the multipliers automatically to either
the DSP block or logic based on resource availability

Note to Table 10–5:
(1) Although both dedicated_mult=OFF and dedicated_mult=LCELLS result

in logic implementations, the optimized results in these two cases may differ.

10–16 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

1 Some signals for which dedicated_mult attribute is set may
get synthesized away by the LeonardoSpectrum software due to
design optimization. In such cases, if you want to force the
implementation, the signal should be preserved from being
synthesized away by setting the preserve_signal attribute
to “true.”

1 The extract_mac attribute must be set to “false” for the
module or project level when using the dedicated_mult
attribute.

Following are samples of Verilog and VHDL codes, respectively, using
the dedicated_mult attribute.

Signal Attributes for Controlling DSP Block Inference in Verilog HDL
Code
module mult (AX, AY, BX, BY, m, n, o, p);

input [7:0] AX, AY, BX, BY;
output [15:0] m, n, o, p;

wire [15:0] m_i = AX * AY; // synthesis attribute m_i
dedicated_mult ON
// synthesis attribute m_i preserve_signal TRUE

//Note that the preserve_signal attribute prevents
// signal m_i from getting synthesized away

wire [15:0] n_i = BX * BY; // synthesis attribute n_i
dedicated_mult OFF
wire [15:0] o_i = AX * BY; // synthesis attribute o_i
dedicated_mult AUTO
wire [15:0] p_i = BX * AY; // synthesis attribute p_i
dedicated_mult LCELL

// since n_i , o_i , p_i signals are not preserved,
// they may get synthesized away based on the design

assign m = m_i;
assign n = n_i;
assign o = o_i;
assign p = p_i;

endmodule

Altera Corporation 10–17
June 2004 Preliminary

Guidelines for Altera Megafunctions & LPM Functions

Signal Attributes for Controlling DSP Block Inference for VHDL
Code
library ieee ;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;
USE ieee.std_logic_signed.all;

ENTITY mult is
PORT(AX,AY,BX,BY: IN

std_logic_vector (17 DOWNTO 0);
m,n,o,p: OUT

std_logic_vector (35 DOWNTO 0));
attribute dedicated_mult: string;
attribute preserve_signal : boolean
END mult;
ARCHITECTURE struct of mult is

signal m_i, n_i, o_i, p_i : unsigned (35 downto 0);
attribute dedicated_mult of m_i:signal is "ON";
attribute dedicated_mult of n_i:signal is "OFF";
attribute dedicated_mult of o_i:signal is "AUTO";
attribute dedicated_mult of p_i:signal is "LCELL";

begin

m_i <= unsigned (AX) * unsigned (AY);
n_i <= unsigned (BX) * unsigned (BY);
o_i <= unsigned (AX) * unsigned (BY);
p_i <= unsigned (BX) * unsigned (AY);

m <= std_logic_vector(m_i);
n <= std_logic_vector(n_i);
o <= std_logic_vector(o_i);
p <= std_logic_vector(p_i);
end struct;

Guidelines for Using DSP Blocks

In addition to the guidelines mentioned earlier in this section, use the
following guidelines while designing with DSP blocks in the
LeonardoSpectrum software:

■ To access all the different control signals for the DSP block, such as
sign A, sign B, and dynamic addnsub, use the black-boxing
technique.

10–18 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

■ While performing signed operations, ensure that the specified data
width of the output port matches the data width of the expected
result. Otherwise the sign bit may be lost or data may be incorrect
because the sign is not extended. For example, if the data widths of
input A and B are width_a and width_b, respectively, then the
maximum data width of the result can be (width_a + width_b +2) for
the four-multipliers adder mode. Thus, the data width of the output
port should be less than or equal to (width_a + width_b +2).

■ While using the accumulator, the data width of the output port
should be equal to or greater than (width_a + width_b). The
maximum width of the accumulator can be (width_a +
width_b + 16). Accumulators wider than this are implemented in
logic.

■ If the design uses more multipliers than are available in a particular
device, you might get a no fit error in the Quartus II software. In such
cases, use the attribute settings in the LeonardoSpectrum software to
control the mapping of multipliers in your design to DSP blocks or
logic.

Block-based
Design with the
Quartus II
LogicLock
Methodology

The LogicLockTM block-based design flow enables users to design,
optimize, and lock down a design one section at a time. With the
LogicLock methodology, you can independently create and implement
each logic module into a hierarchical or team-based design. With this
method, you can preserve the performance of each module during system
integration and have more control over placement of your design. To
maximize the benefits of the LogicLock design methodology in the Altera
Quartus II software, you can partition a new design into a hierarchy of
netlist files during synthesis in the Mentor Graphics LeonardoSpectrum
software.

f For more information on LogicLock regions and the LogicLock design
flow, see the LogicLock Design Methodology chapter in Volume 1 of the
Quartus II Handbook.

The LeonardoSpectrum software allows you to create different netlist
files for different sections of a design hierarchy. Different netlist files
mean that each section is independent of the others. When synthesizing
the entire project, only portions of a design that have been updated have
to be re-synthesized when you compile the design. You can make
changes, optimize, and re-synthesize your section of a design without
affecting other sections.

f For more information on hierarchical design methodologies and block-
based design flows, see the Hierarchical Block-Based & Team Based Design
Flows chapter in Volume 1 of the Quartus II Handbook.

Altera Corporation 10–19
June 2004 Preliminary

Block-based Design with the Quartus II LogicLock Methodology

Hierarchy & Design Considerations

You must plan your design’s structure and partitioning carefully to use
the LogicLock features effectively. Optimal hierarchical design practices
include partitioning the blocks at functional boundaries, registering the
boundaries of each block, minimizing the I/O between each block,
separating timing-critical blocks, and keeping the critical path within one
hierarchical block.

f For more recommendations for hierarchical design partitioning, see the
Design Recommendations for Altera Devices chapter in Volume 1 of the
Quartus II Handbook.

To ensure the proper functioning of the synthesis tool, you can only apply
the LogicLock option in LeonardoSpectrum to modules, entities, or netlist
files. In addition, each module or entity should have its own design file.
If two different modules are in the same design file but are defined as
being part of different regions, it is difficult to maintain incremental
synthesis since both regions would have to be recompiled when you
change one of the modules or entities.

If you use boundary tri-states in a lower-level block, the
LeonardoSpectrum software pushes (or “bubbles”) the tri-states through
the hierarchy to the top-level to take advantage of the tri-state drivers on
the output pins of Altera device. Because bubbling tri-states requires
optimizing through hierarchies, lower-level tri-states are not supported
with a block-level design methodology. You should use tri-state drivers
only at the external output pins of the device and in the top-level block in
the hierarchy.

If the hierarchy is flattened during synthesis, logic is optimized across
boundaries, preventing you from making LogicLock assignments to the
flattened blocks. Altera recommends preserving the hierarchy when
compiling the design. In the Optimize command of your script, use the
Hierarchy Preserve command or in the user interface select Preserve in
the Hierarchy section on the Optimize Flow tab.

If you are compiling your design with a script, you can use an alternative
method for preventing optimization across boundaries. In this case, use
the Auto hierarchy setting and set the auto_dissolve attribute to false
on the instances or views that you want to preserve (i.e., the modules with
LogicLock assignments) using the following syntax:

set_attribute -name auto_dissolve -value false
.work.<block1>.INTERFACE.

10–20 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

This alternative method flattens your design according to the
auto_dissolve limits, but does not optimize across boundaries where
you apply the attribute as described.

f For more details on LeonardoSpectrum attributes and hierarchy levels,
see the LeonardoSpectrum on-line documentation by choosing Open
Manuals Bookcase (Help menu).

Creating a Design with Multiple EDIF Files

The first stage of a hierarchical design flow is to generate multiple EDIF
files, enabling you to take advantage of the LogicLock incremental design
flow in the Quartus II software. If the whole design is in one EDIF file,
changes in one block affect other blocks because of possible node name
changes. You can generate multiple EDIF files either by using the
LogicLock option in the LeonardoSpectrum software, or by manually
black boxing each block that you want to be part of a LogicLock region.

Once you have created multiple EDIF files using one of these methods,
you must create the appropriate Quartus II project(s) to place-and-route
the design.

Generating Multiple EDIF Files Using the LogicLock Option

This section describes how to generate multiple EDIF files using the
LogicLock option in the LeonardoSpectrum software. When synthesizing
a top-level design that includes LogicLock regions, follow these general
steps:

1. Read in the Verilog HDL or VHDL source files.

2. Add LogicLock constraints.

3. Optimize and write output netlist files, or choose Run Flow.

To set the correct constraints and compile the design, follow these
detailed steps:

1. From the Tools menu, switch to the Advanced Flow tab instead of
the Quick Setup tab.

2. Set the target technology and speed grade for the device on the
Technology Flow tab.

3. Open the input source files on the Input Flow tab.

Altera Corporation 10–21
June 2004 Preliminary

Block-based Design with the Quartus II LogicLock Methodology

4. Click Read on the Input Flow tab to Clicking Read in the source
files but not begin optimization.

5. Select the Module Power tab located at the bottom of the
Constraints Flow tab

6. Click on a module to be placed in a LogicLock region (Modules
section).

7. Turn on the LogicLock option.

8. Type your desired LogicLock region name in the text field under the
LogicLock option.

9. Click Apply.

10. Repeat steps 6-9 for any other modules that you want to place in
LogicLock regions.

1 In some cases, you are prompted to save your LogicLock (and
other non-global) constraints in a Constraints File (.ctr) when
you click anywhere off the Constraints Flow tab. The default
name is <project name>.ctr. This file is added to your Input file
list, and must be manually included later if you re-create the
project.

The command written into the LeonardoSpectrum Information
or Transcript Window is the tool command language (Tcl)
command that gets written into the CTR file. The format of the
“path” for the module specified in the command should be
work.<module>.INTERFACE. To ensure that you don’t see an
optimized version of the module, do not perform a Run Flow on
the Quick Setup tab prior to setting LogicLock constraints.
Always use the Read command, as described in step 1.

11. Continue making any other settings as required on the Constraints
tab.

12. Select Preserve in the Hierarchy section on the Optimize tab to
ensure that the hierarchy names are not flattened during
optimization.

13. Continue making any other settings as required on the Optimize
tab.

14. Run your synthesis flow using each Flow tab, or click Run Flow.

10–22 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Synthesis creates an EDIF file for each module that has a LogicLock
assignment in the Constraints Flow tab. You can now use these files in the
LogicLock incremental design flow in the Quartus II software.

1 You may occasionally see multiple EDIF files and LogicLock
commands for the same module. An “unfolded” version of a
module is created when you instantiate a module more than
once and the boundary conditions of the instances are different.
For example, if you apply a constant to one instance of the block,
it might be optimized to eliminate unneeded logic. In this case,
the LeonardoSpectrum software must create a separate module
for each instantiation (unfolding). If this unfolding occurs, you
see more than one EDIF file, and each EDIF file has a LogicLock
assignment to the same LogicLock region. When you import the
EDIF files to the Quartus II software, the EDIF files created from
the module are placed in different LogicLock regions. Any
optimizations performed in the Quartus II software using the
LogicLock methodology must be performed separately for each
EDIF netlist.

Creating a Quartus II Project for Multiple EDIF Files Including LogicLock
Regions

The LeonardoSpectrum software creates Tcl files that provide the
Quartus II software with the appropriate LogicLock assignments,
creating a region for each EDIF file along with the information to set up a
Quartus II project.

The Tcl file contains the following commands for each LogicLock region.
This example is for module taps where the name taps_region was
typed as the LogicLock region name in the Constraints Flow tab in the
LeonardoSpectrum software.

project add_assignment {taps} {taps_region} {} {}
{LL_AUTO_SIZE} {ON}

project add_assignment {taps} {taps_region} {} {}
{LL_STATE} {FLOATING}

project add_assignment {taps} {taps_region} {} {}
{LL_MEMBER_OF} {taps_region}

These commands create a LogicLock region with Auto Size and Floating
Origin properties. This flexible LogicLock region allows the Quartus II
Compiler to select the size and location of the region.

f For more information on Tcl commands, see the TCL Scripting chapter in
Volume 2 of the Quartus II Handbook.

Altera Corporation 10–23
June 2004 Preliminary

Block-based Design with the Quartus II LogicLock Methodology

You can use the following methods to import the EDIF and corresponding
Tcl file into the Quartus II software:

■ Use the Tcl file that is created for each EDIF file by the
LeonardoSpectrum software. This method allows you to generate
multiple Quartus II projects, one for each block in the design. Each
designer in the project can optimize their block separately in the
Quartus II software and back-annotate their blocks. Altera
recommends this method for incremental and hierarchical design
methodology because it allows each block in the design to be treated
separately; each block can be back-annotated and brought into one
top-level project using the LogicLock import function.

or

■ Use the <top-level project>.tcl file that contains the assignments for all
blocks in the project. This method allows the top-level designer to
import all the blocks into one Quartus II project. You can optimize all
modules in the project at once. If additional optimization is required
for individual blocks, each designer can take their EDIF file and
create a separate project at that time. New assignments would then
have to be added to the top-level project through the LogicLock
import function.

In both methods, you can use the steps below to create the Quartus II
project, import the appropriate LogicLock assignments, and compile the
design:

1. Place the EDIF and Tcl files in the same directory.

2. Open the Quartus II Tcl Console by choosing Utility Windows Tcl
Console (View menu).

3. Type source <path>/<project name>.tcl r, see Figure 10–3.

Figure 10–3. Tcl Console Window with Source Command

10–24 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

4. Open the new completed project by choosing Open Project (File
menu), browsing to the project name, and clicking Open.

f For more information on importing LogicLock assignments, see the
LogicLock Design Methodology chapter in Volume 2 of the Quartus II
Handbook.

Generating Multiple EDIF Files Using Black Boxes

This section describes how to manually generate multiple EDIF files
using the black-boxing technique. The manual flow, described below, was
supported in older versions of the LeonardoSpectrum software. The
manual flow is discussed here because some designers want more control
over the project for each submodule.

To create multiple EDIF files in the LeonardoSpectrum software, create a
separate project for each module and top-level design that you want to
maintain as a separate EDIF file. Implement black-box instantiations of
lower-level modules in your top-level project.

When synthesizing the projects for the lower-level modules and the top-
level design, follow these general guidelines.

For lower-level modules:

■ Turn off Map IO Registers for the target technology on the
Technology Flow tab

■ Read the HDL files for the modules. Modules may include black-box
instantiations of lower-level modules that are also maintained as
separate EDIF files

■ Add constraints.
■ Turn off Add I/O Pads on the Optimize Flow tab

For the top-level design:

■ Turn on Map IO Registers if you want to implement input and/or
output registers in the I/O elements (IOEs) for the target technology
on the Technology Flow tab

■ Read the HDL files for the top-level design.
– Black-box lower-level modules in the top-level design

■ Add constraints (clock settings should be made at this time)

The sections below describe examples of black-boxing modules using the
files described in Figure 1-1 of the Hierarchical Block-Based & Team Based
Design Flows chapter in Volume 1 of the Quartus II Handbook. To create
multiple EDIF files:

Altera Corporation 10–25
June 2004 Preliminary

Block-based Design with the Quartus II LogicLock Methodology

1. Generate an EDIF file for module C. Use C.v and F.v as the source
files.

2. Generate an EDIF file for module B. Use B.v, D.v, and E.v as the
source files.

3. Generate a top-level EDIF file A.v for module A. Ensure that your
black box modules B and C, were optimized separately in the
previous steps.

Black Boxing in Verilog HDL

Any design block that is not defined in the project, or included in the list
of files to be read for a project, is treated as a black box by the software. In
Verilog HDL, you must also provide an empty module declaration for the
module that you plan treat as a black box.

The A.v Top-Level File Black-Boxing Example section shows an example of
the A.v top-level file. If any of your lower-level files also contain a black-
boxed lower-level file in the next level of hierarchy, follow the same
procedure.

A.v Top-Level File Black-Boxing Example

module A (data_in,clk,e,ld,data_out);
input data_in, clk, e, ld;
output [15:0] data_out;

reg [15:0] cnt_out;
reg [15:0] reg_a_out;

B U1 (.data_in (data_in),.clk (clk), .e(e), .ld (ld),
.data_out(cnt_out));

C U2 (.d(cnt_out), .clk (clk), .e(e), .q (reg_out));
// Any other code in A.v goes here.

endmodule

// Empty Module Declarations of Sub-Blocks B and C follow here.
// These module declarations (including ports) are required for
blackboxing.

module B (data_in,e,ld,data_out);
input data_in, clk, e, ld;
output [15:0] data_out;

endmodule

module C (d,clk,e,q);

10–26 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

input d, clk, e;
output [15:0] q;

endmodule

1 Previous versions of the LeonardoSpectrum software required an
attribute statement //exemplar attribute U1 NOOPT
TRUE, which instructs the software to treat the instance U1 as a
black box. This attribute is no longer required, although it is still
supported in the software.

Black Boxing in VHDL

Any design block that is not defined in the project, or included in the list
of files to be read for a project, is treated as a black box by the software. In
VHDL, you need a component declaration for the black box which is
normal for any other block in the design.

The “A.vhd Top-Level File Black-Boxing Example” below shows an
example of the A.vhd top-level file. If any of your lower-level files also
contain a black-boxed lower-level file in the next level of hierarchy, follow
the same procedure.

A.vhd Top-Level File Black-Boxing Example

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY A IS
PORT (data_in : IN INTEGER RANGE 0 TO 15;

clk : IN STD_LOGIC;
e : IN STD_LOGIC;
ld : IN STD_LOGIC;
data_out : OUT INTEGER RANGE 0 TO 15

);
END A;

ARCHITECTURE a_arch OF A IS

COMPONENT B PORT(
data_in : IN INTEGER RANGE 0 TO 15;
clk : IN STD_LOGIC;
e : IN STD_LOGIC;
ld : IN STD_LOGIC;
data_out : OUT INTEGER RANGE 0 TO 15

);
END COMPONENT;

COMPONENT C PORT(
d : IN INTEGER RANGE 0 TO 15;
clk : IN STD_LOGIC;

Altera Corporation 10–27
June 2004 Preliminary

Block-based Design with the Quartus II LogicLock Methodology

e : IN STD_LOGIC;
q : OUT INTEGER RANGE 0 TO 15

);
END COMPONENT;

-- Other component declarations in A.vhd go here

signal cnt_out : INTEGER RANGE 0 TO 15;
signal reg_a_out : INTEGER RANGE 0 TO 15;
BEGIN
CNT : C
PORT MAP (

data_in => data_in,
clk => clk,
e => e,
ld => ld,
data_out => cnt_out

);

REG_A : D
PORT MAP (

d => cnt_out,
clk => clk,
e => e,
q => reg_a_out

);

-- Any other code in A.vhd goes here

END a_arch;

1 Previous versions of the LeonardoSpectrum software required
the attribute statement noopt of C: component is TRUE,
which instructed the software to treat the component C as a
black box. This attribute is no longer required, although it is still
supported in the software.

After you have completed the steps outlined in this section, you have
different EDIF netlist files for each block of code. These files can now be
used in the LogicLock incremental design methodology in the Quartus II
software.

Creating a Quartus II Project for Multiple EDIF Files

The LeonardoSpectrum software creates a Tcl file for each EDIF file,
providing the Quartus II software with the information to set up a project.

10–28 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

As in the previous section, there are two different methods for bringing
each EDIF and corresponding Tcl file into the Quartus II software:

■ Use the Tcl file that is created for each EDIF file by the
LeonardoSpectrum software. This method generates multiple
Quartus II projects, one for each block in the design. Each designer in
the project can optimize their block separately in the Quartus II
software and back-annotate their blocks. Designers should create a
LogicLock region for each block; the top-level designer should then
import all the blocks and assignments into the top-level project.
Altera recommends this method for incremental and hierarchical
design methodology because it allows each block in the design to be
treated separately; each block can be back-annotated and brought
into one top-level project.

or

Use the <top-level project>.tcl file that contains the information to set
up the top-level project. This method allows the top-level designer to
create LogicLock regions for each block and bring all the blocks into
one Quartus II project. Designers can optimize all modules in the
project at once. If additional optimization is required for individual
blocks, each designer can take their EDIF file and create a separate
Quartus II project at that time. New assignments would then have to
be added to the top-level project manually or through the LogicLock
import function.

f For more information on importing LogicLock regions, see the LogicLock
Design Methodology chapter in the Volume 2 of the Quartus II Handbook.

In both methods, you can use the steps below to create the Quartus II
project and compile the design:

1. Place the EDIF and Tcl files in the same directory.

2. Open the Quartus II Tcl Console by choosing Utility Windows Tcl
Console (View menu).

3. Type source <path>/<project name>.tcl r

4. Open the new project by choosing Open Project (File menu),
browsing to the project name, and clicking Open.

5. Create LogicLock assignments using the LogicLock Regions
window (Assignments menu).

6. Choose Start Compilation (Processing menu).

Altera Corporation 10–29
June 2004 Preliminary

Block-based Design with the Quartus II LogicLock Methodology

Incremental Synthesis Flow

If you make changes to one or more submodules, you can manually create
new projects in the LeonardoSpectrum software to generate a new EDIF
netlist file when there are changes to the source files (this methodology is
not documented here). Alternatively, you can use incremental synthesis
to generate a new netlist for the changed submodule(s). To perform
incremental synthesis in the LeonardoSpectrum software, use the script
described in this section to re-optimize and generate a new EDIF netlist
for only the affected modules using the LeonardoSpectrum top-level
project. This method applies only when you are using the LogicLock
option in the LeonardoSpectrum software.

Modifications Required for the LogicLock_Incremental.tcl Script File

There are three sets of entries in the file that must be modified before
beginning incremental synthesis. The variables in the Tcl file are
surrounded by angle brackets (< >).

1. Add the list of source files that are included in the project. You can
enter the full path to the file or the file name if the files are located in
the working directory.

2. Indicate which modules in the design have changed. These modules
are the EDIF files that are re-generated by the LeonardoSpectrum
software. They are modules that had a LogicLock assignment in the
original compile.

Obtain LeonardoSpectrum’s path for each of these modules by
looking at the CTR file that contains the LogicLock assignments
from the original project. Each LogicLock assignment is applied to a
particular module in the design.

3. Enter the target Altera technology (device family) using the
appropriate device keyword. The device keyword is written into he
Transcript or Information window when you select a target
Technology and click Load Library or Apply on the Technology
Flow tab in the graphical user interface.

The following sample script shows the LogicLock_Incremental.tcl file
for the incremental synthesis flow. You must modify the Tcl file before
you can use it for your project.

10–30 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

LogicLock_Interface.tcl Script File for Incremental Synthesis

##
LogicLock Incremental Synthesis Flow
##

You must indicate which modules have changed (based on the source files
that have changed) and provide the complete path to each module

You must also specify the list of design files and the target Altera
technology being used

Read the design source files.
read <list of design files separated by spaces (such as block1.v block2.v)>

Get the list of modified modules in bottom-up "depth first search" order
where the lower-level blocks are listed first (these should be modules
that had LogicLock assignments and separate EDIF netlist files in the
first pass and had their source code modified)

set list_of_modified_modules {.work.<block2>.INTERFACE .work.<block1>.INTERFACE}

foreach module $list_of_modified_modules {
set err_rc [regexp {\.(.*)\.(.*)\.(.*)} $module unused lib module_name arch]
present_design $module

Run optimization, preserving hierarchy. You must specify a technology.
optimize -ta <technology> -hierarchy preserve

Ensure that the lower-level module is not optimized again when
optimizing higher-level modules.
dont_touch $module

}

foreach module $list_of_modified_modules {
set err_rc [regexp {\.(.*)\.(.*)\.(.*)} $module unused lib module_name

arch]
present_design $module
undont_touch $module
auto_write $module_name.edf
Ensure that the lower-level module is not written out in the EDIF file
of the higher-level module.
noopt $module

}

Running the Tcl Script File in LeonardoSpectrum

Once you have modified the Tcl script, as described in the “Modifications
Required for the LogicLock_Incremental.tcl Script File” on page 10–29,
you can compile your design using the script.

Altera Corporation 10–31
June 2004 Preliminary

Conclusion

You can run the script in batch mode at the command prompt using the
following command:

spectrum -file <Tcl_file> r

You can also run the script from the interface by choosing Run Script (File
menu), then browsing to your Tcl file and clicking Open.

The LogicLock incremental design flow uses module-based design to help
you preserve performance of modules and have control over placement. By
tagging the modules that require separate EDIF files, you can make multiple
EDIF files for use with the Quartus II software and the LogicLock
block-based design feature from a single LeonardoSpectrum software project.

Conclusion Advanced synthesis is an important part of the design flow. Taking
advantage of the Mentor Graphics LeonardoSpectrum Software and
Quartus II design flow allows you to control how your design files are
prepared for the Quartus II place-and-route process, as well as improve
performance and optimize a design for use with Altera devices. Several of the
methodologies outlined in this chapter can help optimize a design to achieve
performance goals and save design time.

10–32 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Altera Corporation 11–1
June 2004 Preliminary

11. Mentor Graphics
Precision RTL Synthesis

Support

Introduction As programmable logic device (PLD) designs become more complex and
require increased performance, advanced synthesis has become an
important part of the design flow. This chapter documents key design
methodologies and techniques for achieving good performance in
Altera® devices using the Mentor Graphics® Precision RTL Synthesis and
Quartus® II software design flow. It includes the following sections:

■ General design flow with the Precision RTL Synthesis and Quartus II
software

■ Creating a project and compiling the design
■ Setting constraints to achieve optimal results
■ Synthesizing the design and evaluating the results
■ Exporting designs to the Quartus II software using NativeLink®

integration
■ Guidelines for Altera Megafunctions and the library of

parameterized modules (LPM) functions, instantiating them in a
clear box or black box flow using the MegaWizard Plug-In manager,
and tips for inferring them from HDL code

■ Block-based design with the Quartus II LogicLock methodology

This chapter assumes that you have installed and licensed the Precision
RTL Synthesis and Quartus II software.

f To obtain and license the Precision RTL Synthesis software, see the
Mentor Graphics web site at www.mentor.com. For information on
installing the Precision RTL Synthesis software, starting the software,
and setting up your working environment, see the Precision RTL
Synthesis Users Manual.

Design Flow The basic steps in a Quartus II design flow using the Precision RTL
Synthesis software are as follows:

1. Create Verilog HDL and/or VHDL design files in the Quartus II
design software or the Precision RTL Synthesis software, or with a
text editor.

2. Create a project in the Precision RTL Synthesis software that
contains the HDL files for your design, select your target device,
and set global constraints.

qii51011-2.0

11–2 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

3. Compile the project in the Precision RTL Synthesis software.

4. Add specific timing constraints and compiler directives to optimize
the design during synthesis.

5. Synthesize the project in the Precision RTL Synthesis software.

6. Create a Quartus II project and import the technology-specific EDIF
(.edf) netlist and the Tcl (.tcl) file generated by the Precision RTL
Synthesis software into the Quartus II software for placement and
routing, and for performance evaluation.

7. After obtaining place-and-route results that meet your needs,
configure or program the Altera device.

These steps are described in more detail in the following sections.
Figure 11–1 shows the design flow described in the steps above.

Altera Corporation 11–3
June 2004 Preliminary

Design Flow

Figure 11–1. Recommended Design Flow

Gate-Level
Functional
Simulation

Gate-Level
Timing

Simulation

Configure / Program

Yes

No

VHDL Verilog HDL

Forward Annotated
Timing Constraints

(.tcl / .acf)

Technology
Specific Netlist

(.edf)

Post Place-and-Route
Simulation Files

(.vho / .vo)

Post Synthesis
Simulation Files

(.vhd / .v)

Configuration / Programming Files
(.sof / .pof)

Quartus II
Software

Precision
RTL Synthesis

Software

Functional/RTL
Simulation

Constraints
& Settings

Timing
and Area

Requirements
Satisfied?

Constraints
 & Settings

Device

11–4 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

As shown in Figure 11–1, if your area or timing requirements are not met,
you can change the constraints in the Precision RTL Synthesis software or
Quartus II software and re-run the synthesis. Repeat the process until the
area and timing requirements are met.

You can also use other options and techniques in the Quartus II software
to meet area and timing requirements. One such option is called
WYSIWYG Primitive Resynthesis, which can perform optimizations on
your EDIF netlist in the Quartus II software.

f For information on netlist optimizations, see the Netlist Optimizations and
Physical Synthesis chapter in Volume 2 of the Quartus II Handbook. For
more recommendations on how to optimize your design, see the Design
Optimization for Altera Devices chapter in Volume 2 of the Quartus II
Handbook.

While simulation may be performed at various points in the process,
detailed timing analysis should be performed after placement and
routing is complete.

During the synthesis process, the Precision RTL Synthesis software
produces several intermediate and output files. Table 11–1 lists those files
with a short description of each file type.

Altera Corporation 11–5
June 2004 Preliminary

Creating a Project & Compiling a Design

Creating a
Project &
Compiling a
Design

After creating your design files, create a project in the Precision RTL
Synthesis software that contains the basic settings for the compilation
process.

Creating a Project

Set up your design as follows:

1. In the Precision RTL Synthesis software, click the New Project icon
in the Design Bar on the left side of the Graphical User Interface
(GUI). Set the Project Name and the Project Folder. The
implementation name of the design corresponds to this project
name.

Table 11–1. Precision RTL Synthesis Intermediate & Output Files

File Extension(s) File Description

.sdc Design Constraints file in Synopsys Design Constraints
format

.psp Precision RTL Synthesis project file

.xdb Design database file in Mentor Graphics file format

.v/.vhd Post synthesis output design file in Verilog HDL/VHDL
format for post synthesis simulation

.rep (1) Synthesis area and timing report files

.edf Technology-specific netlist in electronic design interchange
format (EDIF)

.acf/.tcl (2) Forward-annotated constraints file containing constraints
and assignments

Notes to Table 11–1:
(1) The timing report file includes performance estimates that are based on pre-place-

and-route information. Use the fMAX reported by the Quartus II software after
place-and-route for accurate post-place-and-route timing information. The area
report file includes post-synthesis device resource utilization statistics that may
differ from the resource usage after place-and-route. Use the device utilization
reported by the Quartus II software after place-and-route for final resource
utilization results. See the “Synthesizing the Design & Evaluating the Results”
section for details.

(2) An Assignment and Configuration File (.acf) file is created only for ACEX® 1K,
FLEX® 10K, FLEX 10KA, FLEX 10K, FLEX 6000, FLEX 8000, MAX® 7000,
MAX 9000, and MAX 3000 devices. The .acf is generated for backward
compatibility with the MAX+PLUS® II software. A Tcl file for the Quartus II
software is created for all devices, which also contains Tcl commands to create
and compile a Quartus II project.

11–6 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

2. Add input files to the project with the Add Input Files icon in the
Design Bar. Precision RTL Synthesis software automatically detects
the top-level module/entity of the design. It uses the top-level
module/entity to name the current implementation directory, logs,
reports, and netlist files.

3. Click the Setup Design icon in the Design Bar.

4. To specify a target technology device family, expand the Altera
entry, and choose the target device and speed grade.

5. If desired, set a global design frequency and/or default input and
output delays. This will constrain all clock paths and all I/O pins in
your design. Modify the settings for individual paths or pins that do
not require such a setting. All timing constraints are forward-
annotated to the Quartus II software using Tcl scripts.

If you need to generate additional netlist files (e.g., an HDL netlist for
simulation), choose Additional Output Netlist (Tools > Set Options >
Output menu). A separate file is generated for each type that is selected
(EDIF, Verilog HDL, VHDL).

Compiling the Design

To compile the design into a technology-independent implementation,
click the Compile icon in the Design Bar.

Setting
Constraints

The next steps involve setting constraints and mapping the design to
technology-specific cells. By default, the Precision RTL Synthesis
software maps the design to the fastest possible implementation that
meets your timing constraints. To accomplish this, you must specify
timing requirements for the automatically determined clock sources.
With this information, the Precision RTL Synthesis software performs a
static timing analysis to determine the location of the critical timing paths.
Since the Precision RTL Synthesis software is fully constraint-driven, set
as many constraints as possible to get the best results. Constraints include
timing constraints, mapping constraints, and constraints that control the
structure of the implemented design.

Mentor Graphics recommends creating a Synopsys Design Constraint file
(.sdc) and adding this file to the Constraint Files section. You can create
this file with a common text editor or use the Precision RTL Synthesis
software to automatically generate one for you on the first synthesis run.
To create an initial constraint file manually, set constraints on design
objects (such as clocks, design blocks, or pins) in the Design Hierarchy

Altera Corporation 11–7
June 2004 Preliminary

Setting Constraints

pane. By default, the Precision RTL Synthesis software saves all timing
constraints and attributes specified in the GUI in a file named
<design_name>.sdc located in the current implementation directory.

You can also enter constraints at the command line. After adding
constraints at the command line, update the .sdc file with the
update_constraint_file command.

1 Some constraints that rarely change can also be added directly
to the HDL source files by using HDL attributes or pragmas.

f See the Attributes chapter in the Precision Synthesis Reference Manual for
details and examples.

Setting Timing Constraints

Timing constraints, based on the industry standard SDC format, are
important pieces of information that the Precision RTL Synthesis software
needs to deliver correct results. Missing timing constraints result in
incomplete timing analysis and may allow timing errors to go
undetected. Precision RTL Synthesis software provides a constraint
analysis prior to synthesis to ensure that designs are fully and accurately
constrained. All timing constraints are forward-annotated to the
Quartus II software using Tcl scripts.

1 Because the SDC format requires that timing constraints must be
set relative to defined clocks, you must specify your clocks
before applying any other timing constraints.

f For details on the syntax for SDC commands, see the Precision RTL
Synthesis Users Manual and the Precision Synthesis Reference Manual. See
the Attributes chapter in the Precision Synthesis Reference Manual available
on the Mentor Graphics web site at www.mentor.com for details and
examples.

Setting Mapping Constraints

Mapping constraints affect how your design is mapped into the target
Altera device. You can set mapping constraints in the user interface, in
HDL code, or with the set_attribute command in the constraint file.

11–8 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Assigning Pin Numbers & I/O Settings

The Precision RTL Synthesis software supports assigning device pin
numbers, I/O standards, drive strengths, and slew-rate settings to top-
level ports of the design. These constraints are written into the Tcl file that
is read by the Quartus II software during place-and-route and do not
affect synthesis.

You can use the set_attribute command in the .sdc constraint file to
specify pin number constraints, I/O standards, drive strengths, and slew-
rate settings.

The entries in the .sdc file should be in the formats shown below. For pin
numbers:

set_attribute -name PIN_NUMBER -value "<pin number>" -port <port name>

For I/O standards:

set_attribute -name IOSTANDARDS -value "<I/O Standard>" -port <port name>

For drive strength settings:

set_attribute -name DRIVE -value "<Drive strength in mA>" -port <port name>

For slew rate settings:

set_attribute -name SLOWSLEW -value "TRUE | FALSE" -port <port name>

You can also set these options in the GUI. To set a pin number or other I/O
setting in the Precision RTL Synthesis GUI:

1. After compiling the design, expand the Ports entry in the Design
Hierarchy pane.

2. Expand the Inputs or Outputs entry under Ports.

3. Right-click the desired pin name and select Set Input Constraints or
Set Output Constraints option under Inputs or Outputs.

4. Enter the desired pin number on the Altera device in the Pin
Number box (Port Constraints dialog box). Select the I/O standard
from the IO_STANDARD list. For output pins, you can also select a
drive strength setting and slew rate setting using the DRIVE and
SLOWSLEW lists.

1 You can also assign pin numbers by right-clicking the pin in the
Schematic Viewer.

Altera Corporation 11–9
June 2004 Preliminary

Setting Constraints

Assigning I/O Registers

The Precision RTL Synthesis software performs timing-driven I/O
register mapping by default. It moves registers into an I/O element (IOE)
when it does not negatively impact the register-to-register performance in
your design, based on timing constraints.

You can force a register to the device's IOE using the Complex I/O
constraint. This option does not apply if you turn off I/O pad insertion.
(See “Disabling I/O Pad Insertion” for more information.) To force an I/O
register into the device's IOE using the GUI, perform the following steps:

1. After compiling the design, in the Design Hierarchy pane, expand
the Ports entry.

2. Under Ports, expand the Inputs or Outputs entry, as desired.

3. Under Inputs or Outputs, right-click the desired pin name and
select Force Register into IO.

1 You can also make the assignment by right-clicking on the pin in
the Schematic Viewer.

The Precision RTL Synthesis software can move an internal register to an
I/O register only when the register exists in the top-level of hierarchy. If
the register is buried in the hierarchy, you must flatten the hierarchy so
that the buried registers are moved to the top-level of the design.

Disabling I/O Pad Insertion

The Precision RTL Synthesis software assigns I/O pad atoms (device
primitives used to represent the I/O pin and I/O registers if used) to all
ports in the top level of a design by default. In certain situations you may
not want the software to add I/O pads to all I/O pins in the design. The
Quartus II software can compile a design without I/O pads; however,
including I/O pads gives the Precision RTL Synthesis software the most
information about the top-level pins in the design.

11–10 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Preventing the Precision RTL Synthesis Software from Adding Any I/O
Pads

If you are compiling a subdesign as a separate project, I/O pins may not
be primary inputs or outputs of the chip and therefore they should not
have an I/O pad associated with them. To prevent the Precision RTL
Synthesis software from adding I/O pads, perform the following steps:

1. Choose Set Options (Tools menu).

2. On the Optimization page of the Options dialog box, turn off Add
IO Pads, then click Apply.

This procedure adds the setup design -addio=false command to
the Project File.

Preventing the Precision RTL Synthesis Software from Adding an I/O Pad
On an Individual Pin

To prevent I/O pad insertion on an individual pin when you are using a
black-box, such as Double Data Rate (DDR) or a Phase-Locked Loop
(PLL), at the external ports of the design:

1. After compiling the design, in the Design Hierarchy pane, expand
the Ports entry by clicking the +.

2. Under Ports, expand the Inputs or Outputs entry.

3. Under Inputs or Outputs, right-click the desired pin name and
select Set Input Constraints (right button pop-up menu).

4. In the Port Constraints dialog box for the selected pin name, turn
off Insert Pad.

1 You can also make the assignment by right-clicking on the pin in
the Schematic Viewer or by attaching a nopad attribute to the
port in the HDL source code.

Controlling Fan-Out on Data Nets

Fan-out is defined as the number of nodes driven by an instance or top-
level port. High fan-out nets can potentially cause significant delays on
wires and/or make a net un-routable. On a critical path, high fan-out nets
can cause delays in a single net segment and cause the timing constraints
to fail. To prevent this behavior, each device family has a global fan-out

Altera Corporation 11–11
June 2004 Preliminary

Synthesizing the Design & Evaluating the Results

value set in the Precision RTL Synthesis software library. In addition, the
Quartus II software automatically routes high fan-out signals on global
routing lines in the Altera device whenever possible.

To eliminate routability and timing issues associated with high fan-out
nets, the Precision RTL Synthesis software also allows you to override the
library default value on a global or individual-net basis. You can override
the library value by setting a max_fanout attribute on the net.

Synthesizing the
Design &
Evaluating the
Results

To synthesize the design for the target device, click on the Synthesize icon
in the Precision RTL Synthesis Design Bar. During synthesis, the Precision
RTL Synthesis software optimizes the compiled design, then writes out
netlists and reports to the implementation subdirectory of your working
directory after the implementation is saved, using the <project
name>_impl_1 naming convention.

After synthesis is complete, you can evaluate the results in terms of area
and timing. The Precision RTL Synthesis Users Manual describes different
areas that can be evaluated in the software.

There are several schematic viewers available in the Precision RTL
Synthesis software: RTL schematic, Technology-mapped schematic, and
Critical Path schematic. These viewers allow you to easily make further
constraints if needed to optimize the design.

Obtaining Accurate Logic Utilization & Timing Analysis Reports

Historically, designers have relied on post-synthesis logic utilization and
timing reports to determine how much logic their design requires, how
big a device they need, and how fast the design will run. However,
today's FPGA devices provide a wide variety of advanced features in
addition to basic registers and look-up tables. The Quartus II software has
advanced algorithms to take advantage of these FPGA features, as well as
optimization techniques to both increase performance and reduce the
amount of logic required for a given design. In addition, designs may
contain black boxes and functions that take advantage of specific device
features. Because of these advances, synthesis tools reports provide post-
synthesis area and timing estimates, but the place-and-route software
should be used to obtain final logic utilization and timing reports.

11–12 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Exporting
Designs to the
Quartus II
Software Using
NativeLink
Integration

After synthesis, the technology-mapped design is written to the current
implementation directory as an EDIF netlist file, along with a Quartus II
Project Configuration File and a Place and Route Constraints File, in the
form of Tcl scripts. The Project Configuration script (<project name>.tcl)
can be used to create and compile a Quartus II project for your EDIF
netlist. This script makes basic project assignments, such as assigning the
target device as specified in the Precision software, and makes timing
assignments. For certain devices to be compiled in the Quartus II
software version 4.1 and above, the Project Configuration script calls the
Place and Route Constraints script to make your timing constraints. The
Place and Route Constraints script (<project name> _pnr_constraints.tcl)
forward-annotates all timing constraints that you made in the Precision
software, including false path assignments, multi-cycle assignments,
timing groups, and related clocks. This integration means that you only
need to enter these constraints once in the Precision software, and they
can be passed automatically to the Quartus II software.

Precision RTL Synthesis also has a built-in place-and-route environment
that allows you run the Quartus II fitter and view the results in the
Precision RTL Synthesis GUI. This feature is useful when performing an
initial compilation of your design to view post-place-and-route timing
and device utilization results, but not all the advanced Quartus II options
that control the compilation process are available.

After you specify an Altera device as target, set the Quartus II options
from the Quartus II pages of the Set Options dialog box (Tools menu).
On the Integrated Place and Route page, specify the path to the
Quartus II executables in the Path to Quartus II installation tree box.

To automate the place-and-route process, click the Run Quartus icon in
the Quartus II pane of the Precision RTL Synthesis Toolbar. The Quartus
II software uses the current implementation directory as the Quartus II
project directory and runs a full compilation in the background (i.e. no
user interface appears).

Two primary Precision commands control the place and route process.
Place and route options are set by the setup_place_and_route
command. The process is started with the place_and_route
command.

Precision Synthesis versions 2004a and above support the individual
execution of various Quartus II executables, such as analysis & synthesis
(quartus_map), fitter (quartus_fit), and timing analyzer (quartus_tan),
for improved runtime and memory utilization during place and route.
This flow is referred to as the "Quartus II Modular" flow option in
Precision Synthesis and is compatible with Quartus II version 4.0 and
above. By default, Precision generates a modular Quartus II Project

Altera Corporation 11–13
June 2004 Preliminary

Exporting Designs to the Quartus II Software Using NativeLink Integration

Configuration File (Tcl file) for Stratix II, Stratix, Stratix GX, MAX II, and
Cyclone families. In addition, when using this flow, all timing constraints
that you set during synthesis are exported to the Quartus II PNR
Constraints File (<project name> _pnr_constraints.tcl).

For other families, Precision uses the "Quartus II" flow option, which
enables the Quartus II compilation flow that existed in Precision versions
prior to 2004a, and was supported in Quartus II versions prior to 4.0. The
Quartus II Project Configuration File (Tcl file) written when using the
"Quartus II" flow includes supported timing constraints that you
specified during synthesis. This Tcl file is compatible with all versions of
the Quartus II software, however, the format and timing constraint
cannot take full advantage of the features in Quartus II software
version 4.0 and above.

To force the use of a particular flow when it is not the default for a certain
device family, use the following command to set up the integrated place
and route flow:

setup_place_and_route -flow “<Altera Place & Route flow name>”.

Depending on the device family, you may use one of the following flow
options in the command mentioned above:

■ Quartus II Modular
■ Quartus II
■ MAX+PLUS II

For example, for the Stratix II or MAX II device families (which were not
supported in the Quartus II software versions prior to 4.0), you can only
use the “Quartus II Modular” flow. For the Stratix device family you may
set either the “Quartus II Modular” or “Quartus II” flows. The FLEX 8000
device family, which is not supported in the Quartus II software, only
allows the “MAX+PLUS II” flow.

After the design is compiled in the Quartus II software from within the
Precision RTL Synthesis software, you can also invoke the Quartus II GUI
manually and open the project using the generated Quartus II project file.
You can view reports, run analysis tools, set options, and invoke the
various processing flows available in the Quartus II software.

11–14 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Running the Quartus II Software Manually

You can also use the Quartus II software separately from the Precision
RTL Synthesis software. To run the Tcl script generated by the Precision
RTL Synthesis software to set up your project and start a full compilation,
perform the following steps:

1. Ensure the EDIF and Tcl files are located in the same directory (they
should both be located in the implementation directory by default).

2. In the Quartus II software, open the Quartus II Tcl Console by
choosing Utility Windows > Tcl Console (View menu).

3. Type source <path>/<project name>.tcl r at the Tcl Console
command prompt.

4. Open the new project by choosing Open Project (File menu),
browsing to the project name, and clicking Open.

5. Compile the project in the Quartus II software.

Megafunctions
& Architecture-
Specific
Features

Altera provides parameterizable megafunctions including the LPMs,
device-specific Altera megafunctions, intellectual property (IP) available
as Altera MegaCore functions, and IP available through the Altera
Megafunction Partners Program (AMPP). You can use megafunctions by
instantiating them in your HDL code or inferring them from generic HDL
code.

f For more details on specific Altera megafunctions, see the Quartus II
Help. For more information on IP functions, consult the appropriate IP
documentation.

If you decide to instantiate a megafunction in your HDL code, you can
use the MegaWizard Plug-In Manager to parameterize the function or
instantiate the function using the port and parameter definition. The
MegaWizard Plug-In Manager provides a graphical interface in the
Quartus II software for customizing and parameterizing any available
megafunction for the design. The “Instantiating Altera Megafunctions
Using the MegaWizard Plug-In Manager” section describes the
MegaWizard flow with the Precision RTL Synthesis software.

The Precision RTL Synthesis software automatically recognizes certain
types of HDL code and infers the appropriate megafunction when a
megafunction will provide optimal results. The Precision RTL Synthesis
software also provides options to control inference of certain types of
megafunctions, as described in the “Inferring Altera Megafunctions from
HDL Code” section.

Altera Corporation 11–15
June 2004 Preliminary

Megafunctions & Architecture-Specific Features

f For a detailed discussion on instantiating versus inferring on
megafunctions, see the Recommended HDL Coding Styles chapter in Volume 1
of the Quartus II Handbook. This chapter also provides details on using the
MegaWizard Plug-In Manager in the Quartus II software and explains the
files generated by the wizard. In addition, the chapter provides coding style
recommendations and examples for inferring megafunctions in Altera
devices.

Instantiating Altera Megafunctions Using the MegaWizard Plug-In
Manager

When you use the MegaWizard to set up and parameterize a megafunction
and to create a custom megafunction variation, the MegaWizard creates
either a VHDL or Verilog HDL wrapper file. This file instantiates the
megafunction (a black box methodology) or, for some megafunctions,
generates a fully synthesizeable netlist for improved results using EDA
synthesis tools such as Precision RTL Synthesis (a clear box methodology).

Clear Box Methodology

Using the MegaWizard-generated fully synthesizable netlist is referred to as
a clear box methodology because the Precision RTL Synthesis software can
“see” into the megafunction file. The clear box feature enables the synthesis
tool to report more accurate timing estimates and take better advantage of
timing driven optimization.

This clear box feature of the MegaWizard can be turned on by choosing the
Generate clear box body (for EDA tools only) in the MegaWizard Plug-In
Manager (Tools menu) for certain megafunctions. If the option does not
appear, then clear box models are not supported for the selected
megafunction. Turning this option on will cause the Quartus II MegaWizard
to generate a synthesizable clear box netlist instead of the megafunction
wrapper file described in the “Black Box Methodology” section.

Using MegaWizard-generated Verilog HDL Files for Clear Box
Megafunction Instantiation
The MegaWizard generates a Verilog HDL instantiation template file
<output>_inst.v for use in your Precision RTL Synthesis design. This file can
help you instantiate the megafunction clear box netlist file, <output file>.v, in
your top-level design. Include the megafunction clear box netlist file in your
Precision RTL Synthesis project and the information gets passed to the
Quartus II software in the Precision RTL Synthesis-generated EDIF output
file.

11–16 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Using MegaWizard-generated VHDL Files for Clear Box
Megafunction Instantiation
The MegaWizard generates a VHDL Component declaration file
<output> file>.cmp and a VHDL Instantiation template file <output
file>_inst.vhd for use in your design. These files help to instantiate the
megafunction clear box netlist file, <output file>.vhd, in your top-level
design. Include the megafunction clear box netlist file in your Precision
RTL Synthesis project and the information gets passed to the Quartus II
software in the Precision RTL Synthesis-generated EDIF output file.

Black Box Methodology

Using the MegaWizard-generated wrapper file is referred to as a black
box methodology because the megafunction is treated as a "black box" in
the Precision RTL Synthesis software. The black box wrapper file is
generated by default in the MegaWizard Plug-In Manager and is
available for all megafunctions.

The black box methodology does not allow the synthesis tool any
visibility into the function module thus not taking full advantage of the
synthesis tool's timing driven optimization.

Using MegaWizard-generated Verilog HDL Files for Black Box
Megafunction Instantiation
The MegaWizard generates a Verilog HDL instantiation template file
<output file>_inst.v and a hollow-body black box module declaration
<output file>_bb.v for use in your Precision RTL Synthesis design. The
instantiation template file helps to instantiate the Megafunction variation
wrapper file, <output file>.v, in your top-level design. Do not include the
Megafunction variation wrapper file in your Precision RTL Synthesis
project, but add it along with your Precision RTL Synthesis-generated
EDIF netlist in your Quartus II project. Add the hollow-body black-box
module declaration <output file>_bb.v to your Precision RTL Synthesis
project to describe the port connections of the black-box.

Using MegaWizard-generated VHDL Files for Black-Box
Megafunction Instantiation
The MegaWizard generates a VHDL Component declaration file <output
file>.cmp and a VHDL Instantiation template file <output file>_inst.vhd
for use in your Precision RTL Synthesis design. These files can help you
instantiate the Megafunction variation wrapper file, <output file>.vhd, in
your top-level design. Do not include the Megafunction variation
wrapper file in your Precision RTL Synthesis project, but add it along
with your Precision RTL Synthesis-generated EDIF netlist in your
Quartus II project.

Altera Corporation 11–17
June 2004 Preliminary

Megafunctions & Architecture-Specific Features

Inferring Altera Megafunctions from HDL Code

The Precision RTL Synthesis engine automatically recognizes certain
types of HDL code and maps arithmetic and relational operators,
counters, and memory (RAM and ROM), to efficient technology-specific
implementations. This allows for the use of technology-specific resources
to implement these structures by inferring the appropriate Altera
megafunction when a megafunction will provide optimal results. In some
cases, the Precision RTL Synthesis software has options that you can use
to disable or control inference.

f For coding style recommendations and examples for inferring
megafunctions in Altera devices, see the Recommended HDL Coding Styles
chapter in Volume 1 of the Quartus II Handbook.

Multipliers

The Precision RTL Synthesis software detects multipliers in HDL code
and infers an lpm_mult megafunction. The Precision RTL Synthesis
software also allows you to control the device resources used to
implement individual multipliers, as described below.

Controlling DSP Block Inference
By default, the Precision RTL Synthesis software sets the lpm_mult
parameter called DEDICATED_MULTIPLIER_CIRCUITRY to AUTO to
allow the Quartus II software the flexibility to choose regular logic (LEs
or ALMs), DSP blocks, or dedicated multiplier logic depending on the
device utilization and the size of the multiplier.

If the number of multipliers in your design exceeds the number of
dedicated resources in the selected device, you can use the Precision RTL
Synthesis GUI or HDL attributes to redirect the mapping of specific
operators to logic elements. The options for multiplier mapping in the
Precision RTL Synthesis Software are shown in Table 11–2

Table 11–2. Options for DEDICATED_MULT Parameter to Control Multiplier
Implementation (Part 1 of 2)

Value Description

ON lpm_mult inferred and multipliers implemented in DSP
blocks

OFF lpm_mult inferred, but multipliers implemented in logic by
the Quartus II software

11–18 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Using the GUI
Take the following steps to set the Use Dedicated Multiplier option in the
Precision RTL Synthesis GUI:

1. Compile the design.

2. In the Design Hierarchy pane right-click the operator (Instances >
Operators) for the desired multiplier and choose Use Dedicated
Multiplier (right button pop-up menu).

Using Attributes
Use the dedicated_mult attribute to control the implementation of a
multiplier in your HDL code as shown below, using the appropriate value
from Table 11–2:

Verilog HDL:
//synthesis attribute <signal name> dedicated_mult <value>

VHDL:
ATTRIBUTE dedicated_mult: STRING;
ATTRIBUTE dedicated_mult OF <signal name>: SIGNAL IS <value>;

The dedicated_mult attribute only works with signals and wires, it
does not work when applied to a register. This attribute can only be
applied to simple multiplier code such as a = b*c.

Some signals for which dedicated_mult attribute is set may get
synthesized away by the Precision RTL Synthesis software due to design
optimization. In such cases, if you want to force the implementation, you
should preserve the signal by setting the preserve_signal attribute to
TRUE as shown below:

Verilog HDL:
//synthesis attribute <signal name> preserve_signal TRUE

LCELL lpm_mult not inferred and multipliers implemented in logic
by the Precision RTL Synthesis software

AUTO lpm_mult inferred, but multipliers implemented in either
logic or DSP blocks by the Quartus II software based on the
device utilization and the size of the multiplier

Table 11–2. Options for DEDICATED_MULT Parameter to Control Multiplier
Implementation (Part 2 of 2)

Value Description

Altera Corporation 11–19
June 2004 Preliminary

Megafunctions & Architecture-Specific Features

VHDL:
ATTRIBUTE preserve_signal: BOOLEAN;
ATTRIBUTE preserve_signal OF <signal name>: SIGNAL IS TRUE;

The following are examples in Verilog HDL and VHDL of using the
dedicated_mult attribute to implement the given multiplier in regular
logic in the Quartus II software.

Verilog HDL Multiplier Implemented in Logic
module unsignedmult (result, a, b);

output [15:0] result;
input [7:0] a;
input [7:0] b;
assign out = a * b; //synthesis attribute result dedicated_mult OFF

endmodule

VHDL Multiplier Implemented in Logic
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY unsigned_mult IS
PORT(

a: IN std_logic_vector (7 DOWNTO 0);
b: IN std_logic_vector (7 DOWNTO 0);
result: OUT std_logic_vector (15 DOWNTO 0));

ATTRIBUTE dedicated_mult: STRING;
END unsigned_mult;

ARCHITECTURE rtl OF unsigned_mult IS
SIGNAL a_int, b_int: UNSIGNED (7 downto 0);
SIGNAL pdt_int: UNSIGNED (15 downto 0);

ATTRIBUTE dedicated_mult OF pdt_int: SIGNAL IS "OFF";
BEGIN

a_int <= UNSIGNED (a);
b_int <= UNSIGNED (b);
pdt_int <= a_int * b_int;
result <= std_logic_vector(pdt_int);

END rtl;

Multiplier-Accumulators & Multiplier-Adders

The Precision RTL Synthesis software detects multiply-accumulators or
multiply-adders in HDL code and infers an altmult_accum or
altmult_add megafunction. The software then places these functions in
DSP blocks.

11–20 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

1 The Precision RTL Synthesis software only supports inference
for these functions if the target device family has dedicated DSP
blocks.

The Precision RTL Synthesis software also allows you to control the
device resources used to implement multiply-accumulators or multiply-
adders in your project or in a particular module. See the “Controlling DSP
Block Inference” section for more information.

f For more information on DSP blocks in Altera devices, see the
appropriate Altera device family handbook and device-specific
documentation. For details on which functions a given DSP block can
implement, see the DSP Solutions Center on the Altera web site.

f For more information on inferring Multiply-Accumulator and Multiply-
Adder megafunctions in HDL code, see the Recommended HDL Coding
Styles chapter in Volume 1 of the Quartus II Handbook.

Controlling DSP Block Inference

By default the Precision RTL Synthesis software infers the altmult_add
or altmult_accum megafunction as appropriate for your design. These
megafunctions allow the Quartus II software the flexibility to choose
regular logic or DSP blocks depending on the device utilization and the
size of the function.

You can use the extract_mac attribute to prevent the inference of an
altumult_add or altmult_accum megafunction in a certain module
or entity. The options for this attribute are shown in Table 11–3.

To control inference, use the extract_mac attribute in your HDL code
as shown below, using the appropriate value from Table 11–3.

Table 11–3. Options for EXTRACT_MAC Attribute Controlling DSP
Implementation

Value Description

TRUE The altmult_add or altmult_accum megafunction is
inferred

FALSE The altmult_add or altmult_accum megafunction is
not inferred

Altera Corporation 11–21
June 2004 Preliminary

Megafunctions & Architecture-Specific Features

Verilog HDL:
//synthesis attribute <module name> extract_mac <value>

VHDL:
ATTRIBUTE extract_mac: BOOLEAN;
ATTRIBUTE extract_mac OF <entity name>: ENTITY IS <value>;

To control the implementation of the multiplier portion of a multiply-
accumulator or multiply-adder, you must use the dedicated_mult
attribute as described in the “Controlling DSP Block Inference” section.
See that section for syntax details.

The examples below use the extract_mac, dedicated_mult, and
preserve_signal attributes (in Verilog HDL and VHDL) to implement
the given DSP function in logic in the Quartus II software.

Use of dedicated_mult and preserve_signal in Verilog HDL
module unsig_altmult_accum1 (dataout, dataa, datab, clk, aclr, clken);

input [7:0] dataa, datab;
input clk, aclr, clken;

output [31:0] dataout;
reg [31:0] dataout;

wire [15:0] multa;
wire [31:0] adder_out;

assign multa = dataa * datab;

//synthesis attribute multa preserve_signal TRUE
//synthesis attribute multa dedicated_mult OFF
assign adder_out = multa + dataout;

always @ (posedge clk or posedge aclr)
begin

if (aclr)
dataout <= 0;

else if (clken)
dataout <= adder_out;

end

//synthesis attribute unsig_altmult_accum1 extract_mac FALSE
endmodule

Use of extract_mac, dedicated_mult, and preserve_signal in VHDL
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_signed.all;

11–22 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

ENTITY signedmult_add IS
PORT(

a, b, c, d: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
result: OUT STD_LOGIC_VECTOR (15 DOWNTO 0)

);
ATTRIBUTE preserve_signal: BOOLEAN;
ATTRIBUTE dedicated_mult: STRING;
ATTRIBUTE extract_mac: BOOLEAN;
ATTRIBUTE extract_mac OF signedmult_add: ENTITY IS FALSE;

END signedmult_add;

ARCHITECTURE rtl OF signedmult_add IS
SIGNAL a_int, b_int, c_int, d_int : signed (7 DOWNTO 0);
SIGNAL pdt_int, pdt2_int : signed (15 DOWNTO 0);
SIGNAL result_int: signed (15 DOWNTO 0);

ATTRIBUTE preserve_signal OF pdt_int: SIGNAL IS TRUE;
ATTRIBUTE dedicated_mult OF pdt_int: SIGNAL IS "OFF";
ATTRIBUTE preserve_signal OF pdt2_int: SIGNAL IS TRUE;
ATTRIBUTE dedicated_mult OF pdt2_int: SIGNAL IS "OFF";

BEGIN
a_int <= signed (a);
b_int <= signed (b);
c_int <= signed (c);
d_int <= signed (d);
pdt_int <= a_int * b_int;
pdt2_int <= c_int * d_int;
result_int <= pdt_int + pdt2_int;
result <= STD_LOGIC_VECTOR(result_int);

END rtl;

RAM & ROM

The Precision RTL Synthesis software detects memory structures in HDL
code and converts them to an operator that infers an altsyncram or
lpm_ram_dp megafunction, depending on the device family. The
software then places these functions in memory blocks.

The software supports inference for these functions only if the target
device family has dedicated memory blocks.

f For more information on inferring RAM and ROM megafunctions in
HDL code, see the Recommended HDL Coding Styles chapter in Volume 1
of the Quartus II Handbook.

Altera Corporation 11–23
June 2004 Preliminary

Block-Based Design with the Quartus II LogicLock Methodology

Block-Based
Design with the
Quartus II
LogicLock
Methodology

As designs become more complex and designers work in teams, a block-
based hierarchical design flow is often an effective design approach. In
this approach, you perform optimization on individual sub-blocks and
each sub-block may have its own output netlist file. After you optimize
all of the sub-blocks, you integrate them into a final design and optimize
it at the top level. You can use the LogicLock design methodology in the
Quartus II software to perform block-based or team-based compilation.

The Precision RTL Synthesis software allows you to write an EDIF netlist
file where certain hierarchical blocks are optimized separately from all
the others. Alternately, you can create different netlist files for different
sections of a design hierarchy to make each section independent of the
others. In either case, when synthesizing the entire project, only portions
of a design that have been updated are changed when you compile the
design. You can make changes, optimize, and re-synthesize your section
of a design without affecting other sections.

Using the LogicLock design methodology, you can place each block's
logic into a fixed or floating region in an Altera device. You then have the
opportunity to maintain the placement and the performance of your
blocks in the Altera device. When you use the single netlist generated
from the Precision RTL Synthesis software (or you have multiple EDIFs
and all the netlists are contained in one Quartus II project), you can take
advantage of the LogicLock flow to back-annotate the logic in the other
regions. In this case, when you recompile with a change in one design
block, the placement and assignments for unchanged blocks assigned to
different LogicLock regions are not affected. Therefore, one designer can
make changes to a piece of code that exists in an independent block and
not interfere with another designer's changes, even if all the blocks are
integrated in a top-level design. With the LogicLock design methodology,
separate pieces of a design can evolve from development to testing
without affecting other areas of a design.

f For more information on using the LogicLock feature in the Quartus II
software, see the LogicLock Design Methodology chapter in Volume 2 of the
Quartus II Handbook. For more information on hierarchical design
methodologies and design flows using the Quartus II software, see the
Hierarchical Block-Based and Team-Based Design Flow chapter in Volume 1
of the Quartus II Handbook.

Hierarchy & Design Considerations

To ensure the proper functioning of the synthesis tool, you can only create
separate blocks for modules, entities, or existing netlist files. In addition,
each module or entity should have its own design file. If two different
modules are in the same design file but are defined as being part of

11–24 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

different regions, it is difficult to maintain incremental synthesis since
both regions would have to be recompiled when you change one of the
modules or entities.

If you use boundary tri-states in a lower-level block, the Precision RTL
Synthesis software pushes the tri-states through the hierarchy to the top-
level to make use of the tri-state drivers on output pins of Altera devices.
Because pushing tri-states requires optimizing through hierarchies,
lower-level tri-states are not supported with a block-level design
methodology. You should use tri-state drivers only at the external output
pins of the device and in the top-level block in the hierarchy.

Creating a Design with Separate Blocks for the LogicLock
Methodology

The first step in a hierarchical design flow is to ensure that different parts
of your design will not affect the node names for other parts of this
design. Doing so enables you to take advantage of the LogicLock
incremental design flow in the Quartus II software.

You can separate your design blocks either by setting a LogicLock
attribute in the Precision RTL Synthesis software, or by manually
black-boxing each block that you want to be part of a LogicLock region
and creating separate Precision RTL Synthesis projects for each
lower-level block.

By setting a LogicLock attribute on certain blocks in the Precision RTL
Synthesis software, you maintain separate design blocks from one
easy-to-manage top-level synthesis project and only generate one EDIF
netlist. Using the manual black-boxing method, you have multiple
synthesis projects that may be required for certain team-based or bottom-
up designs where a single top-level project is not desired.

After you create multiple EDIF netlists, you need to create the
appropriate Quartus II project(s) to place and route the design.

Altera Corporation 11–25
June 2004 Preliminary

Block-Based Design with the Quartus II LogicLock Methodology

Creating a Design with Separate Blocks Using the LogicLock
Attribute in a Single Precision Project

Use the following steps to set the LogicLock option in the Precision RTL
Synthesis GUI to separate your design blocks and create LogicLock
regions:

1. Compile the design.

2. In the Design Hierarchy pane, right-click a block for which you
want to generate a LogicLock region (Instances > Blocks) and select
LogicLock (right button pop-up menu).

3. In the Set Attribute dialog box, enter the name for your LogicLock
region.

A Tcl command in the <top-level>.tcl file written by the Precision RTL
Synthesis software assigns the selected block to a region of Auto size and
a Floating location.

When you import the EDIF file to the Quartus II software, the specified
design blocks are placed in different LogicLock regions.

Creating a Quartus II Project for EDIF File Including LogicLock Regions

During synthesis, the Precision RTL Synthesis software creates a <top-
level>.tcl file that provides the Quartus II software with the appropriate
LogicLock assignments, creating a region for each specified design block
along with the information to set up a Quartus II project.

The Tcl file contains the following commands for each LogicLock region:

project add_assignment {filter} {taps_region} {} {} {LL_AUTO_SIZE} {ON}
project add_assignment {filter} {taps_region} {} {} {LL_STATE} {FLOATING}
project add_assignment {filter} {taps_region} {} {|taps:u1} {LL_MEMBER_OF} {taps_region}

These commands create a LogicLock region called taps_region for the
taps design block with Auto Size and Floating Origin properties. This
flexible LogicLock region allows the Quartus II Compiler to select the size
and location of the region.

To import the EDIF file into the Quartus II software, use the <top-level>.tcl
file that contains the Precision RTL Synthesis assignments for all blocks in
the project. This method allows the top-level designer to import all the
blocks into one Quartus II project for an incremental flow. You can
optimize all modules in the project at once.

11–26 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Use the steps below to create the Quartus II project, import the
appropriate LogicLock assignments, and compile the design:

1. Ensure that the EDIF and Tcl files are located in the same directory
(they should both be located in the implementation directory by
default).

2. In the Quartus II software, open the Quartus II Tcl Console by
choosing Utility Windows (View menu).

3. Type source <path>/<project name>.tcl r at the Tcl Console
command prompt.

f For more information on LogicLock assignments, see the LogicLock
Design Methodology chapter in Volume 2 of the Quartus II Handbook.

Generating a Design with Multiple EDIF Files Using Black Boxes

This section describes how to manually generate multiple EDIF files
using a black-boxing technique. You can use this technique in team-based
design flows where you want to synthesize each block separately in the
Precision RTL Synthesis software and optimize each block separately in
the Quartus II software.

Manually Creating Multiple EDIF Files Using Black-Boxes

To create multiple EDIF files manually in the Precision RTL Synthesis
software, create a separate project for each module and top-level design
that you want to maintain as a separate EDIF file. Implement black-box
instantiations of lower-level modules in your top-level project. If you
want the Precision RTL Synthesis software to write out LogicLock
constraints for the different blocks, use the LogicLock feature in the top-
level project.

When synthesizing the projects for the lower-level modules and when
setting up the top-level design, follow these guidelines.

For lower-level modules:

1. Turn off Add IO Pads on the Optimization page under Set Options
(Tools menu).

2. Read the HDL files for the modules.

3. Modules may include black-box instantiations of lower-level
modules that are also maintained as separate EDIF files.

Altera Corporation 11–27
June 2004 Preliminary

Block-Based Design with the Quartus II LogicLock Methodology

4. Add constraints.

For top-level designs:

1. Read the HDL files for top-level designs.

2. Black-box lower-level modules in the top-level design.

3. Add constraints.

The sections below describe an example of black-boxing modules using the
files described in the Hierarchical Block-Based & Team-Based Design Flows,
chapter in Volume 1 of the Quartus II Handbook. One netlist is created for the
top-level module A, another netlist is created for B and its submodules D
and E, while another netlist is created for C and its submodule F. To create
multiple EDIF files, follow these steps:

1. Generate an EDIF file for module B. Use B.v/.vhd, D.v/.vhd, and
E.v/.vhd as the source files.

2. Generate an EDIF file for module C. Use C.v/.vhd and F. v/.vhd as the
source files.

3. Generate a top-level EDIF file A.v/.vhd for module A. Ensure that you
black-box modules B and C, which were optimized separately in the
previous steps.

Black Boxing in Verilog HDL
Any design block that is not defined in the project, or included in the list of
files to be read for a project, will be treated as a black box by the software.
In Verilog HDL, you must provide an empty module declaration for the
module that you will be treating as a black box.

A black-boxing example for top-level file A.v follows. If any of your lower-
level files also contain a black-boxed lower-level file in the next level of
hierarchy, follow the same procedure.

Example:

module A (data_in, clk, e, ld, data_out);
input data_in, clk, e, ld;
output [15:0] data_out;

wire [15:0] cnt_out;

B U1 (.data_in (data_in),.clk(clk), .ld (ld),.data_out(cnt_out));
C U2 (.d(cnt_out), .clk(clk), .e(e), .q(data_out));

11–28 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

// Any other code in A.v goes here.
endmodule

// Empty Module Declarations of Sub-Blocks B and C follow here.
// These module declarations (including ports) are required for black
boxing.

module B (data_in, clk, ld, data_out);
input data_in, clk, ld;
output [15:0] data_out;

endmodule

module C (d, clk, e, q);
input [15:0] d;
input clk, e;
output [15:0] q;

endmodule

Black Boxing in VHDL
Any design block that is not defined in the project, or included in the list
of files to be read for a project, will be treated as a black box by the
software. In VHDL, you need a component declaration for the black box
just like any other block in the design.

A black-boxing example for top-level file A.vhd follows. If any of your
lower-level files also contain a black-boxed lower-level file in the next
level of hierarchy, follow the same procedure.

Example:

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY A IS
PORT (data_in : IN INTEGER RANGE 0 TO 15;

clk, e, ld : IN STD_LOGIC;
data_out : OUT INTEGER RANGE 0 TO 15);

END A;

ARCHITECTURE a_arch OF A IS
COMPONENT B PORT(

data_in : IN INTEGER RANGE 0 TO 15;
clk, ld : IN STD_LOGIC;
d_out : OUT INTEGER RANGE 0 TO 15);

END COMPONENT;

COMPONENT C PORT(
d : IN INTEGER RANGE 0 TO 15;
clk, e: IN STD_LOGIC;
q : OUT INTEGER RANGE 0 TO 15);

Altera Corporation 11–29
June 2004 Preliminary

Block-Based Design with the Quartus II LogicLock Methodology

END COMPONENT;

-- Other component declarations in A.vhd go here

signal cnt_out : INTEGER RANGE 0 TO 15;

BEGIN
U1 : B
PORT MAP (

data_in => data_in,
clk => clk,
ld => ld,
d_out => cnt_out);

U2 : C
PORT MAP (

d => cnt_out,
clk => clk,
e => e,
q => data_out);

-- Any other code in A.vhd goes here

END a_arch;

After you have completed the steps outlined in this section, you will have
different EDIF netlist files for each block of code. These files can now be
used in the LogicLock incremental design methodology in the Quartus II
software.

Creating a Quartus II Project for Multiple EDIF Files

The Precision RTL Synthesis software creates a Tcl file for each EDIF file,
providing the Quartus II software with the information to set up a project.
Altera recommends the following method for bringing each EDIF and
corresponding Tcl file into the Quartus II software:

Use the Tcl file that is created for each EDIF file by the Precision RTL
Synthesis software for each Precision project. This method generates
multiple Quartus II projects, one for each block in the design. Each
designer in the project can optimize their block separately in the
Quartus II software and back-annotate their blocks. Designers should
create a LogicLock region for each block; the top-level designer should
then import all the blocks and assignments into the top-level project. This
method allows each block in the design to be treated separately; each
block can be back-annotated and brought into one top-level project.

11–30 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

f For more information on creating and importing LogicLock assignments,
see the LogicLock Design Methodology chapter in Volume 2 of the
Quartus II Handbook.

Conclusion Advanced synthesis is an important part of the design flow. The Mentor
Graphics Precision RTL Synthesis software and Quartus II design flow
allows you to control how your design files will be prepared for the
Quartus II place-and-route process and allows you to improve
performance and optimize a design for use with Altera devices. Several
of the methodologies outlined in this chapter can help optimize a design
to achieve performance goals and save design time.

Altera Corporation 12–1
June 2004 Preliminary

12. Synopsys FPGA
Compiler II BLIS & Quartus II

LogicLock Design Flow

Introduction As programmable logic device (PLD) designs become more complex and
require increased performance, advanced synthesis has become an
important part of the design flow. Advanced synthesis flows include the
use of block-based hierarchical design methodologies.

To maximize the benefits of the LogicLock™ block-based design
methodology in the Quartus® II software, you can partition a new design
into a hierarchy of EDIF files during synthesis in the Synopsys FPGA
Compiler II software.

This chapter describes how to automate the creation of multiple EDIF
netlist files for a given hierarchy using the Synopsys FPGA Compiler II
software’s block-level incremental synthesis (BLIS) feature.

f For more information, see the LogicLock Design Methodology chapter in
Volume 2 of the Quartus II Handbook.

1 This chapter assumes that you have set-up and licensed, and are
familiar with the FPGA Compiler II software.

f To obtain the FPGA Compiler II software and the instructions on general
product usage, go to the Synopsys web site at www.synopsys.com.

Design
Hierarchy

Different modules can be defined in different files, and instantiated in a
top-level file. For larger designs, like those used for Stratix® II devices,
many designers can work on different modules of a design at the same
time. Figure 12–1 shows an example of a design hierarchy.

qii51012-1.0

12–2 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Figure 12–1. Design Hierarchy for Block-Based Designs

In Figure 12–1, the top level of a design (A) can be assigned to one
engineer (designer 1), while two engineers work on the lower levels of the
design. Designer 2 works on B and its submodules (D and E) while
designer 3 works on C and its submodule (F).

Block-Level
Incremental
Synthesis

The BLIS feature, provided with the Synopsys FPGA Compiler II
software, manages a design hierarchy for incremental synthesis. The BLIS
feature allows different netlist files to be created for different sections of a
design hierarchy. It also ensures that only those sections of a design that
have been updated will be re-synthesized when the design is compiled,
reducing synthesis run time. You can change and re-synthesize a section
of a design without affecting other sections of a design. The BLIS feature
utilizes design units called blocks to create this functionality.

FPGA Compiler II Design Block

A block is a module or a group of modules used for incremental synthesis.
Each block will have its own netlist file after synthesis. A block can be a
Verilog HDL module, a VHDL entity, an EDIF netlist file, or a
combination of the three. To combine these modules into a block, they
should form a single tree in the design. Figure 12–2 shows a block design
hierarchy.

D

Designer 1

F

Designer 2 Designer 3

E

A

CB

Altera Corporation 12–3
June 2004 Preliminary

Block-Level Incremental Synthesis

Figure 12–2. Blocks & Block Roots in a Design Hierarchy

In Figure 12–2, sections B, D, and E can be in a single block because they
form a tree. Sections A, D, and F cannot form a block because they are not
on the same branch of the hierarchy.

FPGA Compiler II & Quartus II Synthesis

Using the BLIS feature in the FPGA Compiler II software, you can re-
synthesize a netlist file for each block independently. Using the LogicLock
design capability, each block’s netlist file can be placed into a region on an
Altera® device. The region may be stationary or floating. You can
maintain the performance and placement of a block if the region is not
back annotated. If a region is fixed, the placement of that portion of the
design will remain the same even if other parts of a design are added.

f For more information, see the LogicLock Design Methodology chapter in
Volume 2 of the Quartus II Handbook.

Block Root

A block root is the top module (or level) in a block’s hierarchy. In
Figure 12–2, A, B, and F are block roots. When a block root is declared,
every module, entity, or netlist file below the block root in the hierarchy
becomes part of the same block. If a new block root is declared below an
existing block root, then a new block is formed. For example, in
Figure 12–2, A is a block root. A is above B, C, D, E, and F in the design

A

block root

Block 1

Block 3

Block 2

ED

B

block root
C

F

block root

12–4 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

hierarchy, but only C is a part of A’s block. B and F were declared block
roots and have formed new blocks in the design hierarchy. Table 12–1
summarizes the structure of Figure 12–2.

For each defined block in the FPGA Compiler II software, a separate
optimized netlist file will be created. The name of the new netlist file for
each block is the same as the module, entity, or netlist file that is declared
as the block’s root. For example, the block root of block 1 is A. Therefore,
the netlist filename after block 1 is synthesized is A.edf.

How the BLIS Feature Works with the LogicLock Feature

When code for any module or entity defined in a block changes, the entire
block is resynthesized. See Figure 12–2 for the following example: If C
changes, block 1 (which includes both A and C) is re-synthesized.
Blocks 2 and 3 (including B, D, E, and F) are not recompiled. Since each
block in a design has its own netlist file, an updated netlist file is created
only for block 1 resulting in a new A.edf file.

Each block in the FPGA Compiler II software creates an independent
netlist file after synthesis, so you can control the placement of the netlist
file in LogicLock regions. Each netlist file can be placed into a separate
LogicLock region in the Quartus II software. If a design region changes,
only the block associated with the changed region is affected. An updated
netlist file will be created in the FPGA Compiler II software for the
affected block only.

During place-and-route in the Quartus II software, a LogicLock region
associated with the changed netlist file will be re-run through
place-and-route.

You may need to remove previous back-annotated assignments for the
modified block because the node names may be different in the newly
synthesized version. The placement and assignments for unchanged
netlist files assigned to different LogicLock regions will not be affected.
You can make changes to a piece of code that exists in an independent

Table 12–1. Synthesis in Block-Level Methodology

Block Block Root Member Elements Netlist Filename

block 1 A A, C A.edf

block 2 B B, D, E B.edf

block 3 F F F.edf

Altera Corporation 12–5
June 2004 Preliminary

Block-Level Incremental Synthesis

block and not interfere with another designer’s changes. With the
LogicLock design methodology, separate pieces of a design can evolve
from development to testing without affecting other areas of a design.

Hierarchy Considerations

You must plan your design’s structure in order to use the BLIS and
LogicLock features effectively. When planning a design using the BLIS
and LogicLock features, keep in mind the following:

■ Scope of design elements
■ Organization of design elements
■ Number of elements created

To ensure the proper functioning of the synthesis tool, design elements
smaller than modules, entities, and netlist files cannot be declared as self-
contained blocks. Each module or entity must have its own design file. If
two different modules are in the same design file but are defined as being
part of different blocks, both blocks are resynthesized when any module
in the file is changed, as shown in Figure 12–3.

Figure 12–3. Shared Source File Causes Re-Synthesis of Multiple Blocks

In Figure 12–3, A, D, E, and F are contained in their own source files, as
recommended. However, B and C share a source file, called shared.vhd.
If C is modified in shared.vhd, not only are A and C updated according
to the block designations in Table 12–1, but B, D, and E are updated as
well.

A

block root

Block 1

Block 3

Block 2

ED

B

block root
C

F

block root

shared.vhd

12–6 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

To use the BLIS feature you must ensure the following:

■ Design elements defined as blocks must be modules, entities, or
netlist files

■ Each entity, module, or netlist file must be in its own file
■ At least two blocks must be a part of the design

Time Stamp Synthesis

The resynthesis of a particular block is controlled by the time stamps of
its member source files. In Figure 12–3, when C is modified, the time
stamp of shared.vhd is updated. The software sees that shared.vhd has
been updated and does not know if it was module B or C that was
changed, therefore, it will resynthesize blocks 1 and 2. In incremental
design synthesis, only the portion of the design that was modified should
be resynthesized. If you had previously verified B and later made changes
to C, then B will be resynthesized, triggered by the updated time stamp
of shared.vhd. This could change the results of any verification
performed earlier on B.

When a design is planned properly using the BLIS feature, each block has
a separate netlist file after synthesis, and each netlist file is updated only
when its associated code is changed. This is enforced through time
stamps of independent source files.

Creating &
Maintaining a
Design

To create and compile a project using the FPGA Compiler II software,
perform the following steps:

1. Start the FPGA Compiler II software.

2. Select New Project (File menu).

3. Enter a project name and create a working directory.

4. Specify the source files in your design.

5. Select the top level design.

6. Select the target device (Create Implementation box).

7. Un-check Skip Constraint Entry and set the desired preferences.

8. Click OK. An elaborated implementation of your design appears in
the Chips view.

Altera Corporation 12–7
June 2004 Preliminary

Creating & Maintaining a Design

Opening the Modules Constraint Table & Labeling Block Roots

To label a block root, perform the following steps:

1. Right-click on an elaborated implementation of your design (Chips
window).

2. Select Edit Constraints.

3. Click the Modules tab.

4. Specify subdesigns as block roots in the Block Partition column.

5. Click OK.

6. Right-click on an elaborated implementation and select Optimize
Chip to resynthesize the design.

Figure 12–4 shows how to label block roots.

Figure 12–4. Labeling Block Roots in the Edit Constraints Window

Exporting Block-Level Netlist Files

Once your design has been segmented into blocks and re-implemented,
you can export netlist files. To export netlist files, perform the following
steps:

1. Check that there are no red question marks over elements in the
Design Sources or Chips views. The question marks indicate that a
change has been made since the last update. If there are red question
marks, right-click on the icons to resynthesize the design. For more
information, see “Changing Source Within a Block” on page 12–8.
Right-click on an optimized implementation and select Export
Netlist Only (see Figure 12–5).

12–8 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

2. Click OK after selecting a directory for output.

One netlist file for each block is created in the directory you specified. The
EDIF netlist files have the same name as their corresponding block roots.

Figure 12–5. Export Netlist File Command

Changing Source Within a Block

If you make changes to the source of a block during your design cycle,
you must update your design. When you make a change to the source of
a block, a red question mark will appear in the Design Sources window.
To make a change, perform the following steps:

1. Right-click on the question mark and select Update Chip. Question
marks will appear over the Elaborated Implementation and the
Optimized Implementation icons in the Chips window.

2. Right-click the red question mark to update Elaborated
Implementation.

3. Right-click the red question mark to update Optimized
Implementation.

1 You must update Elaborated Implementation first, followed by
Optimized Implementation.

Altera Corporation 12–9
June 2004 Preliminary

Creating & Maintaining a Design

When you update all of the parts of the design, new netlist files will be
created for only those parts that have been changed. You can check the
time stamps of the new files to confirm this.

Removing a Block Root

If portions of your design are no longer needed, you can easily remove
block roots. To remove a block root, perform the following steps:

1. Right-click on the Elaborated Implementation (Chips window).

2. Select Edit Constraints.

3. Click on the Modules tab and highlight the block root that you
would like to remove in the Block Partition column.

4. Select Remove in the drop-down menu, see Figure 12–6.

Figure 12–6. Removing a Block Root

1 The top level of your design is always a block root and appears
in the constraints editor. You cannot remove the block.

Using BLIS Shell Commands

You can designate block roots using the FPGA Compiler II shell with the
command set_module_block followed by the option true and the
path to the module, entity, or netlist file. For example, to set the module F
as a block root, perform the following step:

fc2_shell> set_module_block true
c:\AlteraDesigns\LogicLock\F r
You can also remove a block designation using the false option.

12–10 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

fc2_shell> set_module_block false
c:\AlteraDesigns\LogicLock\F r
You cannot designate a block root for top-level entities since this is the
default. You also cannot designate any primitive (such as AND) as a block
root because primitives are too small in scope.

Conclusion The FPGA Compiler II software supports advanced synthesis for Altera
devices and supports the LogicLock hierarchal design files through the
BLIS feature. The LogicLock block-based design flow uses module-based
design to help you preserve performance of modules and have control
over placement. Tagging modules which have separate EDIF files, you
can create multiple EDIF files for use with the Quartus II software and the
LogicLock block-based design feature from a single FPGA Compiler II
software project.

Altera Corporation Core Version a.b.c variable 13–1
June 2004 Preliminary

13. Synopsys Design
Compiler FPGA Support

Introduction Programmable logic device (PLD) designs have reached the complexity
and performance requirements of ASIC designs. As a result, advanced
synthesis has taken on a more important role in the design process. This
chapter documents the usage and design flow of the
Synopsys Design Compiler FPGA (DC FPGA) synthesis software with
Altera® devices and Quartus® II software.

This chapter assumes that you have set up and licensed the DC FPGA
software and Altera Quartus II software.

This chapter is primarily intended for ASIC designers experienced with
DC FPGA software who are now developing PLD designs, and
experienced PLD designers who would like an introduction to the
Synopsys DC FPGA software.

f To obtain the DC FPGA software, libraries, and instructions on general
product usage, go to the Synopsys web site at the following URL:
www.synopsys.com/products/dcfpga/dcfpga.html

The following areas are covered in this chapter:

■ General design flow with the DC FPGA software and the Quartus II
software

■ Initialization procedure using the .synopsys_dc.setup file for
targeting Altera devices

■ Using Altera megafunctions with the DC FPGA software
■ Reading design files into the DC FPGA software
■ Applying synthesis and timing constraints
■ Reporting and saving design information
■ Exporting designs to the Quartus II software

qii51014-1.0

13–2 Core Version a.b.c variable Altera Corporation
Synopsys Design Compiler FPGA Support June 2004

Design Flow Using the DC FPGA Software & the Quartus II Software

Design Flow
Using the
DC FPGA
Software & the
Quartus II
Software

A high-level overview of the recommended design flow for using the
DC FPGA software with the Quartus II software is shown in Figure 13–1.

Figure 13–1. Design Flow Using the DC FPGA Software & the Quartus II Software

VHDL Verilog HDL

Functional or
RTL Simulation

Configure/Program
Device

Synopsys
DC FPGA

Quartus II
Software

Constraints
and Settings

Constraints
and Settings

Technology-Specific
Netlist
(.edf)

Forward Annotated
Timing Constraints
(.tcl)

Configuration/Programming Files
(.sof/.pof)

No

Yes

Timing
and Area

Requirements
Satisfied?

Software

Altera Corporation Core Version a.b.c variable 13–3
June 2004 Synopsys Design Compiler FPGA Support

Synopsys Design Compiler FPGA Support

Setup of the
DC FPGA
Software
Environment for
Altera Device
Families

Altera recommends that you organize your project directory with several
subdirectories. A recommended project hierarchy is shown in
Figure 13–2.

Figure 13–2. Project Hierarchy

To use the DC FPGA software to synthesize HDL designs for use with the
Quartus II software, the required settings should be included in your
.synopsys_dc.setup initialization file. This file is used to define global
variables and direct the DC FPGA software to the proper libraries used
for synthesis, as well as set internal assignments for synthesizing designs
for Altera devices.

The .synopsys_dc.setup file can reside in any one of three locations and
be read by the DC FPGA software. The DC FPGA software will
automatically read the .synopsys_dc.setup file at startup in the following
order of precedence:

1. Current directory where you run the DC FPGA software shell
2. Home directory
3. The DC FPGA software installation directory

The DC FPGA software has vendor-specific setup files for each of the
Altera logic families in the installation directory. These vendor-specific
setup files are found in the
<installation_path>/dc_fpga/2004.06/libraries/2004.06/ and are named in
the form synopsys_dc_<logic family>.setup. For example, if you want to
use the default setup for synthesizing for an Altera Stratix™ device, you
must link to or copy the synopsys_dc_stratix.setup to your home or
current directory and rename the file .synopsys_dc.setup.

Synopsys recommends using the vendor-specific setup files provided
with each release of the DC FPGA software to ensure that you have all the
correct settings and obtain the best quality results.

Project Directory

scripts

.tcl

reports

.log

work

.edf

.tcl

source

.v

.vhd

db

.db

13–4 Core Version a.b.c variable Altera Corporation
Synopsys Design Compiler FPGA Support June 2004

Setup of the DC FPGA Software Environment for Altera Device Families

The following example contains the recommended settings for
synthesizing for the Stratix architecture:

Setup file for Altera Stratix
Tcl style setup file but will work for original DC shell as well
Need to define the root location of the libraries by changing the variable
$dcfpga_lib_path

set dcfpga_lib_path "<installation_path>/dc_fpga/2004.06/libraries/2004.06"

set search_path ". $dcfpga_lib_path/STRATIX $search_path"
set target_library "stratix.db"
set synthetic_library "tmg.sldb altera_mf.sldb LPM.sldb"
set link_library "* stratix.db tmg.sldb altera_mf.sldb LPM.sldb"

define_design_lib altera_mf -path $dcfpga_lib_path/STRATIX/altera_mf_lib
define_design_lib LPM -path $dcfpga_lib_path/STRATIX/LPM
set cache_dir_chmod_octal "1777"
set edifout_netlist_only "true"
set edifout_power_and_ground_representation "net"
set edifout_ground_net_name "GND"
set edifout_power_net_name "VDD"
set hdlin_enable_vpp "true"
set edifout_write_properties_list "lut_function part IOSTANDARD DRIVE SLEW"
set post_compile_cost_check "false"
set_fpga_defaults altera_stratix’

After generating your .synopsys_dc.setup file, run the DC FPGA
software in either the Tcl shell or in the Design Compiler software shell
without Tcl support. Run the DC FPGA software shell at a command
prompt by typing fpga_shell-t or fpga_shell -tcl for the Tcl shell
version of the DC FPGA software. Run the non-Tcl version of the
DC FPGA software with the fpga_shell command. Altera
recommends using the Tcl shell for all of your synthesis work.

If you have created a Tcl synthesis script for use in the DC FPGA software
and wish to run it immediately at startup, you can start the DC FPGA
software shell and run the script with the command shown in the
example below:

fpga_shell-t -f <path>/<script filename>.tcl r

Otherwise, you can run your scripts at any time at the fpga_shell-t>
prompt with the source command. An example is shown below:

source <path>/<script filename>.tcl r

Altera Corporation Core Version a.b.c variable 13–5
June 2004 Synopsys Design Compiler FPGA Support

Synopsys Design Compiler FPGA Support

Megafunctions
& Architecture-
Specific
Features

Altera provides parameterized megafunctions including library of
parameterized modules (LPMs), device-specific Altera megafunctions,
intellectual property (IP) available as Altera MegaCore functions, and IP
available through the Altera Megafunction Partners Program (AMPP).
You can use megafunctions by instantiating them in your HDL code, or
by inferring them from your HDL code during synthesis in the DC FPGA
software.

f For more details on specific Altera megafunctions, see the Quartus II
Help.

The DC FPGA software automatically recognizes certain types of HDL
code and infers the appropriate megafunction when a megafunction will
provide optimal results. The DC FPGA software also provides options to
control inference of certain types of megafunctions, as described in the
section “Instantiating Altera Megafunctions Using the MegaWizard
Plug-In Manager” on page 13–7.

f For a detailed discussion on instantiating versus inferring
megafunctions, see the Recommended HDL Coding Styles chapter in
Volume 1 of the Quartus II Handbook. That chapter also provides details
about using the MegaWizard® Plug-In Manager in the Quartus II
software and explains the files generated by the wizard. In addition, the
chapter provides coding style recommendations and examples for
inferring megafunctions in Altera devices.

If you instantiate a megafunction in your HDL code, you can use the
MegaWizard Plug-In Manager to parameterize the function or you can
instantiate the function using the port and parameter definition. The
MegaWizard Plug-In Manager provides a graphical interface in the
Quartus II software for customizing and parameterizing megafunctions.
The section “Instantiating Altera Megafunctions Using the MegaWizard
Plug-In Manager” on page 13–7 describes the MegaWizard flow with the
DC FPGA synthesis software.

There are two ways of instantiating MegaWizard-generated functions in
your design hierarchy loaded in the DC FPGA software. You can
instantiate and compile the Verilog HDL or VHDL variation wrapper file
description of your megafunction in the DC FPGA software, or you can
instantiate a black box that just describes the ports of your megafunction
variation wrapper file.

One of the strengths of the DC FPGA software is its gated clock
conversion feature. Inferring megafunctions in HDL takes advantage of
this feature. For gated clocks or clock enables designed outside of LPMs,
Altera-specific megafunctions, and registers, the DC FPGA software
merges the gated clock functions into these design elements using

13–6 Core Version a.b.c variable Altera Corporation
Synopsys Design Compiler FPGA Support June 2004

Megafunctions & Architecture-Specific Features

dedicated clock enable functionality during synthesis. The DC FPGA
software reconfigures the megafunction block or register to synthesize
the clock enable control logic. This can save area in your design and
improve your design performance by reducing the gated clock path delay
and the amount of logic used to implement the design. An illustration of
this kind of gated clock optimization is shown in Figure 13–3.

Figure 13–3. Gated Clock Optimization

The DC FPGA software does not perform gated clock optimization on
instantiated black box megafunctions or on instantiated megafunction
variation wrapper file. The DC FPGA software performs gated clock
optimization on synthesizable inferred megafunctions.

sysclk clock
lpm_mult

dataa[7..0]
result[15..0]

DC FPGA recognizes gated clocks and utilizes clock
enable logic during synthesis where possible.

datab[7..0]

enable

sysclk

clken

lpm_mult

dataa[7..0]
result[15..0]

datab[7..0]

enable

clock

Altera Corporation Core Version a.b.c variable 13–7
June 2004 Synopsys Design Compiler FPGA Support

Synopsys Design Compiler FPGA Support

Instantiating
Altera
Megafunctions
Using the
MegaWizard
Plug-In Manager

When you use the MegaWizard to set up and parameterize a
megafunction and create a custom megafunction variation, the
MegaWizard creates either a VHDL or Verilog HDL wrapper file that
instantiates the megafunction.

Reading MegaWizard-Generated Variation Wrapper Files

The DC FPGA software has the ability to analyze and elaborate the
MegaWizard-generated Verilog HDL <output file>.v or VHDL
<output file>.vhd netlist that contains the parameters needed by the
Quartus II software to properly configure and instantiate your
megafunction. The DC FPGA software takes advantage of this variation
wrapper file during the optimization of your design to reduce area
utilization and improve path delays.

Using the megafunction variation wrapper file <output file>.v or
<output file>.vhd in the DC FPGA software synthesis provides good
synthesis results for area estimates, but actual timing results are best
predicted after place and route inside the Quartus II software. However,
reading the megafunction variation wrapper allows the DC FPGA
software to provide better synthesis estimates over a black-box
methodology.

Using MegaWizard-Generated Variation Wrapper Files in a
Black-Box Methodology

Instantiating the MegaWizard-generated wrapper file without reading it
in the DC FPGA software is referred to as a black-box methodology
because the megafunction is treated as an unknown container in the
DC FPGA software.

The black-box methodology does not allow synthesis software to have
any visibility into the module, thereby not taking full advantage of the
timing driven optimization of the DC FPGA software and preventing the
software from estimating logic resources for the black-box design.

Using MegaWizard-Generated Verilog HDL Files for Black-Box
Megafunction Instantiation

By default, the MegaWizard generates the Verilog HDL instantiation
template file <output file>_inst.v and the black box module declaration
<output_file>_bb.v for use in your design in the DC FPGA software. The
instantiation template file helps to instantiate the megafunction variation
wrapper file, <output file>.v, in your top-level design. Do not include the
megafunction variation wrapper file in the DC FPGA software project if
you are following the black box methodology. Instead, add the wrapper
file and your generated EDIF netlist in your Quartus II project. Add the

13–8 Core Version a.b.c variable Altera Corporation
Synopsys Design Compiler FPGA Support June 2004

Inferring Altera Megafunctions from HDL Code

hollow body black box module declaration <output file>_bb.v to your
linked design files in the DC FPGA software to describe the port
connections of the black box.

Using MegaWizard-Generated VHDL Files for Black-Box Megafunction
Instantiation

By default, the MegaWizard generates a VHDL component declaration
file <output file>.cmp and a VHDL instantiation template file <output
file>_inst.vhd for use in your design. These files can help you instantiate
the megafunction variation wrapper file, <output file>.vhd, in your top-
level design. Do not include the megafunction variation wrapper file in
the DC FPGA software project. Instead, add the wrapper file and your
generated EDIF netlist in your Quartus II project.

Inferring Altera
Megafunctions
from HDL Code

The DC FPGA synthesis engine automatically recognizes certain types of
HDL code, and maps digital signal processing (DSP) functions and
memory (RAM and ROM) to efficient technology-specific
implementations. This allows the use of technology-specific resources to
implement these structures by inferring the appropriate Altera
megafunction when it will provide optimal results.

f For coding style recommendations and examples for inferring
megafunctions in Altera devices, see the Recommended HDL Coding Styles
chapter in Volume 1 of the Quartus II Handbook.

Depending on the coding style, if you do not adhere to these
recommended HDL coding style guidelines, it is possible that the
DC FPGA software and Quartus II software will not take advantage of
the high performance DSP blocks and RAMs, and may instead
implement your logic using regular logic elements (LEs). This will cause
your logic to consume more area in your device and may adversely affect
your design performance. Altera logic families do not all share the same
resources, so your HDL coding style may cause your logic to be
implemented differently in each family. For example, in a Stratix device
there are dedicated DSP blocks, but a Cyclone™ device does not have
them. In a Cyclone device, multipliers are implemented in LEs.

An example of Verilog HDL code that infers a two-port RAM that can be
synthesized into an M512 RAM block of a Stratix device is shown below:

module example_ram (clk, we, rd_addr, wr_addr, data_in, data_out);
input clk, we;
input [15:0] data_in;
output [15:0] data_out;
input [7:0] rd_addr;
input [7:0] wr_addr;

Altera Corporation Core Version a.b.c variable 13–9
June 2004 Synopsys Design Compiler FPGA Support

Synopsys Design Compiler FPGA Support

reg [15:0] ram_data [7:0];
reg [15:0] data_out_reg;
always @ (posedge clk)
begin
if (we)
 ram_data[wr_addr] <= data_in;
data_out_reg <= ram_data[rd_addr];
end
assign data_out = data_out_reg;
endmodule

Reading Design
Files into the
DC FPGA
Software

The process of reading design files into the DC FPGA software is a
two-step process where the DC FPGA software analyzes your HDL
design for syntax errors, then elaborates the specified design. The
elaboration process finds analyzed designs and instantiates them in the
elaborated design's hierarchy. You need to identify which of the
acceptable languages the file is written in when reading designs into the
DC FPGA software. The acceptable HDL languages are listed in
Table 13–1.

Use the following commands to analyze and elaborate HDL designs in
the DC FPGA software:

analyze -f <verilog|vhdl> <design file> r
elaborate <design name> r

Once a design is analyzed, it is stored in a Synopsys library format file in
your working directory for re-use. You need to reanalyze the design only
when you change the source HDL file. Elaboration is performed after you
have analyzed all of the subdesigns below your current design.

Table 13–1. Supported Design File Formats

Format Description Keyword Extension

Verilog (Synopsys
Presto HDL)

Verilog hardware description
language

verilog .v

VHDL VHSIC hardware description
language

vhdl .vhd

.db Synopsys internal database
format (1)

db .db

EDIF Electronic design interchange
format

edif .edf

Note to Table 13–1:
(1) The Design Compiler DB format file requires additional license keys.

13–10 Core Version a.b.c variable Altera Corporation
Synopsys Design Compiler FPGA Support June 2004

Reading Design Files into the DC FPGA Software

Another way to read your design is by using the read_file command.
This can be used to read in gate-level netlists that are already mapped to
a specific technology. The read_file command will perform analysis
and elaboration on Verilog HDL and VHDL designs that are written in
register transfer level (RTL) format. The difference between the
read_file command and the analyze and elaborate combination is that
the read_file command elaborates every design read, which is not
necessary. Only the top-level design needs to be elaborated. The
read_file command is useful if you have a previously synthesized
block of logic that you want to re-use in your design.

To use the read_file command for a specific language, type the
command shown below:

read_file -f <verilog|vhdl|db|edif> <design file>

You can also read files in specific languages using the read_verilog,
read_vhdl, read_db, and read_edif commands.

Once you have read all of your design files, specify the design you want
to focus your work on with the current_design command. This is
usually the top module or entity in your design that you wish to compile
up to. The usage of this command is shown here:

current_design <design name> r

You then need to build your design from all of the analyzed HDL files
with the link command. The usage of this command is shown here:

link r

After linking your designs successfully in the DC FPGA software, you
should specify which design you will be applying constraints to. In the
DC FPGA software, you have the capability of loading multiple levels of
hierarchy and synthesizing specific blocks in a bottom-up synthesis
methodology, or you can synthesize the entire design from the top-level
module in a top-down synthesis methodology.

You can switch the current focus of the DC FPGA software between the
designs loaded by using the current_design command. This changes
your current focus onto the design specified, and all subsequent
constraints and commands will apply to that design.

Altera Corporation Core Version a.b.c variable 13–11
June 2004 Synopsys Design Compiler FPGA Support

Synopsys Design Compiler FPGA Support

If you have read Quartus II MegaWizard-generated designs or third party
IP into the DC FPGA software, you can instruct the DC FPGA software
not to synthesize them. Use the set_dont_touch constraint and apply
it to each module of your design that you do not want synthesized. The
usage of this command is shown here:

set_dont_touch <design name> r

Using the set_dont_touch command can be helpful in a bottom-up
synthesis methodology, where you optimize designs at the lower levels of
your hierarchy first and do not allow the DC FPGA software to
resynthesize them later during the top-level integration. However,
depending on the design's HDL coding, you might want to allow
top-level resynthesis to get further area reduction and improved path
delays. For best results, Altera recommends following the top-down
synthesis methodology and not using the set_dont_touch command
on lower level designs.

Selecting a
Target Device

If you do not select an Altera device, the DC FPGA software, by default,
synthesizes for the fastest speed grade of the logic family library that is
loaded in your .synopsys_dc.setup file. If you are targeting a specific
device of an Altera family, you must have the correct library linked, then
you can specify the device for synthesis with the
set_fpga_target_device command. The usage of this command is
shown below:

set_fpga_target_device <device name> r

You can have the DC FPGA software produce a list of all available devices
in the linked library by adding the -show_all option to the
set_fpga_target_device command. An example of this list for the
Stratix library is shown below:

13–12 Core Version a.b.c variable Altera Corporation
Synopsys Design Compiler FPGA Support June 2004

Selecting a Target Device

fpga_shell-t> set_fpga_target_device -show_all
Loading db file
'/dc_fpga/2004.06/libraries/2004.06/STRATIX/stratix.db'

Valid device names are:

Part Pins FFs Speed Grades
--
AUTO * 0 0 FASTEST
EP1S10B672 672 10570 C6 C7
EP1S10F484 484 10570 C5 C6 C7 I6
EP1S10F672 672 10570 C6 C7
EP1S10F780 780 10570 C5 C5ES C6 C6ES C7 C7ES I6
EP1S20B672 672 18460 C6 C7
EP1S20F484 484 18460 C5 C6 C7
EP1S20F672 672 18460 C6 C7 I7
EP1S20F780 780 18460 C5 C6 C7 I6
EP1S25B672 672 25660 C6 C7 I7
EP1S25F672 672 25660 C6 C6_HARDCOPY_FPGA_PROTOTYPE C7
C7_HARDCOPY_FPGA_PROTOTYPE I7
EP1S25F780 780 25660 C5 C6 C7 I6
EP1S25F1020 1020 25660 C5 C6 C7 I6
EP1S30B956 956 32470 C5 C6 C7
EP1S30F780 780 32470 C5 C5_HARDCOPY_FPGA_PROTOTYPE C6
C6_HARDCOPY_FPGA_PROTOTYPE C7 C7_HARDCOPY_FPGA_PROTOTYPE
EP1S30F1020 1020 32470 C5 C6 C7 I6
EP1S40B956 956 41250 C5 C6 C7
EP1S40F780 780 41250 C5 C5_HARDCOPY_FPGA_PROTOTYPE C6
C6_HARDCOPY_FPGA_PROTOTYPE C7 C7_HARDCOPY_FPGA_PROTOTYPE
EP1S40F1020 1020 41250 C5 C6 C7 I6
EP1S40F1508 1508 41250 C5 C6 C7
EP1S60B956 956 57120 C6 C7
EP1S60F1020 1020 57120 C6 C6_HARDCOPY_FPGA_PROTOTYPE C7
C7_HARDCOPY_FPGA_PROTOTYPE
EP1S60F1508 1508 57120 C6 C7
EP1S80B956 956 79040 C6 C7
EP1S80F1020 1020 79040 C6 C6_HARDCOPY_FPGA_PROTOTYPE C7
C7_HARDCOPY_FPGA_PROTOTYPE
EP1S80F1508 1508 79040 C6 C7

* Default part

For example, if you wanted to target the
C6_HARDCOPY_FPGA_PROTOTYPE of the EP1S25F672 Stratix device,
you would apply the constraint shown below:

set_fpga_target_device
EP1S25F672C6_HARDCOPY_FPGA_PROTOTYPE

Altera Corporation Core Version a.b.c variable 13–13
June 2004 Synopsys Design Compiler FPGA Support

Synopsys Design Compiler FPGA Support

Timing &
Synthesis
Constraints

You must create timing and synthesis constraints for your design for the
DC FPGA software to optimize your design performance. The timing
constraints specify your desired clocks and their characteristics, input
and output delays, and timing exceptions such as false paths and multi-
cycle paths. The synthesis constraints define the device, the type of I/O
buffers that should be used for top-level ports, and the maximum register
fan-out threshold before buffer insertion is performed. Synopsys Design
Constraints (SDC) are Tcl-format commands that are widely used in
many EDA software applications. The DC FPGA software accepts all the
SDC commands that the full version of the Design Compiler software
uses. However, certain constraints that are used in ASIC synthesis are not
applicable to programmable logic synthesis, so the DC FPGA software
ignores them.

The accepted constraints for use in the DC FPGA software are:

■ create_clock
■ set_max_delay
■ set_propagated_clock
■ set_input_delay
■ set_output_delay
■ set_multicycle_path
■ set_false_path
■ set_disable_timing
■ set_fpga_pad_type
■ set_fpga_resource_limit
■ set_register_max_fanout
■ set_max_fanout
■ set_fpga_target_device

f For the syntax and full usage of these commands, see Chapters 6 and 7 of
the Synopsys DC FPGA User Guide.

1 Minimum timing analysis is not necessary for synthesis with the
DC FPGA software because the software is primarily looking at
setup timing optimization to achieve the fastest clock frequency
for your design. Altera recommends adding additional
minimum timing constraints to your design inside the
Quartus II software.

The timing reports generated from the DC FPGA software are
preliminary estimates of the path delays in your design, and accurate
timing will only come after place and route is performed with the
Quartus II software.

13–14 Core Version a.b.c variable Altera Corporation
Synopsys Design Compiler FPGA Support June 2004

Compilation & Synthesis

The DC FPGA software also performs cross-hierarchical boundary
optimization. Altera recommends running this command before a
compilation:

ungroup -small 500 r

This allows the DC FPGA software to potentially get better area reduction
and performance improvement by ungrouping smaller blocks of logic in
your design hierarchy and combining functions.

Compilation &
Synthesis

After applying timing and synthesis constraints, you can begin the
compilation and synthesis process. The compile command runs this
process within the DC FPGA software. To run a compilation, at the shell
prompt type:

compile r

The compilation process performs two kinds of optimization:

■ Architectural optimization focuses on the HDL description and
performs high level synthesis tasks such as sharing resources and
sub-expressions, selecting Synopsys Design Ware implementations,
and reordering operators.

■ Gate-level optimization works on the generic netlist created by logic
synthesis and works to improve the mapping efficiency to save area
and improve performance by minimizing path delays.

Compilation can be done using a top-down synthesis methodology or a
bottom-up synthesis methodology. The top-down synthesis
methodology involves a single compilation of your entire design with the
focus on the top module or entity of your design. The bottom-up
synthesis methodology involves incremental compilation of major blocks
in your design hierarchy and top-level integration and optimization.
Either methodology can be applied when synthesizing for Altera devices.
For best results, Altera recommends following the top-down synthesis
methodology.

Altera Corporation Core Version a.b.c variable 13–15
June 2004 Synopsys Design Compiler FPGA Support

Synopsys Design Compiler FPGA Support

An example synthesis script that reads the design, applies timing
constraints, reports results, and saves the synthesized netlist is shown
below:

Setup output directories
set outdir ./design
file delete -force $outdir
file mkdir $outdir
set rptdir ./report
file delete -force $rptdir
file mkdir $rptdir
Setup libraries
define_design_lib work -path .$outdir/work
file mkdir $outdir/work
analyze -format verilog ./source/mult_box.v
analyze -format verilog ./source/mult_ram.v
analyze -format verilog ./source/top_module.v
elaborate top_module
link
current_design top_module
create_clock -period 5 [get_ports clk]
set_input_delay -max 2 -clock clk [get_ports {data_in_* mode_in}]
set_input_delay -min 0.5 -clock clk [get_ports {data_in_* mode_in}]
set_output_delay -max 2 -clock clk [get_ports {data_out ram_data_out_port}]
set_output_delay -min 0.5 -clock clk [get_ports {data_out ram_data_out_port}]
set_false_path -from [get_ports reset]
ungroup -small 500
compile
report_timing > $rptdir/top_module.log
report_fpga > $rptdir/top_module_fpga.log
write -f edif -hier -o $outdir/top_module.edf
write_par_constraint $outdir/top_module_quartus_setup.tcl
quit

13–16 Core Version a.b.c variable Altera Corporation
Synopsys Design Compiler FPGA Support June 2004

Reporting Design Information

Reporting
Design
Information

After compilation is complete, the DC FPGA software reports
information about your design. You can specify which kinds of reports
you want generated with the reporting commands shown in Table 13–2.

f For more information on the usage of these commands, see Chapter 9 of
the Synopsys DC FPGA User Guide.

Table 13–2. Reporting Commands

Object Command Description

Design report_design Reports design characteristics

report_area Reports design size and object counts

report_hierarchy Reports design hierarchy

report_resources Reports resource implementations

report_fpga Reports FPGA resource utilization statistics for the
design

Instances report_cell Displays information about instances

References report_reference Displays information about references

Ports report_port Displays information about ports

report_bus Displays information about bused ports

Nets report_net Reports net characteristics

report_bus Reports bused net characteristics

Clocks report_clock Displays information about clocks

Timing report_timing Checks the timing of the design

report_constraint Checks the design constraints

check_timing Checks for unconstrained timing paths and clock-gating
logic

report_design Shows operating conditions, timing ranges, internal input
and output, and disabled timing arcs.

report_port Shows unconstrained input and output ports and port
loading

report_timing_requirements Shows all timing exceptions set on the design

report_clock Checks the clock definition and clock skew information

derive_clocks Checks internal clock and unused registers

report_path_group Shows all timing path groups in the design

Cell
Attributes

get_cells Shows all cell instances that have a specific attribute

Altera Corporation Core Version a.b.c variable 13–17
June 2004 Synopsys Design Compiler FPGA Support

Synopsys Design Compiler FPGA Support

The DC FPGA software only provides preliminary estimates of your
design's path delays because the timing of your design cannot be
accurately predicted until a full place and route of the design has been
performed in the Quartus II software.

Saving
Synthesis
Results

After synthesis, the technology-mapped design can be saved to a file in
four formats: Verilog HDL, VHDL, Synopsys internal DB, or EDIF.

Currently, the Quartus II software only accepts an EDIF netlist
synthesized from the DC FPGA software.

13–18 Core Version a.b.c variable Altera Corporation
Synopsys Design Compiler FPGA Support June 2004

Exporting Designs to the Quartus II Software

Use the write command to save your design work. The syntax for this
command is:

write -format <verilog|vhdl|db|edif> -output <file name>
<design list> [-hierarchy] r

The -hierarchy option causes the DC FPGA software to write all the
designs within the hierarchy of the current design.

The Synopsys internal DB format is useful for when you have a design
synthesized and want to reuse it later in the DC FPGA software. The DB
file contains your constraints and synthesized design netlist, and loads
into DC FPGA faster than Verilog HDL or VHDL designs.

You can also write out your applied design constraints in Tcl format for
export to the Quartus II software environment. You can do this with the
write_par_constraint command, which is explained in the
following section.

Exporting
Designs to the
Quartus II
Software

The DC FPGA software can create two Tcl scripts that start the Quartus II
software, create your initial design project, apply the exported timing
constraints from the DC FPGA software, and compile your design in the
Quartus II software.

You can generate the two Tcl scripts with the following command:

write_par_constraint <user-specified file name>.tcl r

This command generates both Tcl scripts in one operation. The first Tcl
script has the name you specify in the write_par_constraint
command. This script creates your Quartus II project and compiles it. The
second script is named <top_module>_const.tcl by default and contains
your exported timing constraints from the DC FPGA software. This
constraint file is sourced in the <user-specified file name>.tcl script and
applies the timing constraints used in the DC FPGA software to your
project in the Quartus II software so that you can compile your design
immediately.

For example, assuming your current design in the DC FPGA software is
dma_controller and you run the command:

write_par_constraint run_quartus.tcl r

the DC FPGA software produces two Tcl scripts called run_quartus.tcl
and dma_controller_const.tcl.

Altera Corporation Core Version a.b.c variable 13–19
June 2004 Synopsys Design Compiler FPGA Support

Synopsys Design Compiler FPGA Support

To use this Tcl script in the Quartus II software shell, run this script in
your project directory:

quartus_sh -t <user-specified file name>.tcl r

To run this Tcl script in the Quartus II software GUI, type the following
command at the Quartus II Tcl console prompt:

source <user-specified file name>.tcl r

This feature is useful when performing an initial compilation of your
design to view post place-and-route timing and device utilization results,
but not all the advanced Quartus II options that control the compilation
process are used.

To create a Quartus II project without performing compilation
automatically, remove these lines from the script:

load_package flow
execute_flow -compile

13–20 Core Version a.b.c variable Altera Corporation
Synopsys Design Compiler FPGA Support June 2004

Exporting Designs to the Quartus II Software

An example script is shown below:

##
Generated by DC FPGA 2004.03 on Wed Apr 28 14:21:37 2004
#
Description: This Tcl script is generated by DC FPGA using write_par_constraint
command. It is used to create a new Quartus II project, specify
timing constraint assignments in Quartus II, and run quartus_map,
quartus_fit, quartus_tan, & quartus_asm.
#
Usage: To execute this Tcl script in batch mode: quartus_sh -t
top_module_quartus_setup.tcl
To execute this Tcl script in Quartus II GUI: source top_module_quartus_setup.tcl
###

Set the project_name variable
set project_name top_module

Close the project if open
if [is_project_open] {
 project_close
}

Create a new project
project_new -overwrite -family STRATIX -part AUTO $project_name

Make global assignments
set_global_assignment -name TOP_LEVEL_ENTITY $project_name
set_global_assignment -name ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP ON
set_global_assignment -name EDA_DESIGN_ENTRY_SYNTHESIS_TOOL -value "Design Compiler FPGA"
set_global_assignment -name EDA_INPUT_VCC_NAME -value VDD -section_id
eda_design_synthesis
set_global_assignment -name EDA_INPUT_GND_NAME -value GND -section_id
eda_design_synthesis
set_global_assignment -name EDA_LMF_FILE -value dc_fpga.lmf -section_id
eda_design_synthesis

Source in the design timing constraint file
source $project_name_cons.tcl

The following runs quartus_map, quartus_fit, quartus_tan, & quartus_asm
load_package flow
execute_flow -compile
project_close

After synthesis in the DC FPGA software, the technology-mapped design
is written to the current project directory as an EDIF netlist file. The
project configuration script (<user-specified file name>.tcl) is used to create
and compile a Quartus II project for your EDIF netlist. This script makes
basic project assignments such as assigning the target device as specified
in the DC FPGA software. The project configuration script calls the place
and route constraints script to make your timing constraints. The place
and route constraints script (<top module>_const.tcl) forward-annotates
all timing constraints that you made in the DC FPGA software, including
false path assignments, multi-cycle assignments, timing groups, and

Altera Corporation Core Version a.b.c variable 13–21
June 2004 Synopsys Design Compiler FPGA Support

Synopsys Design Compiler FPGA Support

related clocks. This integration means that you need to enter these
constraints only once, in the DC FPGA software, and they are passed
automatically to the Quartus II software.

Place & Route
with the
Quartus II
Software

After you have created your Quartus II project and successfully loaded
your EDIF netlist into the Quartus II project, you are ready to perform the
place and route tasks in the Quartus II software. The Synopsys DC FPGA
software works only on worst case timing delay and constraints, and does
not work to optimize minimum timing requirements. Altera recommends
adding minimum timing constraints and performing minimum timing
analysis inside the Quartus II software.

Conclusion Large PLD designs require advanced synthesis of their HDL code. Taking
advantage of the Synopsys DC FPGA software and the Quartus II
software allows you to develop high performance designs while
occupying as little programmable logic resources as possible. The
DC FPGA software and Quartus II software combination is an excellent
solution for the high density designs using Altera FPGA devices.

13–22 Core Version a.b.c variable Altera Corporation
Synopsys Design Compiler FPGA Support June 2004

Conclusion

Altera Corporation 14–1
June 2004 Preliminary

14. Analyzing Designs with
the Quartus II RTL Viewer &

Technology Map Viewer

Introduction As FPGA designs grow in size and complexity, and as several design
engineers are involved in coding and synthesizing different design
blocks, the ability to analyze how your synthesis tool interprets your
design becomes critical. The Quartus® II RTL Viewer and Technology
Map Viewer provide powerful ways of viewing your initial and fully
mapped synthesis results during your debugging, optimization, or
constraint entry process.

The first sections of this chapter explain the different parts of the RTL
Viewer and Technology Map Viewer. The following sections describe
how to navigate and filter in the schematics, probe to other features
within the Quartus II software, view a timing path from the Timing
Analyzer report and other features of the schematics, and how you can
navigate through your design netlist. The final section “Using the RTL &
Technology Map Viewers to Analyze Design Problems” on page 14–28
presents potential uses of the viewers to analyze your design and help
save valuable verification time.

RTL Viewer
Overview

The Quartus II RTL Viewer allows you to view a register transfer level
(RTL) graphical representation of your initial Quartus II integrated
synthesis results or your third-party netlist file within the Quartus II
software.

You can view your Quartus II results after Analysis & Elaboration when
your design uses Verilog HDL (.v), VHDL (.vhd), AHDL (.tdf), and/or
schematic (.bdf or .gdf imported from the MAX+PLUS® II software)
design files. You can also view the hierarchy of atom primitives (such as
device logic cells and I/O ports) when your design uses a synthesis tool
to generate a Verilog Quartus Mapping file (.vqm) or Electronic Design
Interchange Format (.edf) netlist file.

The Quartus II RTL Viewer presents a schematic view of the design netlist
after analysis and elaboration, or netlist extraction, by the Quartus II
software, but before the synthesis or fitter optimization algorithms have
taken place. This view is not the final structure of the design, since
optimizations have not yet occurred, but it is the closest view possible to
your original source design. If your design uses Quartus II integrated
synthesis, this view shows how the Quartus II software has interpreted
your design files. If you are using a third-party synthesis tool, this view
shows the netlist as written by your synthesis tool.

qii51013-2.0

14–2 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Certain optimizations are performed on the netlist to improve readability
in the viewer. Logic with no fan-out (i.e., its outputs are unconnected) and
logic with no fan-in (i.e., its inputs are unconnected) are removed from
the netlist. Internally-used TRI_BUS tri-state buffer primitives are
removed and bidirectional I/O pins in the design are connected directly
to their sources. Default connections such as VCC and GND are not shown.
The viewers group pins, nets or wires, module ports, and certain logic
into buses where appropriate. Constant bus connections are also
grouped, and values are displayed in hexadecimal format. NOT gates are
converted to bubble inversion symbols in the schematic, and chains of
equivalent combinational gates are merged into a single gate.

To run the RTL Viewer for a Quartus II project, you must first analyze the
design by choosing Start > Start Analysis & Elaboration (Processing
menu). You can also perform a full compilation or any process that
includes the initial Analysis & Elaboration stage of the compilation flow.
You can then run the viewer by choosing RTL Viewer (Tools menu), or by
selecting RTL Viewer from the Applications toolbar.

1 The Applications toolbar does not appear by default in the
Quartus II user interface. To add the toolbar, choose Customize
(Tools menu) and turn on the Applications toolbar on the
Toolbars tab.

Technology Map
Viewer Overview

The Quartus II Technology Map Viewer provides a low-level, technology-
specific, graphical representation of your design after the synthesis
process that includes mapping the design into the target technology. The
Technology Map Viewer shows the hierarchy of atom primitives (such as
device logic cells and I/O ports) in your design.

You can view your Quartus II technology-mapped results after synthesis,
fitting, or timing analysis. To run the Technology Map Viewer for a
Quartus II project, you must first synthesize and map the design to the
target technology by choosing Start > Start Analysis & Synthesis
(Processing menu). You can also perform a full compilation, or any
process that includes the synthesis stage of the compilation flow. If you
have completed the Fitter stage, the Technology Map Viewer shows any
changes made to your netlist by the Fitter, such as physical synthesis
optimizations. If you have completed the Timing Analysis stage, you can
locate timing paths from the Timing Analyzer report in the Technology
Map Viewer (see "“Viewing a Timing Path in the Technology Map
Viewer” on page 14–22 for details).

Once the desired compilation stage is complete, you can launch the
viewer by choosing Technology Map Viewer (Tools menu), or by
selecting Technology Map Viewer from the Applications toolbar.

Altera Corporation 14–3
June 2004 Preliminary

Quartus II Design Flow with the RTL & Technology Map Viewers

Quartus II
Design Flow
with the RTL &
Technology Map
Viewers

The first time you open either viewer after the appropriate compilation
stage, a preprocessor stage runs automatically before the viewer opens. If
you close the viewer and open it again later without recompiling the
design, the viewer opens immediately without performing the
preprocessing stage. Figure 14–1 shows how the RTL Viewer and
Technology Map Viewer fit into the basic Quartus II design flow.

Figure 14–1. Quartus II Design Flow Including the RTL Viewer & Technology Map Viewer

If you choose to open one of the viewers without first performing the
appropriate compilation stage, the viewer does not appear. The
Quartus II software issues an error instructing you to run the compilation
stage and restart the viewer.

The viewers display the results of the last successful compilation.
Therefore, if you make a design change that causes an error during
analysis and elaboration, you cannot view the netlist for the new design

Analysis &
Elaboration

HDL/ Schematic
Design Files

VQM/EDIF
Netlist Files

RTL Viewer

Synthesis/
Mapping

Fitter (Place &
Route)

RTL Viewer Preprocessor
(once per Analysis &

Elaboration)

Technology Map
Viewer

Technology Map Viewer
Preprocessor (once per

Synthesis)

Technology Map
Viewer

Technology Map Viewer
Preprocessor (once per

Fitting)

Timing Analyzer Technology Map
Viewer

Technology Map Viewer
Preprocessor (once per

Timing Analysis)

14–4 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

files, but you can still view the results from the last successfully compiled
version of the design files. If you receive an error during compilation and
you have not yet successfully run the appropriate compilation stage for
your project, the viewer cannot be displayed and the Quartus II software
issues an error when you try to open the viewer.

If the viewer window is open when you start a new compilation, the
viewer closes automatically. You must open the viewer again to view the
new design netlist.

Introduction to
the User
Interface

The RTL Viewer window and Technology Map Viewer window each
consist of two main parts, as shown in Figure 14–2 for the RTL Viewer, the
schematic view and the hierarchy list. The RTL Viewer or Technology
Map Viewer toolbar also appears when you open the corresponding
viewer. The toolbars provide tools for use with the schematic view.

You can only have one RTL Viewer and one Technology Map Viewer
window open at a time, although each window may show multiple
pages. The window for each viewer has characteristics like other “child”
windows in the Quartus II software; it can be resized and moved,
minimized or maximized, tiled or cascaded, or moved in front of or
behind other windows.

Figure 14–2. RTL Viewer Window & RTL Viewer Toolbar

RTL Viewer Toolbar

Hierarchy List Schematic View

Altera Corporation 14–5
June 2004 Preliminary

Introduction to the User Interface

Schematic View

The schematic view is displayed on the right-hand side of the RTL Viewer
or Technology Map Viewer, and contains a schematic representing the
design logic in the netlist. This is the main screen for viewing your gate-
level netlist in the RTL Viewer and your technology-mapped netlist in the
Technology Map Viewer.

Schematic Symbols

The symbols for nodes in the schematic represent elements of your design
netlist. These elements include input and output ports, registers, logic
gates, Altera primitives, high-level operators, and hierarchical instances.

Figure 14–3 shows an example of an RTL Viewer schematic for a 3-bit
synchronous loadable counter. The code sample in the “Code Sample for
Counter Schematic Shown in Figure 14–3” section shows the Verilog HDL
code that was read into the Quartus II software to generate this schematic.
In this example, there are multiplexers and a bus of registers (see
Table 14–1) along with an ADDER operator (see Table 14–2) inferred by the
counting function in the HDL code.

The schematic displays wire connections between nodes with a thin black
line, and bus connections with a thick black line.

Figure 14–3. Example Schematic Diagram in the RTL Viewer

14–6 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Code Sample for Counter Schematic Shown in Figure 14–3
module counter (input [2:0] data, input clk, input load, output [2:0] result);

reg [2:0] result;
always @ (posedge clk)

if (load)
result <= data;

else
result <= result + 1;

endmodule

Figure 14–4 shows a portion of the corresponding Technology Map
Viewer schematic. In this schematic, you can see the LCELL (logic cell)
device-specific primitives that represent the counter function, labeled
with their post-synthesis node names. The hexadecimal number in
parentheses below each LCELL primitive represents the LUT Mask,
which is a hexadecimal representation of the look-up table (LUT) output.

Figure 14–4. Example Schematic Diagram in the Technology Map Viewer

Altera Corporation 14–7
June 2004 Preliminary

Introduction to the User Interface

Table 14–1 lists and describes the primitives and basic symbols that can be
displayed in the schematic view of the RTL Viewer and Technology Map
Viewer. Note that the logic gates and operator primitives only appear in
the RTL Viewer, while the logic in the Technology Map Viewer is
represented by atom primitives such as LCELL (logic cell).

Table 14–1. Symbols in the Schematic View (Part 1 of 3)

Symbol Description

I/O Ports An input, output, or bidirectional port in the current level of hierarchy. A device
input, output, or bidirectional pin when viewing the top-level hierarchy. The
symbol can represent a bus. Only one wire is connected the bidirectional
symbol, representing both the input and the output paths.
Input symbols appear on the left-most side of the schematic, while output and
bidirectional symbols appear on the right-most side of the schematic.

I/O Connectors An input or output connector, representing a net that comes from another page
of the same hierarchy (see “Page Partitioning in the Schematic View” on
page 14–14). To go to the page that contains the source or the destination, right-
click on the net and choose the page from the right-click pop-up menu (see
“Following Nets Between Schematic Pages” on page 14–15).

Hierarchy Port Connect A connector representing a port relationship between two different hierarchies.
A connector indicates that a path passes through a port connector in a different
level of hierarchy.

OR, AND, XOR Gates An OR, AND, or XOR gate primitive (the number of ports can vary). A small circle
(bubble symbol) on an input or output indicates that the port is inverted.

MUX A multiplexer (MUX) primitive with a selector port that selects between port 0 and
port 1. A MUX with more than two inputs is displayed as an operator (see
“Operator Symbols in the Schematic View” on page 14–9).

14–8 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

BUFFER A buffer primitive. The figure shows the tri-state buffer, with an inverted output
enable port. Other buffers without an enable port include LCELL, SOFT, CARRY,
and GLOBAL. The NOT gate and EXP expander buffers use this symbol without
an enable port and with an inverted output port.

CARRY_SUM A CARRY_SUM buffer primitive, where SI represents SUM IN, SO represents
SUM OUT, CI represents CARRY IN and CO represents the CARRY OUT port of
the buffer.

LATCH A latch primitive with D data input, EN enable input, and Q data output.

DFFE/
DFFEA

A DFFE (data flip-flop with enable) primitive, with the same ports as a latch and
a clock trigger, or a DFFEA (data flip-flop with enable and asynchronous load)
primitive, with additional asynchronous load and data signals. Preset and Clear
connections are also shown if these ports are connected.

Other Primitive Any primitive that does not fall into the categories above. These are low-level
nodes that cannot be expanded to any lower hierarchy. The symbol displays the
ports names, the primitive or operator type, and its name.
The figure shows a stratix_lcell WYSIWYG primitive, with DATAA to DATAD and
COMBOUT port connections. This type of LCELL primitive would be found in the
RTL Viewer if the source design was a VQM or EDIF netlist. The Technology
Map Viewer contains similar primitives for technology-specific atom primitives.

Table 14–1. Symbols in the Schematic View (Part 2 of 3)

Symbol Description

Altera Corporation 14–9
June 2004 Preliminary

Introduction to the User Interface

Table 14–2 lists and describes the additional higher-level operator
symbols used in the RTL Viewer schematic view.

Instance An instance in the design that does not correspond to a primitive or operator
(generally a user-defined hierarchy block), indicated by the double outline and
green coloring. The symbol displays the instance name. You can open the
schematic for the lower-level hierarchy by right-clicking and choosing the
appropriate command (see “Traversing the Design Hierarchy” on page 14–16).

Encrypted Instance A user-defined encrypted instance in the design, indicated by the double outline
and gray coloring. The symbol displays the instance name. You cannot open the
schematic for the lower-level hierarchy, because the source design is encrypted.

Table 14–1. Symbols in the Schematic View (Part 3 of 3)

Symbol Description

Table 14–2. Operator Symbols in the Schematic View (Part 1 of 3)

Symbol Description

A particular state of an finite state machine, with the
following ports:
DATAIN - input data that control the state
OUT1 - output of that state
sm_clk - Clock input feeding the state
sm_reset - Reset input feeding the state
sm_enable - Clock Enable signal feeding the state

An adder operator:
OUT = A + B

14–10 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

A multiplier operator:
OUT = A × B

A divider operator:
OUT = A / B

A left shift operator:
OUT = {A << COUNT}

A right shift operator:
OUT = {A >> COUNT}

A modulo operator:
OUT = (A % B)

Table 14–2. Operator Symbols in the Schematic View (Part 2 of 3)

Symbol Description

Altera Corporation 14–11
June 2004 Preliminary

Introduction to the User Interface

Selecting an Item in the Schematic View

To select items in the schematic view, ensure that the Selection Tool is
enabled in the viewer toolbar (this tool is enabled by default). Click on an
item (node or wire) in the schematic view to highlight it in red.

You can select multiple items by pressing the Shift or Ctrl key while
selecting with your mouse. You can also select all nodes in a region by
selecting a rectangular box area with your mouse cursor when the
Selection Tool is enabled. To select nodes in a box, move your mouse to
one corner or the area to be selected, click the mouse button, and drag the
mouse to the opposite corner of the box, then release the mouse button.
By default, creating a box like this will highlight and select all nodes in the

A less than comparator:
OUT = {A <= B : A < B}

A multiplexer:
OUT = DATA [SEL]
The data range size is 2sel range size

A multiplexer with one-hot select input (and more than
two input signals).

A binary number decoder:
OUT = (binary_number (IN) == x)
for x=0 to x=2(n+1) - 1

Table 14–2. Operator Symbols in the Schematic View (Part 3 of 3)

Symbol Description

14–12 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

area (instances, primitives, and pins), but not the nets. The Viewer
Options dialog box provides an option to select nets as well. Right-click
in the schematic and choose Viewer Options. In the Net Selection
section, turn on the Select entire net when segment is selected option.

The items selected in the schematic view are selected in the hierarchy list
automatically (see the “Hierarchy List” section). The list expands
automatically if required to show the selected entry (note that the list does
not collapse automatically when entries are not being used).

When you select a node or port in the schematic view, the node or port is
highlighted in red but none of the connecting nets are highlighted. When
you select a net (wire or bus) in the schematic view, all connected nets are
highlighted in red. The selected nets are highlighted across all hierarchy
levels and pages. Net selection can be useful when navigating a netlist,
because you see the net highlighted when you traverse between
hierarchy levels or pages.

In some cases, nets may be connected on other pages of the design, but
these nets are still highlighted on the current page when one of the nets is
selected. If this additional highlighting is confusing and you prefer that
these nets not be highlighted, the Viewer Options dialog box provides an
option so that the net is only highlighted on the current page. Right-click
in the schematic and choose Viewer Options. In the Net Selection
section, turn on the Limit selections to current page option.

Hierarchy List

The hierarchy list is displayed on the left-hand side of the viewer
window, and displays the entire netlist in a ‘tree’ format based on its
hierarchical levels. Using the hierarchy list, you can traverse through the
design hierarchy levels as desired and view the logic schematic for each.
You can also select nodes in the list to highlight in the schematic view.

For each module in the design hierarchy, the hierarchy list displays the
following entries:

■ Instances—Modules or instances in the design that can be expanded
to lower hierarchy levels.

■ Primitives—Low-level nodes that cannot be expanded to any lower
hierarchy level. These include registers and gates when using
Quartus II integrated synthesis, or logic cell atoms from a VQM or
EDIF when using third-party synthesis software.

Altera Corporation 14–13
June 2004 Preliminary

Navigating the Schematic View

■ Pins—The I/O ports in the current level of the hierarchy
● The pins are device I/O pins when viewing the top hierarchy

level and are I/O ports of the module when viewing the lower
levels.

● When a pin represents a bus or array of pins, you can expand the
pin entry in the list view to see the individual pin names.

■ Nets—The nets or wires that connect the nodes (instances,
primitives, and pins). When a net represents a bus or array of nets,
you can expand the net entry in the tree view to see the individual
net names

Click the + icon to expand any of the entries.

Selecting an Item in the Hierarchy List

When you click any instance, primitive, pin, or net names in the hierarchy
list, the RTL Viewer performs the following actions:

1. Displays the hierarchy and page that contain the selected item in the
schematic view if it is not currently displayed.

2. Centers the current schematic page to include the selected item, if
needed.

3. Highlights the selected item in red in the schematic view.

You can select multiple items by pressing the Shift or Ctrl key while
selecting with your mouse.

Navigating the
Schematic View

This section describes various ways of navigating through the pages and
hierarchy levels in the schematic view.

Zooming & Magnification

You can control the magnification of your schematic through the View
menu, the Zoom Tool in the toolbar, or the Ctrl key and mouse wheel
button, as described in this section.

The Fit in Window, Fit Selection in Window, Zoom In, Zoom Out, and
Zoom commands are available from the View menu, by right-clicking in
the schematic view and choosing Zoom, or from the Zoom toolbar which
you can enable on the Toolbars tab of the Customize dialog box (Tools
menu). By default, the viewer displays most pages sized to fit in the
window. If the schematic page is very large, the schematics may be
displayed at the default normal size. Choose Zoom In to see less of the
image in a larger size, and choose Zoom Out to see more of the image

14–14 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

(when the entire image is not displayed) in a smaller size. The Zoom
command allows you to specify a magnification percentage (where 100%
is considered the normal size for the schematic symbols). The Fit
Selection in Window command zooms into the selected nodes in a
schematic. Use the Selection Tool to select one or more nodes (instances,
primitives, pins, nets), then choose Fit Selection in Window to enlarge
the area covered by those selection nodes. This feature is helpful when
you have located a node of interest in a large schematic. Once a node is
selected, you can easily zoom in to view that particular node.

You can also use the Zoom Tool on the viewer toolbar to control
magnification in the schematic view. When you enable the Zoom Tool in
the toolbar, clicking on the schematic zooms in and centers on the location
you clicked, and right-clicking on the schematic (or pressing the Shift key
and clicking) zooms out and centers on the location you clicked. When
the Zoom Tool is enabled, you may also zoom in to a certain portion of
the schematic by selecting a rectangular box area with your mouse cursor.
To select a box, move your mouse to one corner or the section to be
enlarged, click the mouse button, and drag the mouse to the opposite
corner of the box, then release the mouse button. The schematic will be
enlarged to show the area you selected.

In addition, if your mouse has a wheel button, you can press the Ctrl key
and rotate the wheel up and down to zoom in and out. The zoom focuses
on the center of the schematic view if nothing in the schematic is selected.
If something in the view is selected, the zoom centers the view on the
selected items.

Page Partitioning in the Schematic View

For large design hierarchies, the RTL Viewer and Technology Map Viewer
partition your netlist into multiple pages in the schematic view. You can
control how much of the design you would like to see on each page under
Display Settings on the RTL/Technology Map Viewer tab of the Options
dialog box (Tools menu).

The Nodes per page option specifies the number of nodes per partitioned
page. The default value is 50 nodes, and the range is 1 to 1000. The Ports
per page option specifies the number of ports (or pins) per partitioned
page. The default value is 1000 ports, and the range is 1 to 2000. The
viewers partition your design into a new page if either the node number
or the port number exceeds the limit you have specified. (You may
occasionally see the number of ports exceed the limit, depending on the
configuration of nodes on the page.)

Altera Corporation 14–15
June 2004 Preliminary

Navigating the Schematic View

When a hierarchy level is partitioned into multiple pages, the title bar for
the viewer window (or for the Quartus II software when the viewer
window is maximized) indicates which page is displayed and how many
total pages exist for this level of hierarchy (i.e., Page <current page
number> of <total number of pages>). Figure 14–5 shows an example.

Figure 14–5. RTL Viewer Title Bar Indicating Page Number Information

Moving Between Schematic Pages

You can move to another schematic page with the Previous Page and
Next Page options (View menu), or by clicking Previous Page and Next
Page in the viewer toolbar.

You can go to a particular page of the schematic by choosing Go To (Edit
menu), or by right-clicking in the schematic view, then choosing the
Go To command and selecting the page number in the Page list.

Following Nets Between Schematic Pages

Input connectors and output connectors are used to represent nodes that
connect between pages of the same hierarchy. Right-clicking on a
connector provides a menu of commands that you can use to trace the net
through pages of the hierarchy.

1 When the viewer opens a new page (after you right-click and
follow a connector port), the page is centered on the particular
source or destination net with the same zoom factor as the
previous page. However, if you wish to trace a specific net to the
new page of the hierarchy, Altera recommends that you select
the desired net to highlight in red before you right-click to
traverse between pages of the hierarchy.

Input Connectors
Figure 14–6 shows an example of the menu that appears when you
right-click an input connector. The From command opens the page that
contains the source of the signal. The Related commands, if applicable,
open the specified page that contains another connection fed by the same
source.

14–16 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Figure 14–6. Input Connector Right-Click Menu

Output Connectors
Figure 14–7 shows an example of
the menu that appears when you right-click an output connector. The To
command opens the specified page that contains a destination of the
signal.

Figure 14–7. Output Connector Right-Click Menu

Traversing the Design Hierarchy

You can open different levels of the hierarchy in the schematic view using
the hierarchy list (as described in “Hierarchy List” on page 14–12), or by
using the Hierarchy Up and Hierarchy Down commands in the
schematic view described in this section.

Use the Hierarchy Down command to go down into or expand an
instance's hierarchy and open a lower-level schematic that shows the
internal logic of the instance. Use the Hierarchy Up command to go up in
hierarchy or collapse a lower-level hierarchy and open the parent higher-
level hierarchy. When the Selection Tool is enabled, the appropriate
option is available when your mouse cursor is located over an area of the
schematic view that has a corresponding lower- or higher-level hierarchy.

Altera Corporation 14–17
June 2004 Preliminary

Filtering in the Schematic View

The mouse pointer changes as it hovers over different areas of the
schematic to indicate from where in the schematic you can move down or
up or both in the hierarchy (as shown in Figure 14–8). To open the next
hierarchy level, right-click in that area of the schematic and select
Hierarchy Down or Hierarchy Up, as appropriate, or double-click in that
area of the schematic.

Figure 14–8. Mouse Pointers Indicating that Hierarchy Down, Hierarchy Up, or
Both Down and Up Are Available

Back & Forward Page Viewing

After changing the page view, you can go back to the previous view with
the Back command (View menu), or by clicking Back in the viewer
toolbar. You can return to the page view seen before going Back with the
Forward command (View menu), or by clicking Forward in the viewer
toolbar. You can only go Forward if you have not made any changes to the
view since going Back.

1 Back and Forward are intended only for switching between
page views; they cannot be used to undo an action such as a
selection of a node.

Go to Net Driver

To locate the source of a particular net in the schematic view, select the net
to highlight it, right-click on it, and choose Go to Net Driver. The
schematic view opens the correct page of the schematic if needed, and
adjusts the centering of the page so that you can see the net source. The
schematic shows the default page for the net driver (i.e., does not keep
any filtering results).

Filtering in the
Schematic View

Filtering allows you to filter out nodes and nets in your netlist to view
only a logic path of interest related to one or more specific nodes or nets.

You can filter your netlist by selecting the nodes, ports of a node, or nets
that are part of the path you want to see. Right-click on a node, port, or
net, then choose Filter and choose the appropriate filter command, as

14–18 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

described below. The viewer generates a new page showing the netlist
that remains after filtering. You can go back to the netlist page before it
was filtered using the Back command (described in “Back & Forward
Page Viewing”).

1 When viewing a filtered netlist, if you click an item in the
hierarchy list, the schematic view displays an unfiltered view of
the appropriate hierarchy level. You cannot use the hierarchy list
to select items or navigate in a filtered netlist.

The viewers offer the following filtering commands: Sources,
Destinations, Sources & Destinations, Between Selected Nodes, and
Selected Nodes and Nets.

■ Sources—This command filters to the source of the selected node,
port, or net. If a node is selected, the filtered page shows all the
sources of this node's input ports. If an input port is selected, the
filtered page shows only the input source nodes that feed this port.
(Note that if you select an output port of a node and filter by source,
the filtered page shows only the selected node.) If a net is selected,
the filtered page shows the sources that feed the net.

■ Destinations—This command filters to all the destinations of the
selected node or port. If a node is selected, the filtered page shows all
the destination of this node’s output ports. If an output port is
selected, the filtered page shows only the fan-out destination nodes
fed by this port. (Note that if you select an input port of a node and
filter by destination, the filtered page shows only the selected node.)
If a net is selected, the filtered page shows the destinations fed by the
net.

■ Sources & Destinations—This is a combination of the Sources
filtering command and the Destinations filtering command, where
the filtered page shows both the sources and the selected node.

■ Between Selected Nodes—This command shows the nodes in the
path between two or more selected nodes. (For this option, selecting
a port of a node is the same as selecting the node.)

■ Selected Nodes & Nets—This command creates a filtered page that
shows only the selected node(s) and, if applicable, the connections
between those nodes. If a net is selected, the filtered page shows the
immediate sources and destinations of the selected net.

The filtering commands apply to nodes in the same netlist hierarchy by
default. The RTL/Technology Map Viewer Options dialog box provides
an option to filter through levels of hierarchy. Right-click in the schematic
and choose Viewer Options. In the Filtering section, turn on the Filter
across hierarchy option. When the filtered path passes through a level of
hierarchy, a diamond shape symbol appears in the schematic,
representing a port relationship between two different hierarchies.

Altera Corporation 14–19
June 2004 Preliminary

Filtering in the Schematic View

For all the filtering commands, the viewer stops tracing through the
netlist to obtain the filtered netlist when it reaches one of the following:

■ A pin
■ A specified number of filtering levels (counting from the selected

node or port; 10 by default)
● Specify the Number of filtering levels in the Filtering section of

the RTL/Technology Map Viewer Options dialog box. Right-
click in the schematic and choose to open the dialog box. The
default value is 10 to ensure optimal processing time when
performing filtering, but you can specify a value from 1 to 100.

■ A register (optional; on by default)
● Turn the Stop filtering at register option on or off in the

Filtering section of the RTL/Technology Map Viewer Options
dialog box. Right-click in the schematic and choose Viewer
Options to open the dialog box.

Examples of Filtered Netlists

Figure 14–9 shows an example of the Sources, Destinations, and
Sources & Destinations commands for the inst4 node highlighted in
the schematic. Figure 14–10 shows an example of the Between Selected
Nodes command between the inst2 and inst3 nodes highlighted in
the schematic. The nodes in the appropriate box are shown in the filtered
page when you choose the corresponding command.

Figure 14–9. Example Schematic with “Sources,” “Destinations,” & “Sources & Destinations” Filtering for
inst4

Sources Destinations

Sources & Destinations

14–20 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Figure 14–10. Example Schematic with “Between Selected Nodes” Filtering Between inst2 & inst3

Figures 14–11 and 14–12 show an example of the Selected Nodes & Nets
command. Figure 14–11 shows several nodes highlighted in red in a
schematic. Figure 14–12 shows the new schematic that is created after the
Selected Nodes & Nets command has been applied.

Figure 14–11. Example Schematic with Nodes Selected Before Filtering with Selected Nodes & Nets
Command

Figure 14–12. Example Schematic from Figure 14–11 after Filtering with
Selected Nodes & Nets Command

Between Selected Nodes

Altera Corporation 14–21
June 2004 Preliminary

Filtering in the Schematic View

Expanding a Filtered Netlist

After a netlist is filtered, there may be unconnected ports that are not part
of the main path through the netlist. The two expand features, immediate
expansion and the Expand command, allow you to add the fan-out or
fan-in signals of unconnected ports to the schematic display of a filtered
netlist.

You can immediately expand any unconnected port by double-clicking
that port in the filtered schematic. When you do so, one level of logic is
expanded.

If you would like to expand more than one level of logic, right-click the
unconnected port and choose the Expand command. This command
expands logic from the selected port by the amount specified in the
Viewer Options. You can set these options by right-clicking in the
schematic view, and choosing Viewer Options. In the Expansion section,
set the Number of expansion levels option to specify the number of
levels to expand (the default value is 10 and the range is 1 to 100). You can
also set the Stop expanding at register option (which is on by default) to
specify whether to stop netlist expansion when a register is reached.

You can select multiple nodes to expand when using the Expand
command. Note that if you select ports that are located on multiple
schematic pages, only the ports on the currently viewed page will be
shown in the expanded schematic.

The Expand feature works across hierarchical boundaries if the filtered
page that contains the unconnected port was generated with the Filter
across hierarchy option turned on (See “Filtering in the Schematic View”
on page 14–17 for details on this option). When viewing timing paths in
the Technology Map Viewer, the Expand command always works across
hierarchical boundaries because filtering across hierarchy is turned on by
default for these schematics.

Reducing a Filtered Netlist

In some cases, you may want to remove logic from a filtered schematic to
make the schematic view easier to read or to avoid distraction from logic
that you don't need to see on the schematic.

To reduce the filtered schematic, right-click the node or nodes you want
to remove and choose the Reduce command.

14–22 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Probing to
Source Design
File & Other
Quartus II
Features

The RTL and Technology Map Viewers provide the ability to cross-probe
from the viewer to the source design file or various other features within
the Quartus II software. You can select a node or nodes of interest in the
viewer and locate the corresponding node(s) in one of the applicable
Quartus II features, allowing you to view and make changes or
assignments in the appropriate editor or floorplan.

Locate by right-clicking the node (or nodes) of interest in the schematic
and choosing the appropriate locate command, Locate in Assignment
Editor, Locate in Design File, Locate in Timing Closure Floorplan,
Locate in Last Compilation Floorplan, Locate in Chip Editor, or Locate
in Resource Property Editor.

The options available for locating depend on the type of node and
whether it exists after place and route. If the command is enabled in the
right button pop-up menu, then it is available for the selected node. The
Locate in Assignment Editor command is available for all nodes, but
assignments may be ignored during place and route if they are applied to
nodes that do not exist after synthesis.

The viewer opens another window in the Quartus II software for the
appropriate editor or floorplan and highlights the source of the selected
node in that window. You can switch back to the viewer by selecting it in
the Window menu or by closing, minimizing, or moving the editor or
floorplan window as needed.

Viewing a
Timing Path in
the Technology
Map Viewer

You can view a timing path from the Timing Analyzer in the Technology
Map Viewer. This provides a visual representation of the information that
can be obtained by listing the paths from the Timing Analyzer window.

To take advantage of this feature, you must first successfully complete a
full compilation of your design, including the Timing Analyzer stage. The
Timing Analyzer report section of the Compilation Report (Processing
menu) contains the timing results for your design. You can select any of
the detailed reports for Clock Setup:<clock name>, tsu, tco, tpd, etc. The
timing information is listed in a table format on the right-hand side of the
Compilation Report, and each row of this table represents a timing path
in the design. To view any particular timing path in the Technology Map
Viewer, right-click on the appropriate row in the table and choose Locate
in Technology Map Viewer. After you choose this command, the
Technology Map Viewer window is opened, or brought into the
foreground if already open. Note that the first time the window is opened
after a compilation, the Preprocessor stage runs before the window can be
opened.

Altera Corporation 14–23
June 2004 Preliminary

Viewing a Timing Path in the Technology Map Viewer

The schematic page that is displayed shows the nodes along the timing
path with a summary of the total delay as well as timing data
representing the interconnect (IC) delay and cell delay associated with
each node. The delay for each node is in the following format: <post-
synthesis node name> (<IC delay> ns, <cell delay> ns).

Figure 14–13 shows a portion of a timing path represented in the
Technology Map Viewer. The total delay for the entire path that goes
through eight levels of logic in this example (only two of which are shown
in the figure) is 6.429 ns. The cell delay through the first LCELL primitive
is 0.230 ns (there is no interconnect or IC delay for this first node in the
path). The second LCELL primitive has an interconnect delay of 0.599 ns
representing the path between the first and second LCELL, and a cell
delay of 0.366 ns through the second LCELL. When the timing path passes
through a level of hierarchy, a diamond shape symbol appears in the
schematic, representing a port relationship between two different
hierarchies.

Figure 14–13. Sample Timing Path Schematic

14–24 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Other Features
in the Schematic
Viewer

This section describes other features in the schematic view to enhance
usability and help you analyze your design.

Tooltips

When hovering or holding the mouse pointer over various parts of the
schematic, tooltips are displayed. Tooltips contain useful information
about nodes (instances, primitives, and pins), nets, input ports and
output ports.

Table 14–3 lists the information contained in the tooltips for each type of
node:

Table 14–3. Tooltips Information

Example Tooltips Description & Tooltip Format

Instance
Format: <instance name>, <instance type>

Primitive
Format:<primitive name>, <primitive type>

Pin
Format: <pin name>, <pin type>

Connector
Format: <connector name>

Net
Format: <net name>, Fanout = <number of fanout signals>

Altera Corporation 14–25
June 2004 Preliminary

Other Features in the Schematic Viewer

You can disable the appearance of tooltips or control the time that the
tootips are displayed in the Tooltip settings on the RTL/Technology Map
Viewer tab of the Options dialog box (Tools menu).

Output port
Format: Fanout = <number of fanout signals>

Input port

The information displayed depends on the type of the
source net. The examples of the tooltips shown represent
the following type of source net:

(1) Single net

(2) Individual nets, part of the same bus net

(3) Combination of different bus nets

(4) Constant inputs

(5) Combination of single net and constant input

(6) Bus net

Source from refers to the source net name that
connects to the input port.

<Destination Index> refers to the bit(s) at the
destination input port to which the source net is connected
(not applicable for single nets).

Table 14–3. Tooltips Information

Example Tooltips Description & Tooltip Format

(1)

(2)

(3)

(4)

(5)

(6)

14–26 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

The Show names in tooltip for option specifies the number of seconds
you want to display the names of assigned nodes and pins in a tooltip
when you place the pointer over the assigned cells and pins. You can type
or select a number. Selecting Unlimited causes the tooltip to display
indefinitely, as long as the pointer remains over the cell or pin. Selecting
0 turns off tooltips. The default value is 5.

The Delay showing tooltip for option specifies the number of seconds
you must hold the mouse pointer over assigned cells and pins before a
tooltip appears displaying the names of the assigned nodes and pins. You
can type or select a number. Selecting 0 causes the tooltip to appear
immediately when the pointer is over an assigned cell or pin. Selecting
Unlimited prevents tooltips from displaying. The default value is 1.

Displaying Net Names

If you would like to see names of all the nets displayed in your schematic,
turn on the Show Net Name option under Display Settings in the
RTL/Technology Map Viewer page of the Options dialog box
(Assignments menu). This option is disabled by default. If you turn on the
option, the schematic view refreshes automatically to display the net
names.

Full Screen View

Set the viewer window to fill the whole screen with Full Screen (View
menu), by clicking Full Screen in the viewer toolbar, or by pressing the
keyboard shortcut Ctrl+Alt+Space (when you use the keyboard shortcut,
return to the standard screen view by pressing Ctrl+Alt+Space again).

Find Command

Open the Find dialog box by selecting Find (View menu) and clicking
Find in the viewer toolbar, or by right-clicking in the schematic view and
choosing Find. The Find dialog box, as shown in Figure 14–14, is the
standard search box used throughout the Quartus II software.

Altera Corporation 14–27
June 2004 Preliminary

Other Features in the Schematic Viewer

Figure 14–14. Find Dialog Box

For the search direction in the Search list, Up searches from the current
hierarchy to the upper (parent) hierarchies, and Down searches from the
current hierarchy to the lower (children) hierarchies.

When you click Find, the viewer selects and highlights the first node
found, opens the appropriate page of the schematic if necessary, and
centers the page so that the node can be seen in the viewable area (but
does not zoom in to the node). To find the next node, click Find Next.

f See the Quartus II Help for more details on using the Find dialog box.

Exporting Schematic as JPEG or BMP Image & Copying to
Clipboard

You can export the RTL Viewer or Technology Map Viewer schematic
view in a JPEG File Interchange Format (.jpg) or Bitmap (.bmp) file
format, allowing you to include the schematic in project documentation
or share it with other project members. Export the schematic view with
the Export command (File menu). At the Export dialog box, enter a file
name and location and select the desired file type, either JPEG or BMP.
The default file name is based on the current instance name, or for pages
that involve filtering, expanding, or reducing operations, the default
name is “Filter<number of pages exported>”.

You can also copy the schematic to the operating system clipboard using
the Copy command (Edit menu). You can then paste the schematic into
drawing software tools such as Microsoft Paint or Adobe PhotoShop and

14–28 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

save it in another file format such as Graphic Interchange Format (.gif), or
paste the schematic into a word processing tool such as Microsoft Word
when creating documentation.

1 In some cases, the schematic view cannot be exported or copied
because of limitations in the operating system storage size. In
these cases, an error message is generated. To export or copy a
schematic that reaches the storage restriction, first split the
design into multiple pages (see “Page Partitioning in the
Schematic View” on page 14–14 to control how much of your
design is shown on each schematic page).

Printing

You can print your schematic page by choosing Print (File menu). You can
print each schematic page onto one full page, or you may print the
highlighted parts of your schematic onto one page with the Selected
option. See “Page Partitioning in the Schematic View” on page 14–14 to
control how much of your design is shown on each schematic page.

1 Note that it may be useful to choose Page Setup (File menu) first
and change the page orientation from Portrait to Landscape (or
vice versa). You can also adjust the page margins in the Page
Setup dialog box.

Using the RTL &
Technology Map
Viewers to
Analyze Design
Problems

You can use the RTL Viewer and Technology Map Viewer to analyze your
design and view how it was interpreted by the Quartus II software. This
section provides simple examples of how you can use the RTL and
Technology Map Viewers’ capabilities to help analyze real problems you
may encounter in the design process.

The RTL Viewer is a good way to view your initial synthesis results to
determine whether you have created the desired logic and that it has been
implemented correctly in the software. You can use the RTL Viewer to do
a visual check of your design before performing a simulation or any other
form of verification. Catching design errors at this early stage of the
design process can save you valuable time.

If you see unexpected behavior in a part of your design during
verification, you can use the RTL Viewer to trace through the initial
synthesis netlist and ensure that both the connections and the logic in
your design are correct. Viewing the design visually can help you find
and analyze the source of problems. If your design looks correct in the
RTL Viewer, you know to focus on later stages of the design process for

your analysis, such as optimization during synthesis or place and route,
timing problems due to placement and routing, or problems with the
verification flow itself.

If you are seeing unexpected synthesis or physical synthesis results, you
can use the Technology Map Viewer for a visual representation of the
synthesis results (by running the viewer after performing Analysis &
Synthesis) or the physical synthesis results (by running the viewer after
compiling in the Fitter).

In addition, you can use the RTL Viewer or Technology Map Viewer to
locate the source of a particular signal, which can be useful when
debugging your design. Use the navigation techniques presented in this
chapter to search easily through the design. You can trace back from a
point of interest to find the source of the signal to ensure the connections
are as expected.

You can also use the Technology Map Viewer to help you locate post-
synthesis nodes of interest in your netlist when making Quartus II
assignments to optimize your design. This functionality can be useful, for
example, when making a multicycle clock timing assignment between
two registers in your design. It can sometimes be difficult to determine
the name of the register that was assigned during synthesis. In the
Technology Map Viewer, browse to the desired level of hierarchy using
the hierarchy list. Then use the navigation techniques described in this
chapter to locate the node. You can start at an I/O port and trace forward
or backwards through the design and through levels of hierarchy to find
the nodes of interest, or you may be able to locate the register simply by
inspecting the schematic.

The RTL Viewer and Technology Map Viewer can be used in many other
ways throughout your design, debugging, and optimization stages.
Viewing the design netlist is a powerful way of analyzing design
problems.

Conclusion The Quartus II RTL Viewer and Technology Map Viewer allow you to
explore and analyze your initial synthesis netlist, post-synthesis netlist, or
post-fitter and physical synthesis netlist. The viewers provide a number
of features in the hierarchy list and schematic view to help you trace
through your netlist and find specific hierarchies or nodes of interest.
These capabilities can help you during your design's debugging,
optimization, or constraint entry process.

14–30 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 1

Altera Corporation Index–1

Index

A
Accurate Logic Utilization 11–11
Adaptive Logic Modules

Architectures with Six-Input LUTs 7–30
Adder

Subtractors 7–6
Trees 7–28

altera_chip_pin_lc 9–12
Other Devices 9–12
VHDL for ACEX 1K & FLEX 10KE 9–12

altera_implement_in_eab 9–13
altera_implement_in_esb 9–13
altera_io_opendrain 9–13
altera_io_powerup 9–13
Analyze Design Problems

RTL 14–28
Architecture-Specific Features 9–17, 11–14,

13–5
Assigning a Pin 8–31
Assignment Editor 2–18
Assignments

Making 2–17
Asynchronous

Clear 7–5
Design

Hazards 6–2
Avalon Switch Fabric 3–4

B
Back & Forward Page Viewing 14–17
Binary Multiplexer Design 7–45
Black Box

Example for Top-Level File A.v 9–38
in Verilog HDL 9–38
in VHDL 9–38, 10–26
Methodology 9–19, 11–16
Modules

Including Design Files 10–8
Top-Level File A.vhd 9–39
Top-Level File Verilog 10–25

Top-Level File VHDL 10–26
Verilog HDL 10–25, 11–27
VHDL 11–28

BLIS
LogicLock Feature 12–4
Using Shell Commands 12–9

Block Root 12–3
Removing 12–9

Block-Based
LogicLock

Methodology 1–4
Block-Level Incremental Synthesis 12–2

C
CASE

Assignment
Default or Others 7–40

Statement
Degenerate Multiplexer 7–44
Simple Binary-Encoded 7–39
Simple One-Hot-Encoded 7–39

Chip Pin 8–27
Clear Box Methodology 9–18, 11–15
Clock

Clock & Register-Control
Architectural Features 6–14

Clock-Gating
Recommended Method 6–11

Divided 6–8
Frequencies 9–7
Gated 6–10
Internally-Generated 6–7
Multiple Clock

Domains 9–7
Multiplexed 6–9
Network Resources 6–14
Schemes 6–7

Coding Recommendations 7–31
Coding

Device-Specific Recommendations 7–25

Index–2 Altera Corporation

Quartus II Handbook, Volume 1

Combinational
Logic Structures 6–4
Loops 6–4
Node/Implement as Output of Logic

Cell 8–10
Command Prompt 1–8
Compile

Automatically Defining Points from
GUI 9–32

Defining Points Using Tcl or SDC 9–31
FPGA Design 4–6
Manually Defining Points from GUI 9–31
Set Points 9–30
Time 5–2

Compiler
FPGA Compiler II 12–3
FPGA Compiler II Design Block 12–2

Compiler Tool 2–8
Compiling 11–5
Connectors

Input 14–15
Output 14–16

Constraints
LAB Assignments 4–13
Location 4–13
Placement 4–12
Timing 13–13

Controlling Fan-Out on Data Nets 11–10
Copying to Clipboard 14–27
Counters

Ripple 6–9
Counters 7–5
Create Constraint Files 9–30
Cross-Probing 9–15

Enabling 9–15
Synplify

Software 9–16

D
DC FPGA

Environment Set Up for Altera Device
Families 13–3

Reading Design Files 13–9
dedicated_mult 11–21
Defaults

Implicit 7–41

Degenerate Binary Multiplexer
Recoder Design 7–45

Delay Chains 6–5
Design

Compiling 11–6
Creating 12–6
Entry 2–14
Flow 9–1, 10–1, 11–1
Hierarchy

12–1
Optimization 4–10
Recommended Techniques 6–3
Reporting Information 13–16
Typical Flow 2–2

Design Assistant
Interface 4–15
Settings 4–15

Design Flow 2–13
Flattened versus Hierarchical Block-

Based 1–1
One Step Process 4–6
RTL 14–3
Using DC FPGA 13–2

Design Partitioning
Hierarchical 6–12

Designs
Block-Based 1–2
Exporting 13–18
Targeting

HardCopy APEX Devices 4–14
Device Support 2–3
DSP

Block
Controlling Inference 10–12, 11–20

Blocks
Controlling the Inferring 9–24
Guidelines 10–17

Controlling Block Inference 11–17

E
ECO Support 5–2

HDL Level 5–3
Netlist Level 5–5

EDA
Timing Simulation 2–28

EDIF

Altera Corporation Index–3

Creating 10–20, 10–22, 10–27
Creating a Project for Multiple Files 11–29
Creating Project Including LogicLock

Regions 11–25
Generating Design with Multiple Files Using

Black Boxes 11–26
Generating Multiple Files 10–20, 10–24
Manually Creating Multiple Files Using Black

Boxes 11–26
Embedded Software Applications 3–4
Encoding Style 10–5

F
Filtered Netlist

14–19
Expanding 14–21
Reducing 14–21

Find Command 14–26
Flip-Flops 7–25
FPGA Project

Close 4–6
FSM

Explorer in Synplify Pro 9–10
Finite State Machine (FSM) Compiler 9–9

Full Screen View 14–26
Functional Simulation 2–20

G
General Optimization

Attributes 9–10
Options 9–10

Generation
Automatic 3–4

Global Attribute 10–13
Go to Net Driver 14–17

H
HardCopy

APEX 20K Power Calculator 4–17
Design Flow 4–4
Design Guidelines

Checking Designs 4–15
Devices

Designing 4–6

Targeting Designs 4–6
Floorplans 4–10
Generating Design Database 4–16
Open Project 4–6
Stratix Device

Compile 4–6
Stratix Devices 4–3
Stratix Power Calculator 4–18

HDL
Options in Source Code 8–23
Read Comments 8–7

Hierarchy
Considerations 12–5
Design Considerations 10–19, 11–23
Hierarchical Boundary

Preserve 8–15
List

14–12
Selecting an Item 14–13

Preserving 9–11

I
I/O

Assigning
Registers 11–9

Disabling I/O
Pad Insertion 11–9

Flip-Flops 8–23
Input/Output Delays 9–8
Preventing Precision RTL Synthesis from

Adding I/O Pad On Individual
Pin 11–10

Preventing Precision RTL Synthesis from
Adding I/O Pads 11–10

Registers
Mapping 10–7

Setting
Assigning

Pin Numbers 11–8
IF Statement

Default Conditions Explicitly
Specified 7–42

Implicit Defaults 7–42
Implying Priority 7–40

Incremental Fitting
Performing 1–8

Index–4 Altera Corporation

Quartus II Handbook, Volume 1

Inferring
Multiplier

DSP
Functions 10–11

Quartus II
Megafunctions from HDL Code 11–17
Memory Elements 10–10

RAM 10–10
ROM 10–11

L
Labeling Block Roots 12–7
Latches

6–7
Latches

7–31
Logic

Cells
Remove Redundant 8–20

Elements
Architectures with Four-Input

LUTs 7–29
Remove Duplicate 8–19

LogicLock
Apply Attributes 9–33
Assignments 4–14
Block-Based Design 11–23
Creating Design with Separate

Blocks 11–24, 11–25
HARDCOPY_FPGA_PROTOTYPE .qsf

File 4–14
Methodology

Block-Based Design 9–28
Block-based Design 10–18

Migrated HardCopy Stratix .qsf File 4–14
Supported Constraints Example 4–14

LogicLock Option 10–20
LogicLock_Incremental.tcl

Modifications Required for Script File 10–29
LogicLock_Interface.tcl

Incremental Synthesis for Script File 10–30
LPM Functions 10–9

M
Magnification 14–13

Maintaining 12–6
MAX+PLUS II

Converting Existing Design 2–10
Converting Graphic Design Files 2–11
Design Conversion 2–10
Importing Assignments 2–12
Look & Feel 2–6, 2–7

Maximum Fan
Out 8–12, 9–10

Megafunction
Inference Control 8–20

Megafunctions 11–14, 13–5
Instantiating Using Port & Parameter 7–4

Module
Level Attributes 10–13
Pool 3–7
Table 3–8

Modules Constraint Table
Opening Block Roots 12–7

Multiple Files 10–20, 10–27
Multiple Files Including LogicLock

Regions 10–22
Multiplexers 7–38

Binary 7–38
Buses 7–46
Degenerate 7–43
Priority 7–38, 7–39
Restructure 8–16
Restructuring Option 7–47
Selector 7–39

Multiplier
9–23, 11–17

Accumulators 10–12, 11–19
Adders 10–12, 11–19
Simple 10–11

Multiply Accumulators
Multiply-Adders 8–21
Multiply-Adders 7–10

Multivibrators 6–5

N
NativeLink Integration

Exporting Designs 10–8, 11–12
Exporting Quartus II Designs 9–13

Net Names
Displaying 14–26

Altera Corporation Index–5

Netlist Files
Design Partitioning 1–6
Exporting Block-Level 12–7
Generating 10–8

Netlist Optimization
Prevent Further 1–9

Nets
Preserving 9–10

Node Finder 2–4
Node-Level Netlist

Save into Persistent Source File 1–8

O
Optimization Strategies 10–4
Optimization Technique 8–13
Options

HDL Option 3–11
Other Features 14–22

P
Parallel Case 8–9
Passing Constraints Via Scripts 10–8
Paths

False 9–8
Multi-Cycle Paths 9–8

Performance Estimation 4–10
Peripherals

User-Defined 3–3
Place & Route 2–22, 13–21
Power Calculators

FPGAs 4–20
Power Estimation 2–28, 4–17
Power Tab

Clock
10–4

Global 10–4
Input & Output 10–5

Power-Up
Don’t Care 8–19
Level 8–18

preserve_signal 11–21
Printing 14–28
Project

Creating 11–5
Creating New 2–14
Migrate Compiled 4–6

Project Navigator 2–4
Pulse Generators 6–5

Q
Quartus II

Attributes 8–25, 9–11
Integration 10–9
Megafunctions 9–17, 10–9

Inferring from HDL Code
9–23, 13–8

Inferring from HDL Code
7–4

Instantiating 10–9
Instantiating and Inferring 7–1
Instantiating in HDL Code 7–2
Instantiating Using MegaWizard Plug-In

Manager
7–2, 11–15

Instantiating Using MegaWizard Plug-In
Manager

9–18
MegaWizard

Generated Variation Wrapper Files
Black Box Methodology 13–7
Reading 13–7

Generated Verilog HDL Files
Black Box Megafunction

Instantiation 13–7
Generated VHDL Files

Black-Box Megafunction
Instantiation 13–8

Plug-In Manager
Instantiating Quartus II

Megafunctions 13–7
Using Generated Files for Certain LPM

Functions in the Synplify
LPM 9–19

Using Generated Verilog HDL Files for
Black-Box Megafunction
Instantiation 9–20

Using Generated Verilog HDL Files for
Clear Box Megafunction
Instantiation 9–18

Using Generated VHDL Files for Black
Box Megafunction
Instantiation 9–21

Probing to Source Design File 14–22
Running the Software Manually 11–14

Index–6 Altera Corporation

Quartus II Handbook, Volume 1

Synthesis
2–20

Attributes 8–5
Directives 8–4
Flow

Incremental 10–29
Options 8–3, 8–29
Results

Saving 13–17
Quartus II Synthesis 12–3
Quartus II 13–2

Command Reference for
MAX+PLUS II 2–32

GUI Overview 2–4
Logic Options 8–6
Simulator Tool 2–26
Synthesis

Options 8–6
Quick Menu Reference 2–30

R
RAM 8–22
RAM Style 8–22
Register Control Signals 6–15
Register Packing 9–11
Registers

Remove Duplicate 8–20
Secondary Control Signals 7–25

Reports 4–15
Reset Resources 6–14
Resource Balancing 9–23
Resource Sharing 10–6
ROM 8–22

Inferring 9–27
Routing

Preserving 1–6
RTL Viewer 14–1

S
Sample Verilog-1995

Code with a ramstyle Attribute 8–22
Schematic

Exporting as JPEG or BMP 14–27
Following Nets Between Pages 14–15
Moving Between Pages 14–15

Navigating View 14–13
Other Features in Viewer 14–24
Page Partitioning in View 14–14
Selecting Item in View 14–11
Symbols 14–5
View 14–5

Schematic View
Filtering 14–17

Scripting Support 1–8, 8–29
Setting

Constraints 11–6
Mapping Constraints 11–7
Timing Constraints 11–7

Shift Registers 8–21
Shift Registers 7–21
Signal

Attributes for Controlling DSP Block Infer-
ence for VHDL Code 10–17

Attributes for Controlling DSP Block Infer-
ence in Verilog HDL Code 10–16

Level Attributes 10–15
Signal Level Attribute 9–24
Signals

Tri-State Signal in Verilog HDL 7–28
Tri-State Signal in VHDL 7–28

Signals
Tri-State Signal 7–27

Simulating
ModelSim 3–12
Other Simulators 3–12

Simulation
Model & Testbench 3–6
 Option 3–12

Single Precision Project 11–25
SOPC Builder

Ready Functions 3–3
Using 3–6

Source
Changing Within a Block 12–8

State Machine
Processing 8–14

State Machines 7–32
Summary 4–15
Synchronous

Clock Enables 6–11
Design Fundamentals 6–2
FPGA Design Practices 6–1

Altera Corporation Index–7

Synplify
Optimization Strategies 9–6
Pro

Implementations in 9–6
Retiming 9–11

Software
Attributes for Black-Boxing 9–22
Launch 9–14
Running Quartus II from Within 9–14

Synthesis 13–13
Synthesizing the Design & Evaluating the

Results 11–11
System

Contents Page 3–7
Dependency Pages 3–12

System Generation Page 3–9
System Generation 3–13
System Generation 3–6

T
Target Device

Selecting 13–11
Tcl

Console 2–4
HardCopy Migration Support 4–9
HardCopy Stratix Support 4–20
Running Script File in

LeonardoSpectrum 10–30
Script 1–8

Team-Based 1–2
Technology Map Viewer 14–2
Technology Map Viewers 14–3, 14–28
Time Stamp Synthesis 12–6
Timing

Analysis 2–23
Leonardo-Spectrum Software 10–7

Analysis Reports 11–11
Assignments 2–19
Closure Floorplan 2–25
Driven Synthesis 10–4
Models 4–10
Results

Preserving Using LogicLock Flow 1–5
Simulation 2–26
Static Analysis 4–17
Synthesis Settings 9–6

Viewing Path in Technology Map
Viewer 14–22

Tooltips 14–24
Translate Off & On 8–7
Traversing Design Hierarchy 14–16

U
Using Black Box

10–24

V
Verification 5–2
Verilog HDL

8–1, 11–18
64-Bit Long Shift Register 7–23
64-Bit Long Shift Register 7–22
Adder/Subtractor 7–6
Code with a full_case Attribute 8–9
Code with a parallel_case Attribute 8–10
Code with a useioff Attribute 8–24
Counter with Count Enable 7–5
dedicated_mult 11–21
D-Flip-Flop with Control Signals 7–26
Dual-Clock Synchronous RAM 7–15
Module Level Attributes 10–14
Multiplier Implemented in Logic 11–19
Pipelined Binary Tree 7–29
Pipelined Ternary Tree 7–30
Read Comments as HDL Example 8–8
Signal Attributes for Controlling DSP Block

Inference 9–24
Signed Multiplier 7–9
Signed Multiply-Adder 7–12
Single-Clock Synchronous RAM 7–15
State Machine Coding Example 7–34
State Machines 7–33
Synchronous ROM 7–20
Top-level Code with Black Box

Instantiation 9–20
Translate Off & On Example 8–7
Unsigned Multiplier 7–8
Unsigned Multiply Accumulator 7–11
Using MegaWizard-generated Files for Black

Box Megafunction Instantiation 11–16
Using MegaWizard-generated Files for Clear

Index–8 Altera Corporation

Quartus II Handbook, Volume 1

Box Megafunction Instantiation 11–15
Verilog HDL

Support 8–1
Verilog-1995

Applying Chip Pin to a Bus of Pins 8–28
Applying Chip Pin to a Single Pin 8–28
Applying Quartus II Attribute to an

Entity 8–27
Applying Quartus II Attribute to an

Instance 8–26
HDL 8–5

Verilog-2001 8–11
Applying Chip Pin to a Single Pin 8–28
Applying Chip Pin to Part of a Bus of

Pins 8–28
Applying Quartus II Attribute to an

Entity 8–27
Applying Quartus II Attribute to an

Instance 8–26
HDL 8–6

VHDL
64-Bit Long Shift Register 7–24
Adder/Subtractor 7–7
Applying Chip Pin to a Single Pin 8–28
Applying Chip Pin to Part of a Bus of

Pins 8–29
Applying Quartus II Attribute to an

Entity 8–27
Applying Quartus II Attribute to an

Instance 8–27
Code for syn_encoding 9–9
Code with a ramstyle Attribute 8–22
Code with a useioff Attribute 8–25
Counter with Synchronous Load 7–5
D-Flip-Flop with Control Signals 7–27
extract_mac 11–21
Inferred Dual-Port RAM 9–26
Inferred Dual-Port RAM Preventing Bypass

Logic 9–27
Module Level Attributes 10–14
Multiplier Implemented in Logic 11–19
Preventing Unintentional Latch

Creation 7–32
Read Comments as HDL Example 8–8
Signal Attributes for Controlling DSP Block

Inference 9–25
Signed Multiply Accumulator 7–13

Single-Clock Synchronous RAM with Asyn-
chronous Read Address 7–19

State Machine Example 7–36
State Machines 7–36
Synchronous ROM 7–21
Top-level Code with Black Box

Instantiation 9–21
Translate Off & On Example 8–7
Unsigned Multiply-Adder 7–12
Using MegaWizard-generated Files for Black-

Box Megafunction Instantiation 11–16
Using MegaWizard-generated Files for Clear

Box Megafunction Instantiation 11–16
VQM

Creating a Design with Multiple Files 9–29
Creating a Design with Multiple Files using

Multipoint Synthesis 9–30
Creating a Quartus II Project for Multiple

Files 9–35, 9–40
Generating a Design with Multiple Files Us-

ing Black Boxes 9–36
Hierarchy & Design Considerations with

Multiple Files 9–29
Manually Creating Multiple Files Using Black

Boxes 9–36

Z
Zooming 14–13
Multiplier

7–8
Options

SDK Option 3–10
SOPC Builder

Peripherals 3–2
Verilog HDL

Single-Clock Synchronous RAM with Asyn-
chronous Read Address 7–18

VHDL
Counter with Synchronous Load 7–16
Dual-Clock Synchronous RAM 7–17
Signed Multiplier 7–8
Unsigned Multiplier 7–9

Preliminary Information
101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com

Quartus II Handbook, Volume 2
Design Implementation & Optimization

qii5v2-2.1

http://www.altera.com

Copyright © 2004 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-
plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

Printed on recycled paper

ii Altera Corporation
Preliminary

Altera Corporation iii
Preliminary

Contents

Chapter Revision Dates ... xi

About this Handbook ... xiii
How to Contact Altera .. xiii
Typographic Conventions .. xiii

Section I. Scripting & Constraint Entry
Revision History ... Section I–2

Chapter 1. Assignment Editor
Introduction .. 1–1
Using the Assignment Editor ... 1–1

Effects of Settings Made Outside the Assignment Editor User Interface 1–2
Category, Node Filter, Information, Edit Bars & Spreadsheet .. 1–2
Category Bar ... 1–3
Node Filter Bar .. 1–5
Information Bar .. 1–6
Edit Bar .. 1–7

Assignment Editor Features ... 1–8
Using the Enhanced Spreadsheet Interface .. 1–8
Dynamic Syntax Checking .. 1–9
Node Filter Bar .. 1–10
Using Time Groups .. 1–11
Customizable Columns ... 1–12
Tcl Interface ... 1–13

Exporting and Importing Assignments .. 1–13
Exporting Assignments ... 1–14
Importing Assignments ... 1–16

Conclusion .. 1–18

Chapter 2. Command-Line Scripting
Introduction .. 2–1
The Benefits of Modular Executables ... 2–1
Introductory Example ... 2–2
Design Flow .. 2–3

Text-Based Report Files ... 2–6
Compilation with quartus_sh --flow ... 2–7

Command-Line Scripting Help ... 2–7

iv Altera Corporation
Preliminary

Quartus II Handbook, Volume 2

Command-Line Option Details ... 2–9
Option Precedence ... 2–9

Command-Line Scripting Examples ... 2–11
Check Design File Syntax .. 2–11
Create a Project & Synthesize a Netlist Using Netlist Optimizations 2–12
Attempt to Fit a Design as Quickly as Possible ... 2–13
Fit a Design Using Multiple Seeds ... 2–13
Makefile Implementation .. 2–14
The QFlow Script .. 2–16

More Help with Quartus II Modular Executables .. 2–17
Conclusion .. 2–18

Chapter 3. Tcl Scripting
Introduction .. 3–1
What is Tcl? .. 3–1
Tcl Scripting Basics .. 3–2

Hello World Example .. 3–2
Variables .. 3–3
Nested Commands ... 3–3
Arithmetic .. 3–3
Lists .. 3–4
Control structures ... 3–4
Procedures ... 3–5

Quartus II Tcl API Reference ... 3–6
Quartus II Tcl Packages .. 3–6

Loading Packages ... 3–8
Executables Supporting Tcl .. 3–8

Command-Line Options (-s, -t, etc) ... 3–9
Run a Tcl Script ... 3–9
Interactive Shell Mode ... 3–9
Evaluate as Tcl .. 3–10
Using the Quartus II Tcl Console Window .. 3–10

Examples ... 3–10
Accessing Command-Line Arguments ... 3–11
Using the cmdline Package ... 3–11
PCreating Projects & Making Assignments ... 3–12
Compiling Designs ... 3–13
Extracting Report Data .. 3–14
Using Collection Commands .. 3–15
Timing Analysis .. 3–16
EDA Tool Assignments ... 3–18
Importing LogicLock Functions ... 3–21
Using the Quartus II Tcl Shell in Interactive Mode ... 3–22

Getting Help on Tcl & Quartus II Tcl APIs .. 3–25
Quartus II Legacy Tcl Support ... 3–28
References ... 3–28

Altera Corporation v
Preliminary

Contents

Chapter 4. Quartus II Project Management
Introduction .. 4–1
Using Revisions with Your Design ... 4–1

Creating and Deleting Revisions ... 4–2
Comparing Revisions .. 4–3

Creating Different Versions of Your Design .. 4–4
Archiving Projects .. 4–5

Version-Compatible Databases ... 4–7
Scripting Support ... 4–8

Managing Revisions ... 4–8
Archiving Projects .. 4–9
Restoring Archived Projects ... 4–9
Importing and Exporting Version-Compatible Databases ... 4–10

Conclusion .. 4–10

Section II. Device & Board Utilities
Revision History ... Section II–1

Chapter 5. I/O Assignment Planning & Analysis
Introduction .. 5–1
I/O Assignment Planning & Analysis ... 5–1
I/O Assignment Planning & Analysis Design Flows .. 5–1

Design Flow without Design Files ... 5–2
Design Flow with Complete or Partial Design Files ... 5–4

Inputs Used for I/O Assignment Analysis .. 5–6
Creating I/O Assignments .. 5–6
Reserving Pins .. 5–6
Location Assignments ... 5–7
Assignments with the Floorplan Editor .. 5–8
Generating a Mapped Netlist ... 5–8

Running the I/O Assignment Analysis .. 5–9
Understanding the I/O Assignment Analysis Report .. 5–9
Suggested & Partial Placement .. 5–10
Detailed Error/Status Messages .. 5–11

Scripting Support ... 5–11
Reserving Pins .. 5–11
Location Assignments ... 5–12
Generating a Mapped Netlist ... 5–12
Running the I/O Assignment Analysis .. 5–13

Conclusion .. 5–13

vi Altera Corporation
Preliminary

Quartus II Handbook, Volume 2

Section III.
Area Optimization & Timing Closure

Revision History .. Section III–2

Chapter 6. Design Optimization for Altera Devices
Introduction .. 6–1
Initial Compilation .. 6–2

Device Setting ... 6–2
Timing Requirements Settings ... 6–2
Smart Compilation Setting .. 6–3
Timing Driven Compilation Settings .. 6–3
Fitter Effort Setting ... 6–4
I/O Assignments .. 6–5

Design Analysis ... 6–6
Resource Utilization ... 6–6
I/O Timing (including tPD) ... 6–7
fMAX Timing ... 6–9
Compilation Time .. 6–11

Optimization Techniques for LUT-Based (FPGA and MAX II) Devices 6–12
Optimization Advisors .. 6–12

Resource Utilization Optimization Techniques (LUT-Based Devices) .. 6–13
Use Register Packing ... 6–13
Remove Fitter Constraints .. 6–16
Perform WYSIWYG Resynthesis for Area .. 6–16
Optimize Synthesis for Area ... 6–16
Retarget Memory Blocks ... 6–18
Retarget DSP Blocks ... 6–19
Optimize Source Code ... 6–19
Modify Pin Assignments or Choose a Larger Package ... 6–20
Use a Larger Device ... 6–20
Resolving Resource Utilization Issues Summary .. 6–20

I/O Timing Optimization Techniques (LUT-Based Devices) ... 6–21
Timing-Driven Compilation ... 6–21
Fast Input, Output, & Output Enable Registers .. 6–22
Programmable Delays ... 6–23
Using Fast Regional Clocks in Stratix Devices ... 6–26
Using PLLs to Shift Clock Edges .. 6–26
Improving Setup & Clock-to-Output Times Summary .. 6–27

fMAX Timing Optimization Techniques (LUT-Based Devices) .. 6–27
Synthesis Netlist Optimizations and Physical Synthesis Optimizations 6–28
Seed .. 6–30
Optimize Synthesis for Speed ... 6–30
LogicLock Assignments .. 6–32
Location Assignments & Back Annotation ... 6–35
Optimize Source Code ... 6–39
Improving fMAX Summary .. 6–40

Optimization Techniques for Macrocell-Based (MAX 7000 and MAX 3000) CPLDs 6–41
Resource Utilization Optimization Techniques (Macrocell-based CPLDs) 6–41

Altera Corporation vii
Preliminary

Contents

Use Dedicated Inputs for Global Control Signals ... 6–41
Reserve Device Resources ... 6–42
Pin Assignment Guidelines & Procedures ... 6–42
Resolving Resource Utilization Problems .. 6–45

Timing Optimization Techniques (Macrocell-based CPLDs) ... 6–49
Improving Setup Time ... 6–50
Improving Clock-to-Output Time ... 6–51
Improving Propagation Delay (tPD) ... 6–52
Improving Maximum Frequency (fMAX) .. 6–53
Optimizing Source Code—Pipelining for Complex Register Logic 6–53

Compilation Time Optimization Techniques .. 6–55
Reducing Synthesis and Synthesis Netlist Optimization Time ... 6–55
Reducing Placement Time .. 6–56
Reducing Routing Time .. 6–59

Scripting Support ... 6–59
Initial Compilation Settings .. 6–60
Resource Utilization Optimization Techniques (LUT-Based Devices) 6–60
I/O Timing Optimization Techniques (LUT-Based Devices) .. 6–61
FMAX Timing Optimization Techniques (LUT-Based Devices) ... 6–62

Conclusion .. 6–63

Chapter 7. Timing Closure Floorplan
Introduction .. 7–1
Design Analysis Using the Timing Closure Floorplan .. 7–1

Timing Closure Floorplan Views ... 7–1
Viewing Assignments .. 7–3
Viewing Critical Paths ... 7–5
Physical Timing Estimates .. 7–11
LogicLock Region Connectivity ... 7–12
Viewing Routing Congestion ... 7–15
I/O Timing Analysis Report File ... 7–16
fMAX Timing Analysis Report File .. 7–19

Conclusion .. 7–23

Chapter 8. Netlist Optimizations and Physical Synthesis
Introduction .. 8–1
Synthesis Netlist Optimizations .. 8–2

WYSIWYG Primitive Resynthesis .. 8–2
Gate-Level Register Retiming ... 8–4
Preserving Your Synthesis Netlist Optimization Results ... 8–8

Physical Synthesis Optimizations ... 8–9
Physical Synthesis for Combinational Logic .. 8–10
Physical Synthesis for Registers - Register Duplication ... 8–11
Physical Synthesis for Registers - Register Retiming .. 8–13
Physical Synthesis Report ... 8–13
Preserving Your Physical Synthesis Results .. 8–14

Applying Netlist Optimization Options .. 8–15

viii Altera Corporation
Preliminary

Quartus II Handbook, Volume 2

Scripting Support ... 8–16
Synthesis Netlist Optimizations ... 8–16
Physical Synthesis Optimizations .. 8–17
Back-Annotating Assignments ... 8–18

Conclusion .. 8–18

Chapter 9. Design Space Explorer
Introduction .. 9–1

DSE Concepts .. 9–1
DSE Exploration ... 9–2

DSE General Information ... 9–2
DSE Flow ... 9–4
DSE Support for Altera Device Families .. 9–5

DSE Exploration ... 9–6
DSE Project Settings .. 9–6

DSE Project Settings ... 9–6
Search for Best Area or Performance Options ... 9–7
Advanced Search Option .. 9–7

Performing an Advanced Search in Design Space Explorer ... 9–7
Allow LogicLock Region Restructuring .. 9–8
Exploration Space ... 9–8
Optimization Goal .. 9–12
Search Method .. 9–13

DSE Flow Options ... 9–13
Continue Exploration Even if Base Compile Fails ... 9–13
Run Quartus Assembler During Exploration .. 9–13
Archive All Compiles .. 9–14
Save Exploration Space to File .. 9–14
Stop Flow After Time ... 9–14
Stop Flow After Gain ... 9–14

DSE Advanced Information ... 9–15
Computer Load Sharing in DSE Using Distributed Exploration Searches 9–15
Creating Custom Spaces for DSE ... 9–16

Conclusion .. 9–21

Chapter 10. LogicLock Design Methodology
Introduction .. 10–1

Improving Design Performance ... 10–1
Preserving Module Performance ... 10–2

Designing with the LogicLock Feature ... 10–2
Creating LogicLock Regions ... 10–2
Floorplan Editor View ... 10–9
LogicLock Region Properties .. 10–10
Hierarchical (Parent and/or Child) LogicLock Regions .. 10–11
Assigning LogicLock Region Content ... 10–13
Tcl Scripts .. 10–15
Quartus II Block-Based Design Flow ... 10–16

Altera Corporation ix
Preliminary

Contents

Additional Quartus II LogicLock Design Features ... 10–22
LogicLock Restrictions .. 10–30

Constraint Priority ... 10–30
Placing LogicLock Regions ... 10–30
Placing Memory, Pins & Other Device Features into LogicLock Regions 10–32

Back-Annotating Routing Information ... 10–33
Exporting Back-Annotated Routing in LogicLock Regions ... 10–33
Importing Back-Annotated Routing in LogicLock Regions ... 10–35

Scripting Support ... 10–36
Initializing and Uninitializing a LogicLock Region .. 10–37
Creating or Modifying LogicLock Regions .. 10–37
Obtaining LogicLock Region Properties ... 10–37
Assigning LogicLock Region Content ... 10–37
Prevent Further Netlist Optimization ... 10–38
Save a Node-level Netlist into a Persistent Source File (.vqm) .. 10–38
Exporting LogicLock Regions .. 10–39
Importing LogicLock Regions .. 10–39
Setting LogicLock Assignment Priority .. 10–39
Assigning Virtual Pins ... 10–40
Back-Annotating LogicLock Regions .. 10–40

Conclusion .. 10–40

Chapter 11. Timing Closure in HardCopy Devices
Introduction .. 11–1
Timing Closure .. 11–1

Placement Constraints ... 11–3
Location Constraints ... 11–3

Location Array Block (LAB) Assignments ... 11–3
LogicLock Assignments .. 11–4
Tutorial ... 11–5

Minimizing Clock Skew .. 11–5
Checking the HardCopy Device Timing .. 11–7

Clock Definitions .. 11–7
Primary Input Pin Timing ... 11–8
Primary Output Pin Timing .. 11–9
Combinatorial Timing ... 11–10
Timing Exceptions .. 11–11

Correcting Timing Violations .. 11–11
Hold-Time Violations .. 11–11
Setup-Time Violations ... 11–16

Timing ECOs .. 11–21
Conclusion .. 11–22

Chapter 12. Synplicity Amplify Physical Synthesis Support
Software Requirements ... 12–1
Amplify Physical Synthesis Concepts .. 12–1
Amplify-to-Quartus II Flow ... 12–2

x Altera Corporation
Preliminary

Quartus II Handbook, Volume 2

Initial Pass: No Physical Constraints ... 12–3
Iterative Passes: Optimizing the Critical Paths .. 12–5

Using the Amplify Physical Optimizer Floorplans .. 12–5
Multiplexers .. 12–7
Independent Paths ... 12–8
Feedback Paths ... 12–9
Starting and Ending Points ... 12–9
Utilization .. 12–11
Detailed Floorplans .. 12–11
Forward Annotating Amplify Physical Optimizer Constraints into the Quartus II Software
12–12
Altera Megafunctions Using the MegaWizard Plug-In Manager with the Amplify Software
12–13

Conclusion .. 12–14

Index

Altera Corporation xi
Preliminary

Chapter Revision Dates

The chapters in this book, Quartus II Handbook, Volume 2, were revised on the following dates. Where
chapters or groups of chapters are available separately, part numbers are listed.

Chapter 1. Assignment Editor
Revised: June 2004
Part number: qii52001-2.0

Chapter 2. Command-Line Scripting
Revised: June 2004
Part number: qii52002-2.0

Chapter 3. Tcl Scripting
Revised: August 2004
Part number: qii52003-2.0

Chapter 4. Quartus II Project Management
Revised: June 2004
Part number: qii52012-1.0

Chapter 5. I/O Assignment Planning & Analysis
Revised: June 2004
Part number: qii52004-2.0

Chapter 6. Design Optimization for Altera Devices
Revised: June 2004
Part number: qii52005-2.0

Chapter 7. Timing Closure Floorplan
Revised: June 2004
Part number: qii52006-2.0

Chapter 8. Netlist Optimizations and Physical Synthesis
Revised: June 2004
Part number: qii52007-2.0

Chapter 9. Design Space Explorer
Revised: June 2004
Part number: qii52008-2.0

xii Altera Corporation
Preliminary

Chapter Revision Dates Quartus II Handbook, Volume 2

Chapter 10. LogicLock Design Methodology
Revised: August 2004
Part number: qii52009-2.1

Chapter 11. Timing Closure in HardCopy Devices
Revised: June 2004
Part number: qii52010-2.0

Chapter 12. Synplicity Amplify Physical Synthesis Support
Revised: February 2004
Part number: qii52011-1.0

Altera Corporation xiii
Preliminary

About this Handbook

This handbook provides comprehensive information about the Altera®
Quartus®II design software, version 4.1.

How to Contact
Altera

For the most up-to-date information about Altera products, go to the
Altera world-wide web site at www.altera.com. For technical support on
this product, go to www.altera.com/mysupport. For additional
information about Altera products, consult the sources shown below.

Typographic
Conventions

This document uses the typographic conventions shown below.

Information Type USA & Canada All Other Locations

Technical support www.altera.com/mysupport/ altera.com/mysupport/

(800) 800-EPLD (3753)
(7:00 a.m. to 5:00 p.m. Pacific Time)

(408) 544-7000 (1)
(7:00 a.m. to 5:00 p.m. Pacific Time)

Product literature www.altera.com www.altera.com

Altera literature services lit_req@altera.com (1) lit_req@altera.com (1)

Non-technical customer
service

(800) 767-3753 (408) 544-7000
(7:30 a.m. to 5:30 p.m. Pacific Time)

FTP site ftp.altera.com ftp.altera.com

Note to table:
(1) You can also contact your local Altera sales office or sales representative.

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital
Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

http://www.altera.com/mysupport/
http://www.altera.com/mysupport/
http://www.altera.com
http://www.altera.com
mailto:lit_req@altera.com
mailto:lit_req@altera.com
ftp://ftp.altera.com
ftp://ftp.altera.com
http://www.altera.com
http://www.altera.com/mysupport

xiv Altera Corporation
Preliminary

Typographic Conventions Quartus II Handbook, Volume 2

Italic type Internal timing parameters and variables are shown in italic type.
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are
shown in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1,
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files (e.g., the AHDL
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in
Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ ● • Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c
The caution indicates required information that needs special consideration and
understanding and should be read prior to starting or continuing with the
procedure or process.

w The warning indicates information that should be read prior to starting or
continuing the procedure or processes

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.

Visual Cue Meaning

Altera Corporation Section I–1
Preliminary

Section I. Scripting &
Constraint Entry

As a result of the increasing complexity of today's FPGA designs and the
demand for higher performance, designers must make a large number of
complex timing and logic constraints to meet their performance
requirements. Once you have created a project and your design, you can
use the the Quartus® II software Assignment Editor and Floorplan Editor
to specify your initial design constraints, such as pin assignments, device
options, logic options, and timing constraints.

This section describes how to take advantage of these components of the
Quartus II software, how to take advantage of Quartus II modular
executables, and how to develop and run tool command language (Tcl)
scripts to perform a wide range of functions.

This section includes the following chapters:

■ Chapter 1, Assignment Editor

■ Chapter 2, Command-Line Scripting

■ Chapter 3, Tcl Scripting

■ Chapter 4, Quartus II Project Management

Section I–2 Altera Corporation
Preliminary

Scripting & Constraint Entry Quartus II Handbook, Volume 2

Revision History The table below shows the revision history for Chapters 1 to 4.

Chapter(s) Date / Version Changes Made

1 June 2004 v2.0 ● Updates to tables, figures.
● New functionality in the Quartus software

version 4.1.

Feb. 2004 v1.0 Initial release.

2 June 2004 v2.0 ● Updates to tables, figures.
● New functionality in the Quartus software

version 4.1.

Feb. 2004 v1.0 Initial release.

3 Aug. 2004 v2.1 ● Minor typographical corrections
● Enhancements to example scripts.

June 2004 v2.0 ● Updates to tables, figures.
● New functionality in the Quartus software

version 4.1.

Feb. 2004 v1.0 Initial release.

4 June 2004 v1.0 Initial release.

Altera Corporation 1–1
June 2004 Preliminary

1. Assignment Editor

Introduction As a result of the increasing complexity of today’s FPGA designs and the
demand for higher performance, designers must make a larger number of
complex timing and logic constraints to meet their performance
requirements. This complexity is compounded by the increasing density
and associated pin counts of current FPGAs. To successfully implement a
complex design in the latest generation of FPGAs, designers must also
make a large number of pin assignments that include the pin locations
and I/O standards.

To facilitate the process of entering these assignments, Altera® has
developed an intuitive, spreadsheet interface called the Assignment
Editor. The Assignment Editor is designed to make the process of
creating, changing, and managing a large number of assignments as easy
as possible.

This chapter discusses the following topics:

■ Using the Assignment Editor
■ Effects of settings made outside the Assignment Editor user interface
■ Category, node filter, information, edit bars and spreadsheet
■ Integration with other Quartus® II features
■ Enhanced spreadsheet interface
■ Dynamic Syntax checker
■ Node Filter bar
■ Using Time Groups
■ Customizable columns
■ Tcl interface
■ Exporting Assignments
■ Importing Assignments

Using the
Assignment
Editor

You can use the Assignment Editor throughout the design cycle. Before
board layout begins, you can make pin assignments with the Assignment
Editor. Throughout the design cycle, you can use the Assignment Editor
to help achieve your design performance requirements by making timing
assignments. You can also use the Assignment Editor to view, filter, and
sort assignments based on node names or assignment type.

qii52001-2.0

1–2 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

The Assignment Editor is a resizable and minimizable window. This
scalability makes it easy to view or edit your assignments right next to
your design files. You can launch the Assignment Editor from the
Assignments menu or by clicking on the Assignment Editor icon in the
toolbar.

Effects of Settings Made Outside the Assignment Editor User
Interface

Although the Assignment Editor is the most common method of entering
and modifying assignments, there are other methods you can use to make
and edit assignments. For this reason, the Assignment Editor updates
itself if you add, remove or change an assignment outside the Assignment
Editor.

The Assignment Editor is refreshed each time you click anywhere in the
window. If you make an assignment in the Quartus II software, such as in
the Tcl console or in the Floorplan Editor, the Assignment Editor reloads
the new assignments from memory. If you modify the Quartus II Settings
File (.qsf) outside the Quartus II software and you select the Assignment
Editor window, the Assignment Editor reloads the QSF.

1 If the QSF is being edited while the project is open, Altera
recommends that you perform a Save Project (File menu) to
ensure that you are editing the latest QSF file.

In either case, the Messages window displays the following message:

Info: Assignments reloaded -- assignments updated
outside Assignment Editor

The assignments you make in the Assignment Editor, Floorplan Editor, or
with Tcl are stored in memory. Use one of the following commands to
write these assignments into the QSF:

■ Close Project (File menu)
■ Save Project (File menu)
■ Start Compilation (Processing menu)

Category, Node Filter, Information, Edit Bars & Spreadsheet

The Assignment Editor window is divided into four bars and a
spreadsheet: see Figure 1–1. You can hide all four bars in the View menu
if desired, and you can collapse the Category, Node Filter, and
Information bars. Table 1–1 provides a brief description of each bar.

Altera Corporation 1–3
June 2004 Preliminary

Using the Assignment Editor

Figure 1–1. The Assignment Editor Window

Category Bar

The Category bar lists all assignment categories available for the chosen
device. You can use the Category bar to select a particular assignment
type and to filter out all other assignments. Selecting an assignment
category from the Category list changes the spreadsheet to show only
applicable options and values. To search for a particular type of
assignment, use the Category bar to filter out all other assignments.

Table 1–1. Assignment Editor Bar Descriptions

Bar Name Description

Category Filters the type of available assignments

Node Filter Filters a selection of design nodes to be viewed or assigned

Information Displays a description of the cell currently selected

Edit Allows you to edit the text in the currently selected cell(s)

1–4 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

To view all tSU assignments in your project, select tsu in the category list.
If you select All in the Category bar, the Assignment Editor displays all
assignments. See Figures 1–2 and 1–3 below.

Figure 1–2. All Selected in the Category List

Figure 1–3. tSU Selected in Category List

Altera Corporation 1–5
June 2004 Preliminary

Using the Assignment Editor

When you collapse the Category bar, four shortcut buttons appear so you
can select between various preset categories (see Figure 1–4).

Figure 1–4. Category Bar

Node Filter Bar

When Show assignments for specific nodes is turned on, the
spreadsheet shows only assignments for nodes matching the selected
node name filters in the Node Filter bar. You can selectively enable
individual node name filters listed in the Node Filter bar. You can create
a new node name filter by selecting a node name with the Node Finder
or typing a new node name filter. The Assignment Editor automatically
inserts a spreadsheet row and prepopulates the To field with the node
name filter. You can easily add an assignment to the matching nodes by
entering it in the new row. Rows with incomplete assignments appear in
dark red. When you choose Save (File menu), all incomplete rows are
removed and a message issued.

In Figure 1–5, when selecting all the bits of the dinput bus, all unrelated
assignments are filtered out.

1–6 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 1–5. Using the Node Filter in the Assignment Editor

Information Bar

The Information bar provides a brief description of the currently selected
cell. This is a useful way for you to learn how to enter node names and
assignments into the spreadsheet. For example, if the selected cell is a
particular logic option, the Information bar shows a description of that
option.

1 For more information on logic options, see Quartus II Help.

Altera Corporation 1–7
June 2004 Preliminary

Using the Assignment Editor

Edit Bar

The Edit bar is an efficient way to enter a value into one or more
spreadsheet cells.

To change the contents of multiple cells at the same time, select the cells
in the spreadsheet (see Figure 1–6), then type the new value into the Edit
box in the Edit bar (see Figure 1–7) and click the checkmark icon (Accept).

Figure 1–6. Edit Bar Selection

Figure 1–7. Edit Bar Change

1–8 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Assignment
Editor Features

You can open the Assignment Editor from many locations, including the
Text Editor, the Node Finder, the Timing Closure Floorplan, the
Compilation Report, and the Messages window. For example, you can
highlight a node name in your design file and open the Assignment
Editor to cause your node name to appear in the Assignment Editor.

You can also open other windows from the Assignment Editor. From a
node listed in the Assignment Editor spreadsheet, you can go to the
location of the node in any of the following windows: Timing Closure
Floorplan, Last Compilation Floorplan, Chip Editor, Block Editor, and
Text Editor.

Using the Enhanced Spreadsheet Interface

One of the key features of the Assignment Editor is the spreadsheet
interface. With the spreadsheet interface, you can sort columns, use pull-
down entry boxes, and copy and paste multiple cells in the Assignment
Editor. As you enter an assignment, the font color of the row changes to
indicate the status of the assignment.

1 See the “Dynamic Syntax Checking” on page 1–9 for more
information.

There are many ways to select or enter nodes into the spreadsheet,
including: the Node Finder, the Node Filter bar, the Edit bar, or by
directly typing the node name into the cell in the spreadsheet. A node
type icon appears beside each node name and node name filter to identify
its type. The node type icon identifies the entry as an input, output, or
bidirectional pin, a register, or combinational logic. See Figure 1–8. The
node type icon appears as an asterisk for node names and node name
filters that use a wildcard character (* or ?).

Figure 1–8. Node Type Icon Displayed Beside Each Node Name in the
Spreadsheet

The Assignment Editor supports wildcards in the following types of
assignments:

■ All timing assignments
■ Point-to-point global signal assignments (applicable to Stratix and

Stratix II families)

Altera Corporation 1–9
June 2004 Preliminary

Assignment Editor Features

■ Point-to-point or pad-to-core delay chain assignments
■ LogicLock region assignments

The spreadsheet also supports customizable columns, (see
“Customizable Columns” on page 1–12), allowing you to show, hide, and
arrange the columns.

When making pin location assignments, the background color of the cells
coordinates with the color of the I/O bank also shown in the Floorplan
Editor (see Figure 1–9).

Figure 1–9. Spreadsheet-Like Interface

Auto-fill pin names are supported in the spreadsheet if you have
performed analysis and synthesis. Auto-fill pin locations are also
supported in the spreadsheet if Pin is selected in the Category bar.

Dynamic Syntax Checking

As you enter your assignments, the Assignment Editor performs simple
legality and syntax checks. This checking is not as thorough as the checks
performed during compilation, but it catches general incorrect settings.
For example, the Assignment Editor does not allow assignment of a pin
to a no-connect pin. In this case, the assignment is not accepted and you
must enter a different pin location.

The color of the text in each row indicates if the assignment is incomplete,
incorrect, or disabled (see Table 1–2 on page 1–10). You can customize the
colors in the Options dialog box (Tools menu).

1–10 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

1 For more information, see the Quartus II Help.

Node Filter Bar

The Node Filter bar provides flexibility in how you view and make your
settings. The Node Filter bar contains a list of node filters. To create a new
entry, use the Node Finder or manually type the node name. Double-click
an empty row in the Node Filter list and then click on the arrow to open
the Node Finder (see Figure 1–10).

Figure 1–10. Node Finder Option

In the Node Filter bar, you can turn each filter on or off. To turn off the
Node Filter bar, turn off Show assignments for specific nodes. The
wildcards (* and ?) can be used to filter for a selection of all the design
nodes with one entry in the Node Filter. For example, you can enter
dreg* into the Node Filter list to view all assignments for dreg0, dreg1,
and dreg2 (see Figure 1–11).

Table 1–2. Description of the Text Color in the Spreadsheet

Text Color Description

Green A new assignment can be created

Yellow The assignment contains warnings, such as an unknown node
name

Dark Red The assignment is incomplete

Bright Red The assignment has an error, such as an illegal value

Light Gray The assignment is disabled

Altera Corporation 1–11
June 2004 Preliminary

Assignment Editor Features

Figure 1–11. Using the Node Filter Bar with Wildcards

Using Time Groups

A time group is a collection of design nodes grouped together and
represented as a single unit for the purpose of making timing
assignments to the collection. Using time groups with the Assignment
Editor provides the flexibility required for complex timing assignments
to a large number of nodes.

To create a time group, open the Time Groups dialog box by selecting
Time Groups (Assignments menu). You can add and exclude members of
each time group with wild cards in the Node Finder (See Figure 1–12 on
page 1–12).

There are cases when wild cards are not flexible enough to select a large
number of nodes that have node names that are quite similar. With time
groups you can combine wild cards, which select a large number of
nodes, and use exceptions to remove nodes that you did not intend to
select.

1–12 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 1–12. Time Groups Dialog Box

Customizable Columns

To provide more control over the display of information in the
spreadsheet, the Assignment Editor supports customizable columns.

You can move columns, sort them in ascending or descending order,
show or hide individual columns, as well as align (left, center, or right)
the content in the column for improved readability.

When the Quartus II software starts for the first time, you see a pre-
selected set of columns. However, you can show or hide any of the
available columns by choosing the Customize Columns command (View
menu). When you restart the Quartus II software, the column settings are
maintained.

For example, the Comments and Enabled columns are hidden when the
Quartus II software is first started.

You can use the Comments column to document the purpose of a pin or
to explain why you applied a timing or logic constraint. You can use the
Enabled column to disable any assignment without deleting it. This
feature is useful when performing multiple compilations with different
timing constraints or logic optimizations.

Altera Corporation 1–13
June 2004 Preliminary

Exporting and Importing Assignments

Tcl Interface

Whether you use the Assignment Editor or another feature to create your
design’s assignments, you can export them all to a Tcl file. You can then
use the Tcl file to re-apply all the settings or to archive your assignments.
Choose Export (File menu) to export your assignments to a Tcl script.

1 You can also choose the Generate Tcl File for Project (Project
menu) to generate a Tcl script file for your project.

In addition, as you use the Assignment Editor to enter assignments, the
equivalent Tcl commands are shown in the system message window. You
can use these Tcl commands to create customized Tcl scripts (see
Figure 1–13). To copy a Tcl command from the Messages window, right-
click the message and choose Copy (right button pop-up menu).

Figure 1–13. Equivalent Tcl Commands Displayed in the Messages Window

f For more information on Tcl scripting with the Quartus II software, see
the Tcl Scripting chapter in Volume 2 of the Quartus II Handbook.

Exporting and
Importing
Assignments

With the Export Assignments and Import Assignments dialog boxes,
you can export your Quartus II assignments to a Quartus II Settings file
(.qsf), and import assignments from a .qsf, a Quartus II Entity Settings
file (.esf), a MAX+PLUS II Assignment and Configuration file (.acf), or a
Comma Separated Value file (.csv).

In addition to the Export Assignments and Import Assignments dialog
boxes, the Export command (File menu) allows you to export your
assignments to a .csv or Tcl script file (.tcl).

1–14 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

1 The Export command (File menu) exports the contents of the
active window in the Quartus II software to another file format,
when applicable.

You can use these file formats for many different aspects of your project.
For example, you can use a .csv file for documentation purposes or to
transfer pin-related information to board layout tools. The Tcl file makes
it easy to apply assignments in a scripted design flow. And the LogicLock
design flow uses the .qsf file to transfer your LogicLock region settings.

Exporting Assignments

The Export Assignments dialog box is used to export your Quartus II
software assignments into a .qsf file, generate a node-level netlist file, and
export back-annotated routing information as a Routing Constraints File
(.rcf), as shown in Figure 1–14. Choose Export Assignments
(Assignments menu) to open the Export Assignments dialog box. The
LogicLock design flow uses this dialog box to export LogicLock regions.

f For more information on using the Export Assignments dialog box to
export LogicLock regions, see the LogicLock Design Methodology chapter
in Volume 2 of the Quartus II Handbook.

Figure 1–14. Export Assignments Dialog Box

You can use the Export command (File menu) to export all assignments to
a Tcl file or export a set of assignments to a .csv file. When you export
assignments to a Tcl file, only user-created assignments are written to the
Tcl script file, and default assignments are not exported.

Altera Corporation 1–15
June 2004 Preliminary

Exporting and Importing Assignments

When assignments are exported to a .csv file, only the assignments
displayed in the current view of the Assignment Editor are exported. For
example, to export only pin assignments, select Pin from the Category
bar. Then, choose Export (File menu), and select Comma Separated Value
File in the Save as type list.

The first uncommented row of the .csv file is a list of the column headings
displayed in the Assignment Editor separated by commas. Each row
below the header row represents the rows in the spreadsheet of the
Assignment Editor (see Figure 1–15) You can view and make edits to the
.csv file with Excel or other spreadsheet tools.

Figure 1–15. Assignment Editor with Category set to Pin

Here is an example of an exported .csv file from the Assignment Editor.

Note: The column header names should not be changed if you wish to import #
this .csv file into the Quartus II software.
To,Location,I/O Bank,I/O Standard,General Function,Special Function, \

Reserved ,SignalProbe Source
clk,PIN_K5,1,LVTTL,Dedicated Clock,CLK0/LVDSCLK1p,,
button,PIN_W3,4,LVTTL,Column I/O,LVDS128p,,
q[0],PIN_E14,2,LVTTL,Column I/O,LVDS56n,,
q[1],PIN_E13,2,LVTTL,Column I/O,LVDS56p,,
q[2],PIN_C14,2,LVTTL,Column I/O,LVDS55n/DQ0T4,,
q[3],PIN_D14,2,LVTTL,Column I/O,LVDS55p/DQ0T5,,
q[4],PIN_E12,2,LVTTL,Column I/O,LVDS52n,,,

1–16 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Importing Assignments

The Import Assignments dialog box allows you to import Quartus II
assignments from a .qsf, .esf, .acf or .csv file (see Figure 1–16). To import
assignments from any of the supported assignment files, follow these
steps:

1. Choose Import Assignments (Assignments menu).

2. In the File name text-entry box, enter the file name, or click on the
“...” box (Browse) to navigate to the assignment file.

3. When the Select File dialog box opens, select the file, and click
Open to close the Select File dialog box.

4. Click OK in the Import Assignments dialog box.

1 When you import a .csv file, the first uncommented row of the
file must be in the exact same format as it was when exported.

When using the Logiclock flow methodology to import assignments,
follow these steps:

1. Choose Import Assignments (Assignments menu).

2. Select the Use LogicLock assignments button, and click on the
LL_IMPORT_FILE Assignments... box.

3. When the LogicLock Import File Assignments window opens,
select the LogicLock import file assignments to use for importing,
and click OK to close the window.

f For more information on using the Import Assignments dialog box to
import LogicLock regions, see the LogicLock Design Methodology chapter
in Volume 2 of the Quartus II Handbook.

You can create a copy of your assignments before importing new
assignments by selecting the checkbox for Copy existing assignments
into <revision name>.qsf.bak before importing option.

Altera Corporation 1–17
June 2004 Preliminary

Exporting and Importing Assignments

Figure 1–16. Import Assignments Dialog Box

When importing assignments from a file, you can choose which
assignment categories to import by following these steps:

1. Click Categories in the Import Assignments dialog box.

2. Select the checkbox for each of the Assignment Categories you
want to import, as shown in Figure 1–17.

To select specific types of assignments to import, click Advanced in the
Import Assignments dialog box. The Advanced Import Settings dialog
box appears and you can choose to import instance, entity, or global
assignments, as well as select various assignment types to import.

f For more information on these options, refer to the Quartus II software
Help.

1–18 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 1–17. Assignment Categories Dialog Box

Conclusion As FPGAs continue to increase in density and pin count, it is essential to
be able to quickly create and view design assignments. The Assignment
Editor provides an intuitive and effective way of making assignments.
With the spreadsheet interface and the Category, Edit, and Node Filter
bars, the Assignment Editor provides an efficient assignment entry
solution for FPGA designers.

f To learn more about efficiently creating pin assignments with the
Assignment Editor, see the I/O Assignment Planning and Analysis chapter
in Volume 2 of the Quartus II Handbook.

Altera Corporation 2–1
June 2004

2. Command-Line Scripting

Introduction FPGA design software that is easy to integrate into a design flow saves
time and improves productivity. The Altera® Quartus® II software
provides designers with modular executables for each step in an FPGA
design flow to make the design process customizable and flexible.

The benefits provided by modular executables include command-line
control over each step of the design flow, easy integration with scripted
design flows including makefiles, reduced memory requirements, and
improved performance. The modular executables are also completely
compatible with the Quartus II graphical user interface (GUI), allowing
you to use the exact combination of tools you prefer.

This chapter describes how to take advantage of Quartus II modular
executables, and provides several examples of their use in certain design
situations.

The Benefits of
Modular
Executables

The Quartus II modular executables reduce the amount of memory
required during any step in the design flow. Because it targets only one
step in the design flow, each executable is relatively compact, both in
terms of file size and the amount of memory used when running. This
memory reduction improves performance for all designers and is
particularly beneficial in design environments with heavily-used
computer networks or mature workstations with low amounts of
memory.

Modular executables also provide command-line control over each step
of the design flow. Each modular executable has options to control
commonly-used software settings. Each modular executable also
provides detailed, built-in help describing its function, available options,
and settings.

Modular executables allow for easy integration with scripted design
flows. It is simple to create scripts in any language with a series of
modular executable commands. These scripts can be batch-processed,
allowing for integration with distributed computing in server farms. The
Quartus II modular executables can also be integrated in makefile-based
design flows. All of these features enhance the ease of integration
between the Quartus II software and other EDA synthesis, simulation,
and verification software.

qii52002-2.0

2–2 Altera Corporation
 June 2004

Quartus II Handbook, Volume 2

Modular executables add integration and scripting flexibility for
designers who want it without sacrificing the ease-of-use of the
Quartus II GUI. You can use the Quartus II GUI and modular executables
at different stages in the design flow. As an example, you might use the
Quartus II GUI to edit the floorplan for the design, use the modular
executables to perform place-and-route, and return to the Quartus II GUI
to perform debugging with the Chip Editor.

Introductory
Example

The following introduction to design flow with modular executables
shows how to create a project, fit the design, perform timing analysis, and
generate programming files.

The tutorial design included with the Quartus II software is used to
demonstrate this functionality. If installed, the tutorial design is found in
the <Quartus II directory>/qdesigns/tutorial directory.

Before making changes, copy the tutorial directory and type the following
four commands at a command prompt in the new project directory.

1 The <quartus>/bin directory must be in your PATH environment
variable.

quartus_map filtref --source=filtref.bdf --family=CYCLONE r
quartus_fit filtref --part=EP1C12Q240C6 --fmax=80MHz --tsu=8ns r
quartus_tan filtref r
quartus_asm filtref r

The quartus_map filtref --source=filtref.bdf
--family=CYCLONE command creates a new Quartus II project called
filtref with the filtref.bdf file as the top-level file. It targets the Cyclone
device family and performs logic synthesis and technology mapping on
the design files.

The quartus_fit filtref --part=EP1C12Q240C6
--fmax=80MHz --tsu=8ns command performs fitting on the filtref
project. The command specifies an EP1C12Q240C6 device and the fitter
attempts to meet a global fMAX requirement of 80 MHz and a global tSU
requirement of 8 ns.

The quartus_tan filtref command performs timing analysis on the
filtref project to determine whether the design meets the timing
requirements that were specified by the quartus_fit command.

The quartus_asm filtref command creates programming files for
the filtref project.

Altera Corporation 2–3
June 2004

Design Flow

These four commands can be stored in a batch file for use on PCs or in a
shell script file for use on UNIX workstations.

Design Flow Figure 2–1 shows a typical design flow.

Figure 2–1. Typical Design Flow

Design Entry (TDF, BDF, VQM,
Verilog HDL, VHDL, EDIF

Netlist files)

Timing Analysis

Assembler

Fitter

Synthesis

Netlist Writers

Programmer

Simulator

VO, VHO files

Quartus II Shell
(quartus_sh)

2–4 Altera Corporation
 June 2004

Quartus II Handbook, Volume 2

Modular executables are provided for each stage in the design flow
shown in Figure 2–1. Additional modular executables are provided for
specific tasks. Table 2–1 lists each Quartus II modular executable and
provides a brief description of its function.

Table 2–1. Quartus II Modular Executables & Descriptions (Part 1 of 3)

Executable Description

Analysis & Synthesis
quartus_map

Quartus II Analysis & Synthesis builds a single project database that
integrates all the design files in a design entity or project hierarchy,
performs logic synthesis to minimize the logic of the design, and
performs technology mapping to implement the design logic using
device resources such as logic elements.

Fitter
quartus_fit

The Quartus II Fitter performs place-and-route by fitting the logic of a
design into a device. The Fitter selects appropriate interconnection
paths, pin assignments, and logic cell assignments.

Quartus II Analysis & Synthesis must be run successfully before
running the Fitter.

Timing Analyzer
quartus_tan

The Quartus II Timing Analyzer computes delays for the given design
and device, and annotates them on the netlist. Then, the Timing
Analyzer performs timing analysis, allowing you to analyze the
performance of all logic in your design. The quartus_tan executable
includes Tcl support.

Quartus II Analysis & Synthesis or the Fitter must be run successfully
before running the Timing Analyzer.

Assembler
quartus_asm

The Quartus II Assembler generates a device programming image, in
the form of one or more Programmer Object Files (.pof), SRAM Object
Files (.sof), Hexadecimal (Intel-Format) Output Files (.hexout),
Tabular Text Files (.ttf), and Raw Binary Files(.rbf), from a successful
fit (that is, place-and-route).

The .pof and .sof files are then processed by the Quartus II
Programmer and downloaded to the device with the MasterBlasterTM or
the ByteBlasterTM II Download Cable, or the Altera Programming Unit
(APU). The .hexout.ttf, TTFs, and RBFs can be used by other
programming hardware manufacturers that provide support for Altera
devices.

The Quartus II Fitter must be run successfully before running the
Assembler.

Altera Corporation 2–5
June 2004

Design Flow

Design Assistant
quartus_drc

The Quartus II Design Assistant checks the reliability of a design based
on a set of design rules. The Design Assistant is especially useful for
checking the reliability of a design before converting the design for
HardCopyTM devices.
The Design Assistant supports designs that target any Altera device
supported by the Quartus II software, except MAX® 3000 and
MAX 7000 devices.

Quartus II Analysis & Synthesis or the Fitter must be run successfully
before running the Design Assistant.

Compiler Database Interface
quartus_cdb

The Quartus II Compiler Database Interface generates incremental
netlists for use with LogicLockTM back-annotation, or back-annotates
device and resource assignments to preserve the fit for future
compilations. The quartus_cdb executable includes Tcl support.

Analysis & Synthesis must be run successfully before running the
Compiler Database Interface.

EDA Netlist Writer
quartus_eda

The Quartus II EDA Netlist Writer generates netlist and other output
files for use with other EDA tools.

Analysis & Synthesis, the Fitter, or Timing Analyzer must be run
successfully before running the EDA Netlist Writer, depending on the
arguments used.

Simulator
quartus_sim

The Quartus II Simulator tests and debugs the logical operation and
internal timing of the design entities in a project. The Simulator can
perform two types of simulation: functional simulation and timing
simulation. The quartus_sim executable includes Tcl support.

Quartus II Analysis & Synthesis must be run successfully before
running a functional simulation.

The Timing Analyzer must be run successfully before running a timing
simulation.

Software Build
quartus_swb

The Quartus II Software Builder performs a software build, which
processes a design for an ARM®-based Excalibur™ device or the Nios®
embedded processor.

Programmer
quartus_pgm

The Quartus II Programmer programs Altera devices. The Programmer
uses one of the valid supported file formats: Programmer Object Files
(.pof), SRAM Object Files (.sof), Jam File (.jam), or Jam Byte-Code
File (.jbc).
Make sure you specify a valid programming mode, programming cable,
and operation for a specified device.

Table 2–1. Quartus II Modular Executables & Descriptions (Part 2 of 3)

Executable Description

2–6 Altera Corporation
 June 2004

Quartus II Handbook, Volume 2

Text-Based Report Files

Each modular executable creates a text-format report file when it is run.
These files report success or failure, and contain information on the
processing performed by the modular executable.

Report file names contain the revision names and name of the modular
executable that generated the report file. For example, the report file
name format is <revision name>.<modular executable>.rpt. For example,
using the quartus_fit modular executable to place-and-route a project
with the revision name design_top generates a report file named
design_top.fit.rpt. Likewise, using the quartus_tan modular executable
to perform timing analysis on a project with the revision name fir_filter
generates a report file named fir_filter.tan.rpt.

As an alternative to parsing text-based report files, you can use the Tcl
package called ::quartus::report. For more information on this
package, see “More Help with Quartus II Modular Executables” on
page 2–17.

Convert Programming File
quartus_cpf

The Quartus II Convert Programming File module converts one
programing file format to a different possible format.

Make sure you specify valid options and an input programming file to
generate the new requested programming file format.

Quartus Shell
quartus_sh

The Quartus II Shell acts as a simple Quartus II Tcl interpreter. The
Shell has a smaller memory footprint than the other command-line
executables that support Tcl: quartus_tan, quartus_cdb, and
quartus_sim. The Shell may be started as an interactive Tcl interpreter
(shell), used to run a Tcl script, or used as a quick Tcl command
evaluator, evaluating the remaining command-line arguments as one or
more Tcl commands.

Table 2–1. Quartus II Modular Executables & Descriptions (Part 3 of 3)

Executable Description

Altera Corporation 2–7
June 2004

Command-Line Scripting Help

Compilation with quartus_sh --flow

Use the quartus_sh executable with the --flow option to perform a
complete compilation flow with a single command. (For information on
specialized flows, type quartus_sh --help=flow at a command
prompt.) The --flow option supports the smart recompile feature, and
efficiently sets command-line arguments for each executable in the flow.

1 If you used the quartus_cmd command to perform command-
line compilations in earlier versions of the Quartus II software,
Altera recommends that you use the quartus_sh --flow
option in the Quartus II software version 4.1.

The following example runs compilation, timing analysis, and
programming file generation—with a single command.

quartus_sh --flow compile filtref r

Command-Line
Scripting Help

Complete help information is integrated with each modular executable.
For more information about the modular executable options, use the help
information integrated with the modular executables. Access help for a
modular executable using the -h option. For example, to view help for
the quartus_map modular executable, run the command
quartus_map -h. The following example shows the result of running
quartus_map -h:

C:\>quartus_map -h
Quartus II Analysis & Synthesis
Version 4.1 Internal Build 133 04/07/2004 SJ Full Version
Copyright (C) 1991-2004 Altera Corporation

Usage:

quartus_map [-h | --help[=<option|topic>] | -v]
quartus_map <project name> [<options>]

Description:

Quartus(R) II Analysis & Synthesis builds a single project
database that integrates all the design files in a design
entity or project hierarchy, performs logic synthesis to
minimize the logic of the design, and performs technology
mapping to implement the design logic using device
resources such as logic elements.

Options:

-f <argument file>

2–8 Altera Corporation
 June 2004

Quartus II Handbook, Volume 2

 -c <revision name> | --rev=<revision name>
 -l <path> | --lib_path=<path>
 --lower_priority
 --optimize=<area|speed|balanced>
 --family=<device family>
 --part=<device>
 --
state_machine_encoding=<auto|minimal_bits|one_hot|user_enco
 --enable_register_retiming[=on|off]
 --enable_wysiwyg_resynthesis[=on|off]
 --ignore_carry_buffers[=on|off]
 --ignore_cascade_buffers[=on|off]
 --analyze_project
 --analyze_file=<design file>
 --generate_symbol=<design file>
 --generate_inc_file=<design file>
 --convert_bdf_to_verilog=<.bdf file>
 --convert_bdf_to_vhdl=<.bdf file>
 --export_settings_files[=on|off]
 --generate_functional_sim_netlist
 --source=<source file>
 --update_wysiwyg_parameters

Help Topics:

arguments
makefiles

For more information on specific options, use --
help=<option|topic>.

Detailed help about a particular option is also available. For example, to
view detailed help about the --optimize option, run
quartus_map --help=optimize. The following is the result of
running quartus_map --help=optimize:

Option: --optimize=<area|speed|balanced>

Option to optimize the design to achieve maximum speed
performance, minimum area usage, or high speed performance
with miminal area cost during synthesis.

The following table displays available values:

Value Description
-------- --
area Makes the design as small as possible in order
 to minimize resource usage.

speed Chooses a design implementation that has the
 fastest fmax.

balanced Chooses a design implementation that has a
 high-speed performance with minimal logic usage
Note that the current version of the Quartus(R) II software
does not support the "balanced" setting for the following
devices:

Altera Corporation 2–9
June 2004

Command-Line Option Details

 Mercury(TM), MAX(R) 7000B/7000AE/3000A/7000S/7000A,
 FLEX(R) 6000, FLEX 10K(R), FLEX 10KE/10KA, and ACEX 1K.

1 Help on Quartus II modular executables is also available by
typing quartus_sh --qhelp at a command prompt. For more
information, see “More Help with Quartus II Modular
Executables” on page 2–17.

Command-Line
Option Details

Command-line options are provided for making many common global
project settings and performing common tasks. You can use either of two
methods to make assignments to an individual entity. If the project exists,
open the project in the Quartus II GUI, change the assignment, and close
the project. The changed assignment is updated in the Quartus II Settings
file. Any modular executables that are run after this update will use the
updated assignment. See “Option Precedence” on page 2–9 for more
information. You can also make assignments using the Quartus II Tcl
scripting API. If you want to completely script the creation of a Quartus II
project, you should choose this method.

Option Precedence

If you are using the modular executables, you need to be aware of the
precedence of various project assignments and how to control the
precedence. Assignments for a particular project exist in the Quartus II
Settings file (.qsf) for the project. Assignments for a project can also be
made by using command-line options, as described earlier in this
document. Project assignments are reflected in compiler database files
that hold intermediate compilation results and reflect assignments made
in the previous project compilation.

All command-line options override any conflicting assignments found in
the QSF or the compiler database files. There are two command-line
options to specify whether QSF or compiler database files take
precedence for any assignments not specified as command-line options.

1 Any assignment not specified as a command-line option or
found in the QSF or compiler database files will be set to its
default value.

The file precedence command-line options are
--import_settings_files and --export_settings_files. By
default, the --import_settings_files and
--export_settings_files options are turned on. Turning the

2–10 Altera Corporation
 June 2004

Quartus II Handbook, Volume 2

--import_settings_files option on causes a modular executable to
read assignments from the Quartus II settings file instead of from the
compiler database files. Turning the --export_settings_files
option on causes a modular executable to update the Quartus II settings
file to reflect any specified options, as happens when closing a project in
the Quartus II GUI.

Table 2–2 lists the precedence for reading assignments depending on the
value of the --import_settings option.

Table 2–3 lists the locations to which assignments are written, depending
on the value of the --export_settings command-line option.

The following example assumes that a project named fir_filter
exists, and that the analysis and synthesis step has been performed (using
the quartus_map command).

quartus_fit fir_filter --fmax=80MHz r
quartus_tan fir_filter r
quartus_tan fir_filter --fmax=100MHz --tao=timing_result-100.tao
--export_settings_files=off r

The first command, quartus_fit fir_filter --fmax=80MHz, runs
the quartus_fit executable and specifies a global fMAX requirement of
80 MHz.

The second command, quartus_tan fir_filter, runs Quartus II
timing analysis for the results of the previous fit.

Table 2–2. Precedence for Reading Assignments

Option Specified Precedence for Reading Assignments

--import_settings_files=on (Default) 1. Command-line options
2. Quartus II Settings File (.qsf)
3. Project database (db directory, if it exists)
4. Quartus II software defaults

--import_settings_files=off 1. Command-line options
2. Project database (db directory, if it exists)
3. Quartus II software defaults

Table 2–3. Location for Writing Assignments

Option Specified Location for Writing Assignments

--export_settings_files=on (Default) Quartus II Settings File (.qsf) and compiler database

--export_settings_files=off Compiler database

Altera Corporation 2–11
June 2004

Command-Line Scripting Examples

The third command reruns Quartus II timing analysis with a global fMAX
requirement of 100 MHz and saves the result in a file called
timing_result-100.tao. By specifying the
--export_settings_files=off option, the modular executable
does not update the Quartus II settings file to reflect the changed fMAX
requirement. The compiler database files reflect the changed fMAX
requirement. If the --export_settings_files=off option is not
specified, the modular executable updates the Quartus II settings file to
reflect the 100-MHz global fMAX requirement.

Use the --import_settings_files=off and
--export_settings_files=off options (where appropriate) to
optimize the way that the Quartus II software reads and updates settings
files. The following example shows how to avoid unnecessary importing
and exporting.

quartus_map filtref --source=filtref --part=ep1s10f780c5 r
quartus_fit filtref --fmax=100MHz --import_settings_files=off r
quartus_tan filtref --import_settings_files = off --export_settings_files
= off r
quartus_asm filtref --import_settings_files=off --export_settings_files
= off r

The quartus_tan and quartus_asm executables do not need to import
or export settings files because they do not change any settings in the
project.

Command-Line
Scripting
Examples

This section of the chapter presents various examples of command-line
executable use.

Check Design File Syntax

This shell script example assumes that the Quartus II software tutorial
project called fir_filter exists in the current directory. (This project exists
in the <Quartus II directory>/qdesigns/fir_filter directory unless the
Quartus II software tutorial files are not installed.) The
--analyze_file option specifies each file on which to perform a
syntax check. The script checks the exit code of the quartus_map
executable to determine whether there was an error during the syntax
check. Files with syntax errors are added to the FILES_WITH_ERRORS
variable, and when all files have been checked for syntax, the script prints
a message indicating whether there were any syntax errors. Any options
that are not specified use the values from the project database. If not
specified there, then the executable uses the Quartus II software default
values. For example, the fir_filter project is set to target the Cyclone
device family, so it is not necessary to specify the --family option.

2–12 Altera Corporation
 June 2004

Quartus II Handbook, Volume 2

This shell script is specifically designed for use on UNIX systems employing
the sh shell.

#!/bin/sh
FILES_WITH_ERRORS=""
Iterate over each file with a .bdf or .v extension
for filename in `ls *.bdf *.v`
do
 # Perform a syntax check on the specified file

quartus_map fir_filter --analyze_file=$filename
If the exit code is non-zero, the file has a syntax error
if [$? -ne 0]
then

FILES_WITH_ERRORS="$FILES_WITH_ERRORS $filename"
fi

done

if [-z "$FILES_WITH_ERRORS"]
then

echo "All files passed the syntax check"
exit 0

else
echo "There were syntax errors in the following file(s)"
echo $FILES_WITH_ERRORS
exit 1

fi

Create a Project & Synthesize a Netlist Using Netlist Optimizations

This example creates a new Quartus II project with a file top.edf as the top-
level entity. The --enable_register_retiming=on and
--enable_wysiwyg_resynthesis=on options allow the technology
mapper to optimize the design using gate-level register retiming and
technology remapping.

f For more details about register retiming, technology remapping, and other
netlist optimization options, consult the Quartus II Help.

The --part option tells the technology mapper to target an
EP20K600EBC652-1X device. To create the project and synthesize it using the
netlist optimizations described above, type the following command at a
command prompt:

quartus_map top --source=top.edf --enable_register_retiming=on
--enable_wysiwyg_resynthesis=on --part=EP20K600EBC652-1Xr

Altera Corporation 2–13
June 2004

Command-Line Scripting Examples

Attempt to Fit a Design as Quickly as Possible

This example assumes that a project called top exists in the current
directory, and that the name of the top-level entity is top. The
--effort=fast option forces the Fitter to use the fast fit algorithm to
increase compilation speed, possibly at the expense of reduced fMAX
performance. The --one_fit_attempt=on option restricts the Fitter to
only one fitting attempt for the design.

To attempt to fit the project called top as quickly as possible, type the
following command at a command prompt:

quartus_fit top --effort=fast --one_fit_attempt=on r

Fit a Design Using Multiple Seeds

This shell script example assumes that the Quartus II software tutorial
project called fir_filter exists in the current directory (defined in a file
called fir_filter.qpf). If the tutorial files are installed on your system, this
project exists in the <Quartus II directory>/qdesigns/fir_filter directory.
Because the top-level entity in the project does not have the same name as
the project, you must specify the revision name for the top-level entity
with the --rev option. The --seed option specifies the seeds to use for
fitting.

A seed is a parameter that affects the random initial placement of the
Quartus II Fitter. Varying the seed can result in better performance for
some designs.

After each fitting attempt, the script creates new directories for the results
of each fitting attempt and copies the complete project to the new
directory so that the results are available for viewing and debugging after
the script has completed.

This shell script is specifically designed for use on UNIX systems
employing the sh shell.

#!/bin/sh
ERROR_SEEDS=""
quartus_map fir_filter --rev=filtref
Iterate over a number of seeds
for seed in 1 2 3 4 5
do
echo "Starting fit with seed=$seed"
Perform a fitting attempt with the specified seed
 quartus_fit fir_filter --seed=$seed --rev=filtref
If the exit-code is non-zero, the fitting attempt was
successful, so copy the project to a new directory
 if [$? -eq 0]
 then

2–14 Altera Corporation
 June 2004

Quartus II Handbook, Volume 2

mkdir ../fir_filter-seed_$seed
mkdir ../fir_filter-seed_$seed/db
cp * ../fir_filter-seed_$seed
cp db/* ../fir_filter-seed_$seed/db

 else
ERROR_SEEDS="$ERROR_SEEDS $seed"

 fi
done
if [-z "$ERROR_SEEDS"]
then
 echo "Seed sweeping was successful"
 exit 0
else
 echo "There were errors with the following seed(s)"
 echo $ERROR_SEEDS
 exit 1
fi

1 Use the Design Space Explorer included with the Quartus II
software (DSE) script (by typing quartus_sh --dse r at a
command prompt) to improve design performance by
performing automated seed sweeping.

f For more information on the DSE, type quartus_sh --help=dse r at
the command prompt, or see the Design Space Explorer chapter in
Volume 2 of the Quartus II Handbook.

Makefile Implementation

You can also use the Quartus II modular executables in conjunction with
the make utility to automatically update files when other files they
depend on change. The file dependencies and commands used to update
files are specified in a text file called a makefile. The following example is
one way of implementing a makefile with modular executables.

##
Project Configuration:

Specify the name of the design (project) and the list of source
files used.
##

PROJECT = chiptrip
SOURCE_FILES = auto_max.v chiptrip.v speed_ch.v tick_cnt.v
time_cnt.v
ASSIGNMENT_FILES = chiptrip.qpf chiptrip.qsf

##
Main Targets
#
all: build everything
clean: remove output files and database
clean_all: removes settings files as well as clean.
##

Altera Corporation 2–15
June 2004

Command-Line Scripting Examples

all: smart.log $(PROJECT).asm.rpt $(PROJECT).tan.rpt

clean:
rm -rf *.rpt *.chg smart.log *.htm *.eqn *.pin *.sof *.pof db

rm-rf*.summary
clean_all: clean

rm -rf *.qpf*.qsf *.qws

map: smart.log $(PROJECT).map.rpt
fit: smart.log $(PROJECT).fit.rpt
asm: smart.log $(PROJECT).asm.rpt
tan: smart.log $(PROJECT).tan.rpt
smart: smart.log

##
Executable Configuration
##

MAP_ARGS = --family=Stratix
FIT_ARGS = --part=EP1S20F484C6
ASM_ARGS =
TAN_ARGS =

##
Target implementations
##

STAMP = echo done >

$(PROJECT).map.rpt: map.chg $(SOURCE_FILES)
quartus_map $(MAP_ARGS) $(PROJECT)
$(STAMP) fit.chg

$(PROJECT).fit.rpt: fit.chg $(PROJECT).map.rpt
quartus_fit $(FIT_ARGS) $(PROJECT)
$(STAMP) asm.chg
$(STAMP) tan.chg

$(PROJECT).asm.rpt: asm.chg $(PROJECT).fit.rpt
quartus_asm $(ASM_ARGS) $(PROJECT)

$(PROJECT).tan.rpt: tan.chg $(PROJECT).fit.rpt
quartus_tan $(TAN_ARGS) $(PROJECT)

smart.log: $(ASSIGNMENT_FILES)
quartus_sh --determine_smart_action $(PROJECT) > smart.log

##
Project initialization
##

$(ASSIGNMENT_FILES):
quartus_sh --prepare $(PROJECT)

map.chg:
$(STAMP) map.chg

fit.chg:

2–16 Altera Corporation
 June 2004

Quartus II Handbook, Volume 2

$(STAMP) fit.chg
tan.chg:

$(STAMP) tan.chg
asm.chg:

$(STAMP) asm.chg

A Tcl script is provided with the Quartus II software to create or modify
files which can be specified as dependencies in the make rules, assisting
you in makefile development. Complete information about this Tcl script
and how to integrate it with makefiles is available by running the
command quartus_sh --help=determine_smart_action.

The QFlow Script

A Tcl/Tk-based graphical interface called QFlow is included with the
modular executables. Designers can use the QFlow interface to open
projects, launch some of the modular executables, view report files, and
make some global project assignments. The QFlow interface can run the
following modular executables:

■ quartus_map (Analysis & Synthesis)
■ quartus_fit (Fitter)
■ quartus_tan (Timing Analysis)
■ quartus_asm (Assembler)
■ quartus_eda (EDA Netlist Writer)

To view floorplans or perform other GUI-intensive tasks, launch the
Quartus II GUI.

Start QFlow by typing the following command at a command prompt:
quartus_sh -g r. Figure 2–2 shows the QFlow interface.

Figure 2–2. QFlow Interface

Altera Corporation 2–17
June 2004

More Help with Quartus II Modular Executables

1 The QFlow script is located in the <Quartus II
directory>/bin/tcl_scripts/qflow/ directory.

More Help with
Quartus II
Modular
Executables

More information on modular executable use and the Quartus II Tcl API
is available by typing quartus_sh --qhelp at a command prompt.
This command starts the Quartus II Command Line and Tcl API Help
browser, a viewer for information on the Quartus II modular executables
and Tcl API (Figure 2–3).

Figure 2–3. Quartus II Command Line & Tcl API Help Browser

Click items under Help Topics to get more information on the topics
listed.

2–18 Altera Corporation
 June 2004

Quartus II Handbook, Volume 2

Conclusion Command-line scripting in Quartus II software provides important
benefits to designers, including increased flexibility and easy integration
with other EDA software in FPGA design flows. Scripts reduce memory
usage, improve performance, and bring true command-line control to all
stages of FPGA design.

Altera Corporation 3–1
August 2004 Preliminary

3. Tcl Scripting

Introduction Developing and running tool command language (Tcl) scripts to control
the Altera® Quartus® II software allows you to perform a wide range of
functions, such as compiling a design or writing procedures to automate
common tasks.

You can automate your Quartus II assignments using Tcl scripts so that
you do not have to create them individually. Tcl scripts also facilitate
project or assignment migration. For example, when using the same
prototype or development board for different projects, you can automate
reassignment of pin locations in each new project. The Quartus II
software can also generate a Tcl script based on all the current
assignments in the project, which aids in migrating assignments to
another project. You can use Tcl scripts to manage a Quartus II project,
make assignments, define design constraints, make device assignments,
run compilations, perform timing analysis, import LogicLock™ region
assignments, use the Quartus II Chip Editor, and access reports.

The Quartus II software Tcl commands follow the electronic design
automation (EDA) industry Tcl application programming interface (API)
standards for using command-line options to specify arguments. This
simplifies learning and using Tcl commands. If you encounter an error
using a command argument, the Tcl interpreter gives help information
showing correct usage.

This chapter includes sample Tcl scripts for the Quartus II software. You
can modify these example scripts for use with your own designs.

What is Tcl? Tcl (pronounced tickle) is a popular scripting language that is similar to
many shell scripting and high-level programming languages. It provides
support for control structures, variables, network socket access, and APIs.
Tcl is the EDA industry-standard scripting language used by Synopsys,
Mentor Graphics®, Synplicity, and Altera software. It allows you to create
custom commands and works seamlessly across most development
platforms. For a list of recommended literature on Tcl, see “References”
on page 3–28.

qii52003-2.1

3–2 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

You can create your own procedures by writing scripts containing basic
Tcl commands, user-defined procedures, and Quartus II API functions.
You can then automate your design flow, run the Quartus II software in
batch mode, or execute the individual Tcl commands interactively in the
Quartus II Tcl interactive shell.

The Quartus II software version 4.1 supports Tcl/Tk version 8.4, supplied
by the Tcl DeveloperXchange at http://tcl.activestate.com.

Tcl Scripting
Basics

This section is a brief introduction to Tcl, an interpreted scripting
language. The core commands support variables, control structures, and
procedures. Additionally, there are commands for accessing the file
system and network sockets, and running other programs. You can create
platform-independent graphical interfaces with the Tk widget set. There
are many more Tcl commands and features not covered in this brief
introduction.

f For more information about Tcl scripting, consult any of the
“References” on page 3–28.

Hello World Example

This example shows the basic “Hello world” in Tcl.

puts "Hello world"

Use double quotation marks to group the words hello and world as one
argument. Double quotation marks allow substitutions to occur in the
group. Substitutions can be simple variable substitutions, or the result of
running a nested command, described later in this section. Use curly
braces ({}) for grouping when you want to prevent substitutions.

Altera Corporation 3–3
August 2004 Preliminary

Tcl Scripting Basics

Variables

Use the set command to assign a value to a variable. You do not have to
declare a variable before using it. Tcl variable names are case-sensitive.
This example assigns the value 1 to the variable named a.

set a 1

To access the contents of a variable, use a dollar sign before the variable
name. This example also prints "Hello world".

set a Hello
set b world
puts "$a $b"

Nested Commands

Use square brackets to evaluate nested commands. The Tcl interpreter
evaluates nested commands, starting with the innermost nested
command, and commands nested at the same level from left to right. Each
nested command result is substituted in the outer command. This
example sets a to the length of the string foo.

set a [string length foo]

There are many other operations the string command can perform. Refer
to the references at the end of this chapter for more information.

Arithmetic

Use the expr command to perform arithmetic calculations. Using curly
braces to group the arguments of this command makes arithmetic
calculations more efficient and preserves numeric precision. This
example sets a to the sum of 1 and the square root of 2.

set a [expr { 1 + sqrt(2) }]

Tcl also supports boolean operators such as & (AND), | (OR), ! (NOT),
and comparison operators such as < (less than), > (greater than), and
== (equal to).

f For a complete list of supported operators, refer to “References” on
page 3–28.

3–4 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Lists

A Tcl list is a series of values. Supported list operations include creating
lists, appending lists, extracting elements, computing the length of a list,
sorting a list, and more. This example sets a to a list with three numbers
in it.

set a { 1 2 3 }

This example prints the 0th element of the list stored in a.

puts [lindex $a 0]

This example sets b to the length of the list stored in a.

set b [llength $a]

Control structures

Tcl supports common control structures, including if-then-else
conditions and for, foreach, and while loops. Positioning curly braces
as shown in the following examples ensures the control structure
commands are executed efficiently and correctly. This example prints
whether the value of variable a is positive, negative, or zero.

if { $a > 0 } {
puts "The value is positive"

} elseif { $a < 0 } {
puts "The value is negative"

} else {
puts "The value is zero"

}

This example uses a for loop to print each element in a list.

set a { 1 2 3 }
for { set i 0 } { $i < [llength $a] } { incr i } {

puts "The list element at index $i is [lindex $a
$i]"
}

This example uses a foreach loop to print each element in a list

set a { 1 2 3 }
foreach element $a {

puts "The list element is $element"
}

Altera Corporation 3–5
August 2004 Preliminary

Tcl Scripting Basics

This example uses a while loop to print each element in a list

set a { 1 2 3 } {
set i 0
while { $i < [llength $a] } {

puts "The list element at index $i is [lindex $a $i]"
incr i

}

You do not need to use the expr command in boolean expressions in
control structure commands because they invoke the expr command
automatically.

Procedures

Use the proc command to define a Tcl procedure (known as a subroutine
or function in other scripting and programming languages). The scope of
variables in a procedure is local to the procedure. If the procedure returns
a value, use the return command to return the value from the procedure.
This example defines a procedure that multiplies two numbers and
returns the result

proc multiply { x y } {
set product [expr { $x * $y }]
return $product

}

This example shows how to use the multiply procedure in your code.
You must define a procedure before your script calls it, as shown in this
example.

proc multiply { x y } {
set product [expr { $x * $y }]
return $product

}
set a 1
set b 2
puts [multiply $a $b]

3–6 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Altera recommends defining procedures near the beginning of a script. If
you want to access global variables in a procedure, use the global
command in each procedure that uses a global variable. This example
defines a procedure that prints an element in a global list of numbers,
then calls the procedure.

proc print_global_list_element { i } {
global my_data
puts "The list element at index $i is [lindex $my_data $i]"

}
set my_data { 1 2 3}
print_global_list_element 0

Quartus II Tcl
API Reference

Access the Quartus II Tcl API Help reference by typing the following
command at a command prompt:

quartus_sh --qhelp

This command runs the Quartus II Command-Line and the Tcl API Help
browser, which documents all commands and options in the Quartus II
Tcl API. It includes detailed descriptions and examples for each
command.

Quartus II Tcl
Packages

The Quartus II Tcl commands are grouped in packages by function.
Table 3–1 describes each Tcl package.

Table 3–1. Tcl Commands Grouped in Packages, by Function (Part 1 of 2)

Package Name Package Description

project Create and manage projects and revisions, make any
project assignments including timing assignments.

flow Compile a project, run command-line executables and
other common flows

report Get information from report tables, create custom
reports

timing Annotate timing netlist with delay information, compute
and report timing paths

timing_report List timing paths

advanced_timing Traverse the timing netlist and get information about
timing nodes

device Get device and family information from the device
database

backannotate Back annotate assignments

logiclock Create and manage LogicLock regions

Altera Corporation 3–7
August 2004 Preliminary

Quartus II Tcl Packages

By default, only the minimum number of packages are loaded
automatically with each Quartus II executable. This keeps the memory
requirement for each executable as low as possible. Because the minimum
number of packages are automatically loaded, you must load other
packages before you can run commands in those packages, or get help on
those packages.

Table 3–2 lists the Quartus II Tcl packages available with Quartus II
executables and indicates whether a package is loaded by default or is
available to be loaded as necessary. A blank space means the package is
not available in that executable.

chip_editor Identify and modify resource usage and routing with the
Chip Editor

simulator Configure and perform simulations

stp Run the SignalTap II logic analyzer

database_manager Manage version-compatible database files

misc Perform miscellaneous tasks

Table 3–1. Tcl Commands Grouped in Packages, by Function (Part 2 of 2)

Package Name Package Description

Table 3–2. Tcl Package Availability by Quartus II Executable

Packages
Quartus II Executable

Quartus_sh Quartus_tan Quartus_cdb Quartus_sim Tcl Console

advanced_timing Not Loaded

backannotate Not Loaded Not Loaded

chip_editor Not Loaded

device Loaded Not Loaded Loaded Loaded Not Loaded

flow Not Loaded Not Loaded Not Loaded Not Loaded Not Loaded

logiclock Not Loaded Not Loaded Not Loaded

misc Loaded Loaded Loaded Loaded Loaded

project Loaded Loaded Loaded Loaded Loaded

report Not Loaded Not Loaded Not Loaded Loaded Not Loaded

simulator Loaded

timing Loaded

timing_report Not Loaded Loaded

old_api Loaded

3–8 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Loading Packages

To load a Quartus II Tcl package, use the following Tcl command:

load_package [-version <version number>] <package name>.

This command is similar to the package require Tcl command, but
you can easily alternate between different versions of a Quartus II Tcl
package with the load_package command.

f For additional information on these and other Quartus II command-line
executables, see the Command-Line Scripting chapter in Volume 2 of the
Quartus II Handbook.

Executables
Supporting Tcl

Some of the Quartus II command-line executables support Tcl scripting.
They are listed in Table 3–3. Each executable supports different sets of Tcl
packages. Refer to the following table to determine the appropriate
executable to run your script.

The quartus_tan and quartus_cdb executables support supersets of
the packages supported by the quartus_sh executable. You should use
the quartus_sh executable if you run Tcl scripts with only project
management and assignment commands, or need a Quartus II command-
line executable with a small memory footprint.

f For more information about these command-line executables, refer to the
Command-Line Scripting chapter in Volume 2 of the Quartus II Handbook.

Table 3–3. Command-line Executables Supporting Tcl Scripting

Executable Name Executable Description

quartus_sh The Quartus II Shell is a simple Tcl scripting shell, useful
for making assignments, general reporting, and
compiling.

quartus_tan Use the Quartus II Timing Analyzer to perform simple
timing reporting and advanced timing analysis.

quartus_cdb The Quartus II Compiler Database supports back
annotation, LogicLock region operations, and chip editor
functions

quartus_sim Use the Quartus II Simulator to simulate designs with Tcl
testbenches.

Altera Corporation 3–9
August 2004 Preliminary

Executables Supporting Tcl

Command-Line Options (-s, -t, etc)

Table 3–4 lists three command-line options you can use with executables
that support Tcl.

Run a Tcl Script

Running an executable with the -t option runs the specified Tcl script.
You can also specify arguments to the script. Access the arguments
through the argv variable, or use a package such as cmdline, which
supports arguments of the following form:

-<argument name> <argument value>

The cmdline package is included in the <Quartus II directory>/
bin/tcl_packages/tcllib-1.4/cmdline directory.

1 The Quartus II software version 4.0 and earlier does not support
the argv variable. In those versions of the software, script
arguments are in the quartus(args) global variable.

Interactive Shell Mode

Running an executable with the -s option starts an interactive Tcl shell
session that displays a tcl> prompt. Everything you type in the Tcl shell
is immediately interpreted by the shell. You can run a Tcl script within the
interactive shell with the following command:

source <script name> [<script arguments>] r

If a command is not recognized by the shell, it is assumed to be an
external command and executed with the exec command.

Table 3–4. Command-Line Options Supporting Tcl Scripting

Command-Line
Option Description

-t <script file>
[<script args>]

Run the specified Tcl script with optional arguments

-s Open the executable in the interactive Tcl shell mode

--tcl_eval
<tcl command>

Evaluate the remaining command-line arguments as Tcl
commands. For example, the following command displays
help for the project package: quartus_sh --tcl_eval
help -pkg project

3–10 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Evaluate as Tcl

Running an executable with the --tcl_eval option causes the
executable to immediately evaluate the remaining command-line
arguments as Tcl commands. This can be useful if you want to run simple
Tcl commands from other scripting languages.

Using the Quartus II Tcl Console Window

You can run Tcl commands directly in the Quartus II Tcl Console window.
To open the window, choose Utility Windows > Tcl Console (View
menu). By default, the Tcl Console is docked in the bottom-right corner of
Quartus II graphical user interface (GUI). Everything typed in the Tcl
Console is interpreted by the Quartus II Tcl shell.

1 The Quartus II Tcl Console window supports the Tcl API, used
in the Quartus II software version 3.0 and earlier, for backward
compatibility with older designs and EDA tools.

Tcl messages appear in the System tab (Messages window). Errors and
messages written to stdout and stderr also appear in the Quartus II
Tcl Console window.

Examples Most chapters in the Quartus II Handbook include information about
scripting support. They include feature-specific examples and script
information. For scripting help on a specific feature, refer to the
corresponding chapter in the handbook.

If you are an advanced Tcl scripting user, you can refer to some Tcl scripts
included with the Quartus II software and modify them to suit your
needs. The Design Space Explorer (DSE), Quartus II Command-Line and
Tcl API reference, and QFlow are written with Tcl and Tk. Files for those
scripts are located in the <Quartus II installation>/bin/tcl_scripts
directory.

Altera Corporation 3–11
August 2004 Preliminary

Examples

Accessing Command-Line Arguments

Virtually all Tcl scripts must accept command-line arguments, such as the
name of a project or revision. The global variable quartus(args) is a
list of the arguments typed on the command-line following the name of
the Tcl script. Here is a code example that prints all the arguments in the
quartus(args) variable:

set i 0
foreach arg $quartus(args) {

puts "The value at index $i is $arg"
incr i

}

If you save these commands in a Tcl script file called print_args.tcl, you
see the following output when you type this command:

quartus_sh -t print_args.tcl my_project 100MHzr

The value at index 0 is my_project

The value at index 1 is 100MHz

Using the cmdline Package

You can use the cmdline package included with the Quartus II software
for more robust and self-documenting command-line argument passing.
The cmdline package supports command-line arguments with the form
- <option> <value>. The following code example uses the cmdline
package:

package require cmdline
variable ::argv0 $::quartus(args)
set options {\
 { "project.arg" "" "Project name" } \
 { "frequency.arg" "" "Frequency" } \
}
set usage "You need to specify options and values"
array set optshash [::cmdline::getoptions ::argv $options $usage]
puts "The project name is $optshash(project)"
puts "The frequency is $optshash(frequency)"

If you save those commands in a Tcl script called print_cmd_args.tcl you
will see the following output when you type this command:

quartus_sh -t print_cmd_args.tcl -project my_project -frequency 100MHzr

The project name is my_project
The frequency is 100MHz

3–12 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

f For more information on the cmdline package, refer to the
documentation for the package at <Quartus II installation directory>/
bin/tcl_packages/tcllib-1.4/doc/cmdline.html

PCreating Projects & Making Assignments

One benefit of the Tcl scripting API is that it is easy to create a script that
makes all the assignments for an existing project. You can use the script at
any time to restore your project settings to a known state. Choose
Generate Tcl File for Project (Project menu) to generate a Tcl file with all
of your assignments automatically. You can source this file to recreate
your project, and you can edit the file to add other commands, such as
compiling the design. The file is a good starting point to learn about
project management commands and assignment commands.

The following example script is a compilation script for the finite impulse
response (FIR) filter example project used in the Quartus II Tutorial. It
shows how to set global, location, and instance assignments for a project
followed by a complete project compilation using the
::quartus::flow package.

This Tcl file works with quartus_sh.exe
This Tcl file will compile the Quartus II tutorial fir_filter
design
set the project_name to fir_filter
set revision to filtref
set project_name fir_filter
set revision_name filtref

Create a new project and open it
Project_name is project name
No need to explicitly require the ::quartus::project package,
because it's automatically loaded by quartus_sh
if {![project_exists $project_name]} {

project_new -revision $revision_name $project_name;
} else {
project_open -revision $revision_name $project_name;
}

#------ Make global assignments ------#

add design files to project
When the revision name is the same as the project name
adding design files can be skipped
#set_global_assignment -name "BDF_FILE" "filtref.bdf"
#set_global_assignment -name "VERILOG_FILE" "acc.v"
#set_global_assignment -name "VERILOG_FILE" "accum.v"
#set_global_assignment -name "VERILOG_FILE" "hvalues.v"
#set_global_assignment -name "VERILOG_FILE" "mult.v"

Altera Corporation 3–13
August 2004 Preliminary

Examples

#set_global_assignment -name "VERILOG_FILE" "state_m.v"
#set_global_assignment -name "VERILOG_FILE" "taps.v"

set_global_assignment -name FAMILY Cyclone

#------ project compilation ------#

The project is compiled here to see ESB placement following
what is done in the tutorial
load_package flow
execute_flow -compile

project_close

1 The assignments created or modified while a project is openare
not committed to the Quartus II settings files unless you
explicitly call export_assignments or project_close
(unless -dont_export_assignments is specified). In some
cases, such as when running execute_flow, the Quartus II
software automatically commits the changes.

Compiling Designs

You can run the Quartus II command-line executables from Tcl scripts
either with the included ::quartus::flow package to run various
Quartus II compilation flows, or by running each executable directly.

The ::quartus::flow Package

The ::quartus::flow package includes two commands for running
Quartus II command-line executables, either individually or together in
standard compilation sequence. The execute_module command
allows you to run an individual Quartus II command-line executable. The
execute_flow command allows you to run some or all of the modules
in commonly-used combinations.

Altera recommends using the ::quartus::flow package instead of
using system calls to run compiler executables.

Another way to run a Quartus II command-line executable from the Tcl
environment is by using the qexec Tcl command, a Quartus II
implementation of Tcl's exec command. For example, to run the Quartus
II technology mapper on a given project, type:

qexec "quartus_map <project_name>" r

3–14 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

When you use the qexec command to compile a design, assignments
made in the Tcl script (or from the Tcl shell) are not exported to the project
database and settings file before compilation. Use the
export_assignments command or compile the project with
commands in the ::quartus::flow package to ensure assignments are
exported to the project database and settings file.

1 You can also use the Tcl exec command to perform command-
line system calls. However, Altera recommends using the
qexec command to avoid limitations with Tcl version 8.3.
Whether using exec or qexec, use caution when making
system calls.

You can also run executables directly in a Tcl shell, using the same syntax
as at the system command prompt. For example, to run the Quartus II
technology mapper on a given project, type the following at the Tcl shell
prompt:

quartus_map <project_name> r

Extracting Report Data

Once a compilation finishes, you may need to extract information from
the report to evaluate the results. For example, you may need to know
how many device resources the design uses, or whether it meets your
performance requirements. The Quartus II Tcl API provides easy access
to report data so you don't have to write scripts to parse the text report
files.

You can use commands that access report data one row at a time, or a cell
at a time. If you know the exact cell or cells you want to access, use the
get_report_panel_data command and specify the row and column
names (or x and y coordinates) and the name of the appropriate report
panel. At times you may need to search for data in a report panel. To do
this, use a loop that reads the report one row at a time with the
get_report_panel_row command.

Report panels are arranged hierarchically, and each level of hierarchy is
denoted by the string “||“ in the panel name. For example, the name of
the Fitter Settings report panel is “Fitter||Fitter Settings” because it is in
the Fitter folder. Panels at the highest hierarchy level do not use the “||”
string. For example, the Flow Settings report panel is named “Flow
Settings.”

The following example prints the number of failing paths in each clock
domain in your design. It uses a loop to access each row of the Timing
Analyzer Summary report panel. Clock domains are listed in the column

Altera Corporation 3–15
August 2004 Preliminary

Examples

named Type with the format Clock Setup:'<clock name>'. Other
summary information is listed in the Type column as well. If the Type
column matches the pattern "Clock Setup*”, the script prints the
number of failing paths listed in the column named Failed Paths.

load_report
set report_panel_name "Timing Analyzer||Timing Analyzer Summary"
set num_rows [get_number_of_rows -name $report_panel_name]
set type_column [get_report_panel_column_index -name $report_panel_name \
 "Type"]
set failed_paths_column [get_report_panel_column_index -name \

$report_panel_name "Failed Paths"]
for {set i 1} {$i < $num_rows} {incr i} {

set report_row [get_report_panel_row -name $report_panel_name -row $i]
set row_type [lindex $report_row $type_column]
set failed_paths [lindex $report_row $failed_paths_column]
if { [string match "Clock Setup*" $row_type] } {

puts "$row_type has $failed_paths failing paths"
}

}
unload_report

Using Collection Commands

Some Quartus II Tcl functions can return very large sets of data which
would be inefficient as Tcl lists. These data structures are referred to as
collections and the Quartus II Tcl API uses a collection ID to access the
collection. There are two Quartus II Tcl commands for working with
collection, foreach_in_collection and get_collection_size.
Use the set command to assign a collection ID to a variable.

f For information about which Quartus II Tcl commands return collection
IDs, refer to help for the foreach_in_collection command.

The foreach_in_collection command

The foreach_in_collection command is similar to the foreach Tcl
command. Use it to iterate through all elements in a collection. The
following example prints all instance assignments in an open project.

set all_instance_assignments [get_all_instance_assignments -name *]
foreach_in_collection asgn $all_instance_assignments {

set to [lindex $asgn 2]
set name [lindex $asgn 3]
set value [lindex $asgn 4]
puts "Assignment to $to: $name = $value"

}

3–16 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

The get_collection_size command

Use the get_collection_size command to get the number of
elements in a collection. The following example prints the quantity of
global assignments in an open project:

set all_global_assignments [get_all_global_assignments -name *]
set num_global_assignments [get_collection_size $all_global_assignments]
puts "There are $num_global_assignments global assignments in your project"

Timing Analysis

The following example script uses the quartus_tan executable to perform
a timing analysis on the fir_filter tutorial design.

The fir_filter design is a two-clock design that requires a base clock
and a relative clock relationship for timing analysis. This script first does
an analysis of the two-clock relationship and checks for tSU slack between
clk and clkx2. The first pass of the timing analysis discovers a negative
slack for one of the clocks. The second part of the script adds a multicycle
assignment from clk to clkx2 and re-analyzes the design as a multi-
clock, multicycle design.

The script does not recompile the design with the new timing
assignments, and timing-driven compilation is not used in the synthesis
and placement of this design. New timing assignments are added only for
the timing analyzer to analyze the design by using the
create_timing_netlist and report_timing Tcl commands.

1 You must compile the project before running the script example
below.

This Tcl file is to be used with quartus_tan.exe
This Tcl file will do the Quartus II tutorial fir_filter design
timing analysis portion by making a global timing assignment and
creating multi-clock assignments and run timing analysis
for a multi-clock, multi-cycle design

set the project_name to fir_filter
set the revision_name to filtref
set project_name fir_filter
set revision_name filtref

open the project
project_name is the project name
project_open -revision $revision_name $project_name;

Doing TAN tutorial steps this section re-runs the timing
analysis module with multi-clock and multi-cycle settings

Altera Corporation 3–17
August 2004 Preliminary

Examples

#------ Make timing assignments ------#

#Specifying a global FMAX requirement (tan tutorial)
set_global_assignment -name FMAX_REQUIREMENT 45.0MHz
set_global_assignment -name CUT_OFF_IO_PIN_FEEDBACK ON

create a base reference clock "clocka" and specifies the
following:
BASED_ON_CLOCK_SETTINGS = clocka;
INCLUDE_EXTERNAL_PIN_DELAYS_IN_FMAX_CALCULATIONS = OFF;
FMAX_REQUIREMENT = 50MHZ;
DUTY_CYCLE = 50;
Assigns the reference clocka to the pin "clk"
create_base_clock -fmax 50MHZ -duty_cycle 50 clocka -target clk

creates a relative clock "clockb" based on reference clock
"clocka" with the following settings:
BASED_ON_CLOCK_SETTINGS = clocka;
MULTIPLY_BASE_CLOCK_PERIOD_BY = 1;
DIVIDE_BASE_CLOCK_PERIOD_BY = 2;clock period is half the base clk
DUTY_CYCLE = 50;
OFFSET_FROM_BASE_CLOCK = 500ps;The offset is .5 ns (or 500 ps)
INVERT_BASE_CLOCK = OFF;
Assigns the reference clock to pin "clkx2"
create_relative_clock -base_clock clocka -duty_cycle 50\
-divide 2 -offset 500ps -target clkx2 clockb

create new timing netlist based on new timing settings
create_timing_netlist

does an analysis for clkx2
Limits path listing to 1 path
Does clock setup analysis for clkx2
report_timing -npaths 1 -clock_setup -file setup_multiclock.tao

The output file will show a negative slack for clkx2 when only
specifying a multi-clock design. The negative slack was created
by the 500 ps offset from the base clock

removes old timing netlist to allow for creation of a new timing
netlist for analysis by report_timing
delete_timing_netlist

adding a multi-cycle setting corrects the negative slack by # adding a
multicycle assignment to clkx2 to allow for more
set-up time
set_multicycle_assignment 2 -from clk -to clkx2

create a new timing netlist based on additional timing
assignments create_timing_netlist

outputs the result to a file for clkx2 only

3–18 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

report_timing -npaths 1 -clock_setup -clock_filter clkx2 \
 -file clkx2_setup_multicycle.tao
The new output file will show a positive slack for the clkx2
project_close

EDA Tool Assignments

You can target EDA tools for a project in the Quartus II software in Tcl by
using the set_global_assignment Tcl command. To use the default
tool settings for each EDA tool, you need only specify the EDA tool to be
used. The EDA interfaces available for the Quartus II software cover
design entry, simulation, timing analysis and board design tools. More
advanced EDA tools such as those for formal verification and resynthesis
are supported by their own global assignment.

The global options used for interface to EDA tools in the Quartus II
software are shown below:

■ EDA_DESIGN_ENTRY_SYNTHESIS_TOOL
■ EDA_SIMULATION_TOOL
■ EDA_TIMING_ANALYSIS_TOOL
■ EDA_BOARD_DESIGN_TOOL
■ EDA_FORMAL_VERIFICATION_TOOL
■ EDA_RESYNTHESIS_TOOL

Altera Corporation 3–19
August 2004 Preliminary

Examples

By default, these project options are set to <none>. Table 3–5 lists the
EDA interface options available in the Quartus II software. Enclose
interface assignment options that contain spaces in quotation marks.

Table 3–5. EDA Interface Options

Option Acceptable Values

Design Entry
(EDA_DESIGN_ENTRY_SYNTHESIS_TOOL)

Design Architect
Design Compiler
FPGA Compiler
FPGA Compiler II
FPGA Compiler II Altera Edition
FPGA Express
LeonardoSpectrum
LeonardoSpectrum-Altera (Level 1)
Synplify
Synplify Pro
ViewDraw
Precision Synthesis
Custom

Simulation
(EDA_SIMULATION_TOOL)

ModelSim (VHDL output from the Quartus II software)
ModelSim (Verilog HDL output from the Quartus II software)
ModelSim-Altera (VHDL output from the Quartus II
software)
ModelSim-Altera (Verilog HDL output from the Quartus II
software)
SpeedWave
VCS
Verilog-XL
VSS
NC-Verilog (Verilog HDL output from the Quartus II
software)
NC-VHDL (VHDL output from the Quartus II software)
Scirocco (VHDL output from the Quartus II software)
Custom Verilog HDL
Custom VHDL

Timing Analysis
(EDA_TIMING_ANALYSIS_TOOL)

Prime Time (VHDL output from the Quartus II software)
Prime Time (Verilog HDL output from the Quartus II
software)
Stamp (board model)
Custom Verilog HDL
Custom VHDL

Board level tools
(EDA_BOARD_DESIGN_TOOL)

Signal Integrity (IBIS)
Symbol Generation (ViewDraw)

Formal Verification
(EDA_FORMAL_VERIFICATION_TOOL)

Conformal LEC

Resynthesis
(EDA_RESYNTHESIS_TOOL)

PALACE
Amplify

3–20 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

For example, to generate NC-Sim Verilog simulation output,
EDA_SIMULATION_TOOL should be set to target NC-Sim Verilog as the
desired output, as shown below:

set_global_assignment -name eda_simulation_tool\
"NcSim (Verilog HDL output from Quartus II)"

The following example shows compilation of the fir_filter design
files, generating a VHO file output for NC-Sim Verilog simulation:

This script works with the quartus_sh executable
Set the project name to filtref
set project_name filtref

Open the Project. If it does not already exist, create it
if [catch {project_open $project_name}] {project_new \
$project_name}

Set Family
set_global_assignment -name family APEX 20KE

Set Device
set_global_assignment -name device ep20k100eqc208-1

Optimize for speed
set_global_assignment -name optimization_technique speed

Turn-on Fastfit fitter option to reduce compile times
set_global_assignment -name fast_fit_compilation on

Generate a NC-Sim Verilog simulation Netlist
set_global_assignment -name eda_simulation_tool "NcSim\
(Verilog HDL output from Quartus II)"

Create an FMAX=50MHz assignment called clk1 to pin clk
create_base_clock -fmax 50MHz -target clk clk1

Create a pin assignment on pin clk
set_location -to clk Pin_134

Compilation option 1
Always write the assignments to the constraint files before
doing a system call. Else, stand-alone files will not pick up
the assignments
#export_assignments
#qexec quartus_map <project_name>
#qexec quartus_fit <project_name>
#qexec quartus_asm <project_name>
#qexec quartus_tan <project_name>
#qexec quartus_eda <project_name>

Compilation option 2 (better)
Using the ::quartus::flow package, and execute_flow command will
export_assignments automatically and be equivalent to the steps
outlined in compilation option 1
load_package flow

Altera Corporation 3–21
August 2004 Preliminary

Examples

execute_flow -compile

Close Project
project_close

There are custom options available to target other EDA tools. For custom
EDA configurations, you can change the individual EDA interface
options by making additional assignments.

f For a complete list of each EDA setting line available, see “EDA Tool
Setting Section (Settings and Configuration Files)” in Quartus II Help.

Importing LogicLock Functions

The following Tcl script shows how a LogicLock function can be imported
into a project. This example is based on the LogicLock tutorial design
topmult. The script assumes that the Verilog Quartus Mapping file
(.vqm) named pipemult.vqm and the Quartus II Setting File named
pipemult.qsf have been generated already and placed in the topmult
project directory. To import LogicLock regions into a project, the
quartus_cdb executable must be used.

Tcl file created for quartus_cdb to import LogicLock
pipemult.vqm and pipemult.qsf into the topmult project
This Tcl script assumes that pipemult.vqm and pipemult.qsf
have been generated in the lockmult project.

Since ::quartus::flow is not pre-loaded
by quartus_cdb, load this package now
before using the flow Tcl API
Type "help -pkg flow" to view information
about the package
load_package flow

set required_fmax 150.00MHz

set project_name topmult

$project_name contains the project
name, in this case fir_filter
Require package ::quartus::project
load_package project

project_open $project_name

#------ Make global assignments ------#

remove bdf file from project
set_global_assignment -name "BDF_FILE" "pipemult.bdf" -remove
add VQM file to project
set_global_assignment -name "VQM_FILE" "pipemult.vqm"

analyze design with VQM file
execute_module -tool map

3–22 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

import LogicLock constraints
load_package logiclock
initialize_logiclock

imports the pipemult.qsf file to the project topmult.qsf
logiclock_import -no_pins

uninitialize_logiclock

compile entire design
execute_flow -compile

#------ Report Fmax from report ------#
load_package report
load_report
set actual_fmax [get_timing_analysis_summary_results -\
clock_setup clk -actual]
puts ""
puts "---"
puts "Required Fmax: $required_fmax Actual Fmax: $actual_fmax"
puts "---"

project_close

f For additional information on the LogicLock design methodology, see
the LogicLock Design Methodology chapter in Volume 2 of the
Quartus II Handbook.

Using the Quartus II Tcl Shell in Interactive Mode

This section presents an example of using the quartus_sh interactive shell
to make some project assignments and compile the FIR filter tutorial
project. This example assumes that you already have the FIR filter tutorial
design files in a project directory.

To begin, run the interactive Tcl shell. The command and initial output are
shown below:

C:\>quartus_sh -s
Info:**
Info: Running Quartus II Shell
Info: Version 4.0 Internal Build 131 10/06/2003 SJ Full Version
Info: Copyright (C) 1991-2003 Altera Corporation. All rights reserved.
Info: Quartus is a registered trademark of Altera Corporation in the
Info: US and other countries. Portions of the Quartus II software
Info: code, and other portions of the code included in this download
Info: or on this CD, are licensed to Altera Corporation and are the
Info: copyrighted property of third parties who may include, without
Info: limitation, Sun Microsystems, The Regents of the University of
Info: California, Softel vdm., and Verific Design Automation Inc.
Info: Warning: This computer program is protected by copyright law
Info: and international treaties. Unauthorized reproduction or
Info: distribution of this program, or any portion of it, may result

Altera Corporation 3–23
August 2004 Preliminary

Examples

Info: in severe civil and criminal penalties, and will be prosecuted
Info: to the maximum extent possible under the law.
Info: Processing started: Thu Nov 20 19:54:12 2003
Info:***
Info: The Quartus II Shell supports all TCL commands in addition
Info: to Quartus II Tcl commands. All unrecognized commands are
Info: assumed to be external and are run using Tcl's "exec"
Info: command.
Info: - Type "exit" to exit.
Info: - Type "help" to view a list of Quartus II Tcl packages.
Info: - Type "help -pkg <package name>" to view a list of Tcl commands
Info: available for the specified Quartus II Tcl package.
Info: - Type "help -tcl" to get an overview on Quartus II Tcl usages.
Info: **
tcl>

At the Tcl prompt, create a new project called fir_filter with a revision
name called filtref by typing the following command:

tcl> project_new -revision filtref fir_filter r

1 If the project file and project name are the same, the Quartus II
software gives the revision the same name as the project.

Since the revision named filtref matches the top-level file, all design files
are picked up from the hierarchy tree automatically.

Next, set a global assignment for the device with the following command:

tcl> set_global_assignment -name family Cycloner

f To learn more about assignment names that can be used with the -name
option, see “Settings and Configuration Files Introduction” in Quartus II
Help.

1 For assignment values that contain spaces, the value should be
enclosed in quotation marks.

To quickly compile a design, use the ::quartus::flow package, which
properly exports the new project assignments and compiles the design
using the proper sequence of the command-line executables. First load
the package:

tcl> load_package flow r
1.0

For additional help on the ::quartus::flow package, view the
command-line help at the Tcl prompt by typing:

tcl> help -pkg ::quartus::flow r

3–24 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

This sample shows an alternative command and the resulting output:

tcl> help -pkg flow
--

Tcl Package and Version:

 ::quartus::flow 1.0

Description:

 This package contains the set of Tcl functions
 for running flows or command-line executables.

Tcl Commands:

 execute_flow
 execute_module

--

tcl>

This help display gives information on the ::quartus::flow package
and the commands that are available with the package. To read help on
the execute_flow Tcl command, short help displays the options:

tcl> execute_flow -h r

Long help displays additional information and example usage:

tcl> execute_flow -long_help r

or

tcl> help -cmd execute_flow r

To perform a full compilation of the FIR filter design, use the
execute_flow command with the -compile option, as shown in the
following example:

tcl> execute_flow -compile r
Info:***
Info: Running Quartus II Analysis & Synthesis
Info: Version 4.0 SJ Full Version
Info: Processing started: Mon Nov 18 09:30:47 2003
Info: Command: quartus_map --import_settings_files=on --
export_settings_files=of fir_filter -c filtref

Altera Corporation 3–25
August 2004 Preliminary

Getting Help on Tcl & Quartus II Tcl APIs

.

.

.
Info: Writing report file filtref.tan.rpt
tcl>

This script compiles the FIR filter tutorial project, exporting the project
assignments and running quartus_map, quartus_fit, quartus_asm and
quartus_tan. This sequence of events is the same as happens when
choosing Start Compilation (Processing menu) in the Quartus II GUI.

When you are finished with a project, close it using the project_close
command:

tcl> project_close r
tcl>

Then to exit the interactive Tcl shell, type exit.

tcl> exit r

Getting Help on
Tcl & Quartus II
Tcl APIs

Quartus II Tcl help allows easy access to information on the Quartus II Tcl
commands. To access the help information, type help at a command
prompt, as shown below (with sample output):

tcl> help

Available Quartus II Tcl Packages:

Loaded Not Loaded
------------------ --------------------------
::quartus::device ::quartus::flow
::quartus::misc ::quartus::report
::quartus::project

* Type "help -tcl"
 to get an overview on Quartus II Tcl usages.

tcl>

Using the -tcl option with help displays an introduction to the
Quartus II Tcl API that focuses on how to get help for Tcl commands
(short help and long help) and Tcl packages.

3–26 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Table 3–6 summarizes the help options available in the Tcl environment.

Table 3–6. Help Options Available in the Quartus II Tcl Environment (Part 1 of 2)

Help Command Description

help To view a list of available Quartus II Tcl packages, loaded and not
loaded.

help -tcl To view a list of commands used to load Tcl packages and access
command-line help.

help -pkg <package_name>
[-version <version number>]

To view help for a specified Quartus II package thatincludes the list
of available Tcl commands. For convenience, you can omit the
::quartus:: package prefix, and type help -pkg
<package name> r.
If you do not specify the -version option, help for the currently
loaded package is displayed by default. If the package for which
you want help is not loaded, help for the latest version of the
package is displayed by default.

Examples:
help -pkg ::quartus::p r
help -pkg ::quartus::project r
help -pkg project rhelp -pkg project -version
1.0 r

<command_name> -h
or
<command_name> -help

To view short help for a Quartus II Tcl command for which the
package is loaded.

Examples:
project_open -h r
project_open -help r

package require
::quartus::<package name>
[<version>]

To load a Quartus II Tcl package with the specified version. If
<version> is not specified, the latest version of the package is
loaded by default.

Example:
package require ::quartus::project 1.0 r

This command is similar to the load_package command.
The advantage of using load_package is that you can alternate
freely between different versions of the same package.
Type <package name> [-version <version number>] r to
load a Quartus II Tcl package with the specified version. If the
-version option is not specified, the latest version of the
package is loaded by default.

Example:
load_package ::quartus::project -version 1.0 r

Altera Corporation 3–27
August 2004 Preliminary

Getting Help on Tcl & Quartus II Tcl APIs

There are two types of help for Tcl commands:

■ For information on the usage and a brief description of a Tcl
command type, use the -help option. (The -h command-line option
may be used instead of -help, if preferred.) If the Tcl command is
part of a Tcl package that is not loaded, using the -help option
returns “invalid command name" as an error message.

■ For more detailed help on a given Tcl command, use the
-long_help option or type help -cmd <Tcl command name>. If the
Tcl command is part of a Tcl package that is not loaded, typing
<command name> -long_help returns the error message
“invalid command name.”

1 Using the -cmd option does not require that the specific Tcl
command be loaded. Only the -long_help option requires
that the relevant Tcl package be loaded.

help -cmd <command name>
[-version <version number>]
or
<command name> -long_help

To view long help for a Quartus II Tcl command. Only
<command name> -long_help"requires that the associated Tcl
package is loaded.
If you do not specify the -version option, help for the currently
loaded package is displayed by default.
If the package for which you want help is not loaded,help for the
latest version of the package is displayedby default.

Examples:
project_open -long_help r
help -cmd project_open r
help -cmd project_open -version 1.0 r

help -examples To view examples of Quartus II Tcl usage.

help -quartus To view help on the predefined global Tcl array that can be
accessed to view information about the Quartus II executable that
is currently running.

quartus_sh --qhelp To launch the Tk viewer for Quartus II command-line help and
display help for the command-line executables and Tcl API
packages. See “The Tcl/Tk GUI Help Interface” on page 3–28 for
more information.

Table 3–6. Help Options Available in the Quartus II Tcl Environment (Part 2 of 2)

Help Command Description

3–28 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

The Tcl/Tk GUI Help Interface

For a complete list of package and commands available with the
Quartus II software, open the help browser that lists all Quartus II
command-line executables and Tcl API packages and their respective
commands. To open the help browser, type the following command at a
system command prompt:

C:\> quartus_sh --qhelp

This runs a Tcl/Tk script that provides help for Quartus II Command-line
executables and Tcl API packages and commands.

f For more information on this utility, see the Command-Line Scripting
chapter in Volume 2 of the Quartus II Handbook.

Quartus II
Legacy Tcl
Support

The Quartus II software version 3.0 and later command-line executables
do not support the Tcl commands used in previous versions of the
Quartus II software. These commands are supported in the GUI by using
the Quartus II Tcl console or by using the quartus_cmd executable at the
command prompt. If you source Tcl scripts developed for an earlier
version of the Quartus II software using either of these methods, the
project assignments are ported to the project database and settings file.
You can then use the command-line executables to process the resulting
project. This may be necessary if you create a Tcl file using a third-party
EDA tool that does not generate Tcl scripts for the most recent version of
the Quartus II software.

Altera recommends creating all new projects and Tcl scripts with the
latest version of the Quartus II Tcl API.

References For more information on using Tcl, see the following sources:

■ Practical Programming in Tcl and Tk, Brent B. Welch
■ Tcl and the TK Toolkit, John Ousterhout
■ Effective Tcl/TK Programming, Michael McLennan and Mark Harrison
■ Tcl Developer Xchange at http://tcl.activestate.com

Altera Corporation 4–1
June 2004

4. Quartus II Project
Management

Introduction FPGA designs once required just one or two engineers, but today’s larger
and more sophisticated FPGA designs are often developed by several
engineers and are constantly changing throughout the project. To ensure
efficient design coordination, designers are required to keep track of their
changes to the project. To help designers manage their FPGA designs, the
Quartus® II software provides the Revisions, Copy Project, and
Version-Compatible Database features.

In the Quartus II software, a revision is one set of assignments and
settings. A project can have multiple revisions, each with their own set of
assignments and settings. Creating multiple revisions allows you to
change assignments and settings while preserving previous results.

A version is a Quartus II project that includes one set of design files and
one or more revisions (assignments and settings for your project).
Creating multiple versions with the Copy Project feature allows you to
edit a copy of your design files while preserving the original functionality
of your design.

The Version-Compatible Database feature allows databases to be
compatible across different versions of the Quartus II software, thus
avoiding unnecessary recompilations.

Using Revisions
with Your Design

The Revisions feature allows you to create a new set of assignments and
settings for your design without losing your previous assignments and
settings. This ability allows you to explore different assignments and
settings for your design and then compare the results.

There are several ways to use the revisions feature. The first method is to
create a new revision of your design that is not based on any previous
revision. For example, early in your design you may want to create a
revision containing assignments that target area optimization and
another revision containing assignments that target fMAX optimization.

The second method is to create a new revision based on an existing
revision and then try new settings and assignments in the new revision.
Your new revision will already include all the assignments and settings
made in the previous revision. Working on a revision based on another
revision allows you to revert to the original revision if you are not
satisfied with the results from the new revision.

qii52012-1.0

4–2 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

The third method is to compare different compilation results from
different revisions, select the revision that best meets your design
requirements, create a new revision based on the best revision, and
perform further optimizations until the design meets all design
requirements.

Creating and Deleting Revisions

All Quartus II assignments and settings are stored in the Quartus Settings
File (QSF). Each time you create a new revision the Quartus II software
creates a new QSF and adds the name of the new revision to the list of
revisions in the Quartus Project File (QPF). Revisions are managed with
the Revisions dialog box, allowing you to set the current revision, create,
delete, and compare revisions in a project.

To create a revision:

1. If you have not already done so, create a new project or open an
existing project.

2. Choose Revisions (Project menu).

3. If you want to base the new revision on an existing revision for the
current design, select the existing revision in the Revisions list.

4. Click Create.

5. In the Create Revision dialog box, type the name of the new
revision in the Revision name box.

6. If you want to base the new revision on an existing revision for the
current design, and you did not select the revision in Step 3, then
select the revision in the Based on revision list.

or

If you do not want to base the new revision on an existing revision
for the current design, select the blank entry in the Based on revision
list.

7. If you want, edit the description of the revision in the Description
box.

8. If you based the new revision on an existing revision for the current
design, and you want the new revision to contain the database
information from the existing revision, turn on Copy database.

Altera Corporation 4–3
June 2004

Using Revisions with Your Design

9. If you want to specify the new revision as the current revision, turn
on Set as current revision.

10. Click OK.

11. In the Revisions dialog box, click Close.

To delete a revision that is not a design’s current revision:

1. If you have not already done so, open an existing project.

2. Choose Revisions (Project menu).

3. In the Revisions list, select the revision you want to delete.

4. Click Delete.

5. Click Close.

1 To delete the current revision, select a different revision as the
current revision first.

Comparing Revisions

You can compare the results of multiple revisions side by side with the
Compare Revisions dialog box. To compare all revisions in a single
window, click Compare in the Revisions dialog box (Project menu). In
the Compare Revisions dialog box (see Figure 4–1), the results of each
revision in three categories (Analysis & Synthesis, Fitter, and Timing
Analyzer) are compared side by side.

4–4 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

Figure 4–1. Compare Revisions Dialog Box

You can also compare revisions from another project. To do this, click
Compare to other project in the Compare Revisions dialog box and
select a QPF to compare with.

Creating
Different
Versions of Your
Design

Managing different versions of design files in a large project can become
difficult. To assist in this task, the Quartus II software provides utilities to
copy and save different versions of your project. Creating a version of
your project includes copying all your design files, your Quartus II
settings file, and all your associated revisions.

Creating a new version of your project with the Quartus II software
involves creating a copy of your project and then editing your design
files. For example, you have a design that is compatible with a 32-bit data
bus and now you need to create a new version of the design to interface
with a 64-bit data bus. To solve this problem, create a new version of your
project with the Copy Project command (Project menu), and make the
necessary changes to your design files.

Creating a new version of your project with an Electronic Data
Interchange Format (EDIF) or Verilog Quartus Mapping (VQM) netlist
from a third-party EDA synthesis tool involves creating a copy of your
project and then replacing the previous netlist file with the newly

Altera Corporation 4–5
June 2004

Creating Different Versions of Your Design

generated netlist file. Use the Copy Project command (Project menu) to
create a copy of your design and use the Add/Remove Files from Project
command (Project menu) to add and remove design files.

To create a new version of your project, use the Copy Project command
(Project menu).

1. Choose Copy Project (Project menu). This opens the Copy Project
dialog box (see Figure 4–2).

2. Browse or type the path to your new project in the Destination
directory box.

3. Type the new project name in the New project name box.

4. To open the new project immediately, turn on the Open new project
in Quartus II option.

5. Click OK.

Figure 4–2. Copy Project Dialog Box

Archiving Projects

You can use the Quartus II Archive Project feature to create a single
compressed Quartus II Archive File (.qar) of your project containing all
your design, project, and settings files. You also have the option to include
additional files and the project database. The QAR file contains all the
files required to perform a full compilation to restore the original results.

A single project can contain hundreds of files, and it may be difficult to
transfer a project between engineers. The archive file generated by the
Archive Project feature (see Figure 4–3) can easily be shared between
engineers.

4–6 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

Figure 4–3. Archive Project Dialog Box

To archive a project:

1. If you have not already done so, create a new project or open an
existing project.

2. If you want, analyze or compile the design.

3. Choose Archive Project (Project menu).

4. Type a name for the Quartus II Archive File (.qar) in Archive file
name, or select a name with Browse (...).

5. To include the outputs of compilation and simulation, turn on
Include database from compilation and simulation.

6. To include the Version-Compatible Database Files, turn on Include
Version-Compatible Database Files.

7. To include functions from system libraries, turn on Include
functions from system libraries.

8. Click Add/Remove Files to edit the contents of the QAR file.

9. Click OK.

1 Altera® recommends that you perform Analysis and Synthesis
before archiving a project to ensure that all design files are
located and archived.

Altera Corporation 4–7
June 2004

Version-Compatible Databases

To restore an archived project:

1. Choose Restore Archived Project (Project menu).

2. In the Archive name box, type the path and file name of the
Quartus II Archive File (.qar) you wish to restore, or select a QAR
File with Browse (...).

3. In the Destination folder box, type or select the path of the folder
into which you wish to restore the contents of the QAR File, or select
a folder with Browse (...).

4. Click Show log to view the Quartus II Archive Log File (.qarlog) for
the project you are restoring from the QAR File.

5. Click OK.

6. If necessary, recompile the project.

Version-
Compatible
Databases

In the past, compilation databases were locked to the current version of
the Quartus II software. With the introduction of the Version-Compatible
Database feature in the Quartus II software version 4.1, you can export a
version-compatible database and import it into a later version of the
Quartus II software. For example, with the same set of design files, you
can export a database generated from the Quartus II software version 4.1
and import it into the Quartus II software versions 4.1 and later without
having to recompile your design.

Perform the following steps to export a version-compatible database:

1. Choose Export Database (Project menu).

2. Browse or type in a path in the Export Directory box.

3. Click OK.

Perform the following steps to import a version-compatible database:

1. Choose Import Database (Project menu).

2. Browse to the directory to which the database was previously
exported. The default directory is <project name>\export_db.

3. Click OK.

To save the database in a version-compatible format during every
compilation, perform the following steps:

4–8 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

1. Choose Settings (Assignments menu).

2. Select the Compilation Process page.

3. Turn on the Save the database in a version-compatible format
option.

4. Browse to the directory in which you want to save the database.

5. Click OK.

Scripting
Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some of these procedures at a command
prompt.

For detailed information about specific scripting command options and
Tcl API packages, type quartus_sh --qhelp at a system command
prompt to run the Quartus II Command-Line and Tcl API Help browser.

f For more information on Quartus II scripting support, including
examples, refer to the Tcl Scripting and Command-Line Scripting chapters
of the Quartus II Handbook.

Managing Revisions

You can use the following commands to create and manage revisions. For
more information about managing revisions, including creating and
deleting revisions, setting the current revision, and getting a list of
revisions, see “Creating and Deleting Revisions” on page 4–2.

Creating Revisions

The following Tcl command creates a new revision called speed_ch
based on a revision called chiptrip and sets it as the current revision.
The –based_on and –set_current options are optional.

create_revision speed_ch -based_on chiptrip -set_current

Setting the Current Revision

Use the following Tcl command to set the current revision:

set_current_revision <revision name>

Altera Corporation 4–9
June 2004

Scripting Support

Getting a List of Revisions

Use the following Tcl command to get a list of revisions in the opened
project:

get_project_revisions

Deleting Revisions

Use the following Tcl command to delete a revision:

delete_revision <revision name>

Archiving Projects

You can archive projects with a Tcl command or with a command run at
the system command prompt. For more information about archiving
projects, see “Archiving Projects” on page 4–5.

The following Tcl command creates a project archive with the default
settings and overwrites the specified archived file if it already exists:

project_archive archive.qar -overwrite

Type the following command at a command prompt to create a project
archive:

quartus_sh --archive top r

Restoring Archived Projects

You can restore archived projects with a Tcl command or with a command
run at a command prompt. For more information about restoring
archived projects, see page 4–7.

The following Tcl command restores the project archive named
archive.qar in the subdirectory named restored and overwrites existing
files:

project_restore archive.qar -destination restored -overwrite

Type the following command at a command prompt to restore a project
archive:

quartus_sh --restore archive.qar r

4–10 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

Importing and Exporting Version-Compatible Databases

You can import and export version-compatible databases with either a Tcl
command or a command run at a command prompt. For more
information about importing and exporting version-compatible
databases, see “Version-Compatible Databases” on page 4–7.

1 The flow package and the database_manager package
contain commands to manage version-compatible databases.

Use the following commands from the database_manager package to
import or export version-compatible databases.

export_database <directory>
import_database <directory>

Use the following commands available in the flow package to import or
export version-compatible databases. If you use the flow package, you
will also need to specify the database directory variable name.

set_global_assignment \
-name VER_COMPATIBLE_DB_DIR <directory>
execute_flow –flow export_database
execute_flow –flow import_database

Add the following Tcl commands to automatically generate
version-compatible databases after every compilation:

set_global_assignment \
-name AUTO_EXPORT_VER_COMPATIBLE_DB ON \
set_global_assignment \
-name VER_COMPATIBLE_DB_DIR <directory>

The quartus_cdb and the quartus_sh executables provide
commands to manage version-compatible databases:

quartus_cdb <project> -c <revision> \
--export_database=<directory>
quartus_cdb <project> -c <revision> \
--import_database=<directory>

quartus_sh –flow export_database <project> -c <revision>
quartus_sh –flow import_database <project> -c <revision>

Conclusion Throughout the development of a successful FPGA design, designers
often try different settings and versions of their designs. The Revisions
feature in the Quartus II software facilitates the creation and management

Altera Corporation 4–11
June 2004

Conclusion

of revisions, which are sets of different assignments and settings. The
Copy Project feature allows you to create a new version of your design
by copying a set of design files and one or more revisions.

The Quartus II Version-Compatible Database feature saves compilation
time when moving to updated versions of the Quartus II software. These
features in the Quartus II software help facilitate efficient management of
your design to accommodate today’s more sophisticated FPGA designs.

4–12 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

Altera Corporation Section II–1
Preliminary

Section II. Device & Board
Utilities

This section describes the design flow to assign and analyze pin-outs
using the Start I/O Assignment Analysis command in the Quartus® II
software, both with and without a complete design.

This section includes the following chapter:

■ Chapter 5, I/O Assignment Planning & Analysis

Revision History The table below shows the revision history for Chapter 5.

Chapter(s) Date / Version Changes Made

5 June 2004 v2.0 ● Scripting support section added.
● Updated coding examples.

Feb. 2004 v1.0 Initial release

Section II–2 Altera Corporation
Preliminary

Device & Board Utilities Quartus II Handbook, Volume 2

Altera Corporation 5–1
June 2004 Preliminary

5. I/O Assignment Planning &
Analysis

Introduction Today's FPGAs support multiple I/O standards and have high pin
counts. You must be able to make pin assignments efficiently for designs
in these advanced devices. You also need the ability to easily check the
legality of the pin assignments to ensure that the pin-out does not violate
any board layout guidelines such as pin spacing and current draw
limitations.

This chapter describes the design flow to assign and analyze pin-outs
using the Start I/O Assignment Analysis command in the Quartus® II
software, both before and after completion of your design.

I/O Assignment
Planning &
Analysis

Time-to-market constraints means that board layout is often done in
parallel with, or even prior to, creating your design. Therefore, checking
the legality of your I/O assignments early in the design process is often a
requirement.

The Start I/O Assignment Analysis command in the Quartus II software
provides the capability of checking your I/O assignments early in the
process. You can use this command to check the legality of your pin
assignments before, during, or after completion of your design. If design
files are available, you can use this command to perform more thorough
legality checks on your design's I/O pins and surrounding logic. These
checks include proper reference voltage pin usage, valid pin location
assignments, and acceptable mixed I/O standards.

The Start I/O Assignment Analysis command is available for the
Stratix® II, Stratix GX, Stratix, MAX® II, and Cyclone™ device families.

I/O Assignment
Planning &
Analysis Design
Flows

The I/O assignment planning and analysis design flows depend on
whether your project contains design files.

■ When the board layout must be complete before starting the FPGA
design, use the flow shown in Figure 5–1. This flow does not need
design files and checks the legality of your pin assignments.

■ With a complete design, use the flow shown in Figure 5–3 on
page 5–5. This flow uses design files to thoroughly check the legality
of your pin assignments and surrounding logic. For more
information on creating assignments, see the Assignment Editor
chapter in Volume 2 of the Quartus II Handbook.

qii52004 - 2.0

5–2 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Each flow involves creating pin assignments, running the analysis, and
reviewing the report file.

Altera suggests that you run the analysis each time you add or modify a
pin-related assignment. You can use the Start I/O Assignment Analysis
command repeatedly since it completes in a short time.

The analysis checks pin assignments and surrounding logic for illegal
assignments and violations of board layout rules. For example, the
analysis checks whether your pin location supports the I/O standard
assigned, current strength, supported VREF voltages, and whether a PCI
diode is permitted.

Along with the pin-related assignments, the Start I/O Assignment
Analysis command also checks blocks that directly feed or are fed by a
pin such as a phase-locked loop (PLL), low-voltage differential signal
(LVDS), or gigabit transceiver block.

Design Flow without Design Files

During the early stages of development of an FPGA device, board layout
engineers may request preliminary or final pin-outs. It is time consuming
to manually check to see whether the pin-outs violate any design rules.
Instead, you can use the Start I/O Assignment Analysis command to
quickly perform basic checks on the legality of your pin assignments.

1 Without a complete design, the analysis performs limited checks
and cannot guarantee that your assignments did not violate
design rules.

Altera Corporation 5–3
June 2004 Preliminary

I/O Assignment Planning & Analysis Design Flows

Figure 5–1. Assigning & Analyzing Pin-outs without Design Files

You can assign and analyze pin-outs using the Start I/O Assignment
Analysis command without design files by following these steps:

1. Create a Quartus II project.

2. Use the Assignment Editor or Tcl commands to create pin locations
and related assignments. For the I/O assignment analysis to
determine the type of a pin, you must reserve your I/O pins. See
“Creating I/O Assignments” on page 5–6.

3. Choose Start > Start I/O Assignment Analysis (Processing menu)
to start the analysis.

4. View the messages in the Compilation Report window, Fitter report
file (<project name>.fit.rpt) or in the Messages window.

5. Correct any errors and violations reported by the I/O assignment
analysis.

6. Rerun the Start I/O Assignment Analysis command until all errors
are corrected.

.qsf

Modify and correct illegal
assignments found in report file

Create pin-related assignments

Start I/O assignment analysis

 Quartus II project (.qpf)

Report file generated

5–4 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Design Flow with Complete or Partial Design Files

During a full compilation, the Quartus II software does not report illegal
pin assignments until the fitter stage. To validate pin assignments sooner,
you can run the Start I/O Assignment Analysis command after
performing analysis and synthesis and before performing a full
compilation. Typically, the analysis takes a short time. Figure 5–2
describes the benefits of using the Start I/O Assignment Analysis
command.

Figure 5–2. Saving Compilation Time with the Start I/O Assignment Analysis Command

The rules that can be checked by the I/O assignment analysis depends on
the completeness of the design. With a complete design, the Start I/O
Assignment Analysis command thoroughly checks the legality of all pin-
related assignments. With a partial design, the Start I/O Assignment
Analysis command checks the legality of those pin-related assignments
for which it has enough information.

For example, you might assign a clock to a user I/O pin instead of
assigning it to a dedicated clock pin. You design the clock to drive a PLL
that has not yet been instantiated in the design. Because the Start I/O
Assignment Analysis command is unaware of the logic that the pin
drives, it is not able to check that only a dedicated clock input pin can
drive the clock port of a PLL.

If you have a partial design, Altera recommends that you provide as
much of the design as possible, especially logic that connects to pins, to
obtain better coverage. For example, if your design includes PLLs or
LVDS blocks, you should include these MegaWizard® files in your project
for analysis.

Error
reported
and fixed

Full compilation

I/O
assignment

analysis

Full compilation

Full compilation

Error reported and fixed

Without
Start I/O Assignment Analysis

command

With
Start I/O Assignment Analysis

command

Altera Corporation 5–5
June 2004 Preliminary

I/O Assignment Planning & Analysis Design Flows

1 A top-level wrapper file would be an example of a partial
design.

Figure 5–3. Assigning & Analyzing Pin-outs with Design Files

Use the following steps to assign and analyze pin-outs using the Start I/O
Assignment Analysis command with design files:

1. Create a Quartus II project and include your design files in the
project.

2. Create pin-related assignments with the Assignment Editor.

3. Choose Start > Start Analysis & Synthesis (Processing menu) to
generate an internal mapped netlist.

Modify and Correct Illegal
Assignments Found in Report File

Analysis and Synthesis

Mapped Netlist

Start I/O Assignment Analysis

Report File Generated

Back Annotate I/O Assignment
Analysis Pin Placements

Quartus II Project (.qpf)

Create Pin-Related Assignments

Design Files .edf, .vqm, .v, .vhd, .bdf

Assignments Stored in QSF File

5–6 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

4. Choose Start > Start I/O Assignment Analysis (Processing menu)
to start the analysis.

5. View the messages in the report file or in the Messages window

6. Correct any errors and violations reported

7. Rerun the Start I/O Assignment Analysis command until all errors
are corrected.

Inputs Used for
I/O Assignment
Analysis

The Start I/O Assignment Analysis command reads an internal mapped
netlist and a Quartus II Settings File (.qsf). All assignments are stored in
the single QSF.

If you do not have any design files then the Start I/O Assignment
Analysis command reads only the QSF.

If you have a partial or complete design, the Start I/O Assignment
Analysis command reads in the QSF and the mapped netlist file.

Creating I/O Assignments

You can create pin-related assignments using the following features:

■ Assign SignalProbe Pins dialog box
■ Assignment Editor
■ Tcl Commands
■ Floorplan Editor

Reserving Pins

If you do not have any design files, you must create reserved pin
assignments in addition to your other pin-related assignments. Reserving
pins is necessary so that the Start I/O Assignment Analysis command
will understand the pin type (input, output, or bidirectional) and
correctly analyze the pin. You can reserve a pin by choosing Assignment
Editor (Assignments menu), and selecting Reserved Pin from the
Category list. In the spreadsheet interface, type in the pin name and select
from the reserved list (see Figure 5–4).

Altera Corporation 5–7
June 2004 Preliminary

Inputs Used for I/O Assignment Analysis

Figure 5–4. Reserving a Pin with the Assignment Editor

f For more information on using the Assignment Editor, see the
Assignment Editor chapter in Volume 2 of the Quartus II Handbook.

Location Assignments

You can assign a location to your pins using the Assignment Editor.
Choose Assignment Editor (Assignments menu) to open the Assignment
Editor. Select the pins category from the Category list. In the spreadsheet
interface, type in the pin name and select a location from the location list.
For Stratix II, Stratix GX, Stratix, and Cyclone devices, you can also assign
a pin to an I/O Bank or Edge location.

It is common to place a group of pins (buses) with compatible I/O
standards in the same bank. For example, two buses with two I/O
standards, 2.5 V and SSTL-II can be placed in the same I/O bank.

An easy way to place large buses that exceed the pins available in a
particular I/O bank is to use Edge location assignments. You can also use
Edge location assignments to improve circuit board routing ability of
large buses, since they are close together near an edge. Figure 5–5 shows
the Altera device package edges.

Figure 5–5. Package View of the Four Edges on an Altera Device

Top Edge

Bottom Edge

Left Edge Right Edge

5–8 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Assignments with the Floorplan Editor

You can also make pin location assignments with the Floorplan Editor.
Open the Timing Closure Floorplan by choosing Timing Closure
Floorplan (Assignments menu). In the Timing Closure Floorplan, you
can change the view between the package view and the interior cell view
from the View menu. You can use the top and bottom package view to
view the pins in the desired package. You can find the pad separation
between two pins with the interior cell view. In both views, you can drag
and drop pins from the Node Finder or from a graphic design file (GDF)
or block design file (BDF) file into the desired pin or bank (see Figure 5–6).

Figure 5–6. Creating Pin Location Assignments with the Node Finder & the Timing Closure Floorplan

Generating a Mapped Netlist

The Start I/O Assignment Analysis command uses a mapped netlist, if
available, to identify the pin type and the surrounding logic.

Choose Start > Start Analysis & Synthesis (Processing menu) to generate
a mapped netlist. You can also use the quartus_map executable to run
analysis and synthesis.

Altera Corporation 5–9
June 2004 Preliminary

Running the I/O Assignment Analysis

The mapped netlist is stored internally in the Quartus II database.

Running the I/O
Assignment
Analysis

You can run the Start I/O Assignment Analysis command from the
Quartus II software menu (see Figure 5–7) or from the command prompt.
Choose Start > Start I/O Assignment Analysis (Processing menu) or type
the following command in your project directory.

quartus_fit <project-name> --check_ios r

1 Running the Start I/O Assignment Analysis command
overwrites any previous fitter database. You can still view the
previous compilation report text file.

Figure 5–7. I/O Assignment Analysis Command from the Quartus II Software
Menu

Understanding the I/O Assignment Analysis Report

The Start I/O Assignment Analysis command generates a detailed
analysis report (see Figure 5–8) and a Pin-out File (.pin). You can view the
report file by choosing Compilation Report (Project menu). The Fitter
page of the Compilation report contains the following five sections:

5–10 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

■ Analyze I/O Assignment Summary
■ Floorplan View
■ Pin-Out File
■ Resource Section
■ Fitter Messages

The Resource Section categorizes the pins as Input Pins, Output Pins,
and Bidir Pins. You can use the I/O Bank Usage page under the
Resource Section to view the utilization of each I/O bank in your device.

Figure 5–8. Summary of the I/O Bank Usage in the I/O Assignment Analysis
Report

The Fitter Messages page stores all messages including errors, warnings,
and information messages. See “Detailed Error/Status Messages” on
page 5–11 for more information.

Suggested & Partial Placement

The Start I/O Assignment Analysis command automatically assigns
locations to pins that do not have pin location assignments. For example,
if you assign an Edge location to a group of LVDS pins, the I/O
assignment analysis assigns pin locations for each LVDS pin in the
specified edge location and then performs legality checks.

Choose Back-Annotate Assignments (Assignments menu), select Pin &
device assignments, and click OK to accept the suggested pin locations.
Back-annotation saves your pin and device assignments in the QSF.

Altera Corporation 5–11
June 2004 Preliminary

Scripting Support

Detailed Error/Status Messages

The Start I/O Assignment Analysis command provides detailed
messages to help you quickly understand and resolve pin assignment
errors. Each detailed message includes a related node name and a
description of the problem.

You can view the detailed messages in the Fitter Messages page in the
compilation report, and in the Processing tab in the Messages window.
Choose Utility Windows > Messages (View menu) to open the Messages
window.

Use the location box to help resolve the error messages. Select from the
location list and click Locate.

Following is an example of error messages reported by I/O assignment
analysis:

Figure 5–9. Error Message Report by I/O Assignment Analysis

Scripting
Support

You can run procedures and make settings described in this chapter with
a Tcl script. You can also run some procedures at a command prompt. For
more information about Tcl scripting, see the Tcl Scripting chapter in
Volume 2 of this handbook. For more information about command-line
scripting, see the Command-Line Scripting chapter in Volume 2 of this
handbook. For detailed information about scripting command options
type quartus_sh --qhelp r at a system command prompt.

Reserving Pins

Use the following Tcl command to reserve a pin. For more information
about reserving pins, see page 5–6.

set_instance_assignment -name RESERVE_PIN <value> -to
<signal name>r

5–12 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Valid values are “AS BIDIRECTIONAL”, ”AS INPUT TRI-STATED”,“AS
OUTPUT DRIVING AN UNSPECIFIED SIGNAL”, “AS OUTPUT
DRIVING GROUND” and “AS SIGNAL PROBE OUTPUT”. Include the
quotes when specifying the value.

Location Assignments

Use the following Tcl command to assign a signal to a pin or device
location. For more information about location assignments, see page
page 5–7.

set_location_assignment <location> -to <signal name>r
Valid locations are pin location names, such as Pin_A3. The Stratix series
products and Cyclone device families also support edge and I/O bank
locations. Edge locations are EDGE_BOTTOM, EDGE_LEFT, EDGE_TOP,
and EDGE_RIGHT. I/O bank locations include IOBANK_1 up to
IOBANK_n, where n is the number of I/O banks in a particular device.

Generating a Mapped Netlist

You can generate a mapped netlist with a Tcl command or with a
command run at a command prompt. For more information about
generating a mapped netlist, see page 5–8.

Tcl Command

Enter the following in a Tcl console or script:

execute_module -tool map

The execute_module command is in the flow package.

Command Prompt

Type the following at a (non-Tcl) system command prompt:

quartus_map <project name>r

Altera Corporation 5–13
June 2004 Preliminary

Conclusion

Running the I/O Assignment Analysis

You can run the I/O Assignment Analysis with a Tcl command or with a
command run at a command prompt. For more information about
running the I/O assignment analysis, see page 5–9.

Enter the following in a Tcl console or script:

execute_flow -check_ios

Conclusion The Start I/O Assignment Analysis command quickly and thoroughly
validates the legality of your pin-related assignments. This helps reduce
development time by catching illegal pin assignments early in the design
cycle without wasting long design compilations.

By providing the designer with more confidence in the device pin-outs at
an early stage, board layout engineers can work in parallel with FPGA
designers to achieve a time-to-market advantage.

5–14 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Altera Corporation Section III–1
Preliminary

Section III.
Area Optimization &

Timing Closure

Techniques for achieving the highest design performance are important
when designing for programmable logic devices (PLDs), especially
higher density FPGAs. The Altera® Quartus® II software offers many
advanced design analysis tools that allow for detailed timing analysis of
your design, including a fully integrated Timing Closure Floorplan
Editor. With these tools and options, critical paths can be easily
determined and located in the targeted device floorplan. This section
explains how to use these tools and options to enhance your FPGA design
analysis flow.

This section includes the following chapters:

■ Chapter 6, Design Optimization for Altera Devices

■ Chapter 7, Timing Closure Floorplan

■ Chapter 8, Netlist Optimizations and Physical Synthesis

■ Chapter 9, Design Space Explorer

■ Chapter 10, LogicLock Design Methodology

■ Chapter 11, Timing Closure in HardCopy Devices

■ Chapter 12, Synplicity Amplify Physical Synthesis Support

Section III–2 Altera Corporation
Preliminary

Area Optimization & Timing Closure Quartus II Handbook, Volume 2

Revision History The table below shows the revision history for Chapters 6 to 12.

Chapter(s) Date / Version Changes Made

6 June 2004 v2.0 ● Updates to tables, figures.
● New functionality in the Quartus II software

version 4.1.

Feb. 2004 v1.0 Initial release

7 June 2004 v2.0 ● Updates to tables, figures.
● New functionality in the Quartus II software

version 4.1.

Feb. 2004 v1.0 Initial release

8 June 2004 v2.0 ● Updates to tables, figures.
● New functionality in the Quartus II software

version 4.1.

Feb. 2004 v1.0 Initial release

9 June 2004 v2.0 ● Updates to tables, figures.
● New functionality in the Quartus II software

version 4.1.

Feb. 2004 v1.0 Initial release

10 August 2004 v2.1 ● New functionality in the Quartus II software
version 4.1 Sp1

June 2004 v2.0 ● Updates to tables, figures.
● New functionality in the Quartus II software

version 4.1.

Feb. 2004 v1.0 Initial release

11 June 2004 v2.0 ● Updates to tables, figures.
● New functionality in the Quartus II software

version 4.1.

Feb. 2004 v1.0 Initial release

12 Feb. 2004 v1.0 Initial release.

Altera Corporation 6–1
June 2004 Preliminary

6. Design Optimization for
Altera Devices

Introduction Techniques for achieving the highest design performance are important
when designing for programmable logic devices (PLDs). The tools that
facilitate these techniques must provide the highest level of flexibility
without compromising ease-of-use. The optimization features available
in the Quartus® II software allow you to meet performance requirements
by facilitating optimization at multiple points in the design process. You
can apply optimizations to an overall design or to sub-modules of a
design that are integrated later.

f For more information on a block-based design approach, see the
Hierarchical Block-Based & Team-Based Design Flows chapter in Volume 1 of
the Quartus II Handbook.

This chapter explains techniques to reduce resource usage, improve
timing performance, and reduce compile times when designing with
Altera® devices. It also explains how and when to use some of the
Quartus II software features described in detail in other chapters of the
Quartus II Handbook.

The results of following these recommendations are design-specific.
Applying each technique may not always improve your results.
Quartus II options and settings are set to default values that, on average,
provide the best trade-off between compilation time, resource utilization,
and timing performance. The software allows you to adjust these settings
to concentrate on your area of interest and see if different settings provide
better results for your specific design. Use the optimization flow
described in this chapter to explore various compiler settings and
determine the combination of techniques that provide the required
results for your design.

The first stage in the optimization process is to perform an initial
compilation (see “Initial Compilation” on page 6–2) to establish a
baseline that you can use to analyze your design. “Design Analysis” on
page 6–6 explains how to analyze the results of your design, and provides
links to the sections of this chapter where you can proceed with resource
or performance optimization. Altera recommends optimizing resource
usage first, then I/O timing, then fMAX timing, so this chapter presents the
recommendations for each stage in the appropriate order. This chapter
first documents this analysis and optimization process for look-up table
(LUT)-based devices, including FPGA devices and MAX® II device family

qii52005-2.0

6–2 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

CPLDs. It then focuses on the process for MAX 7000 and MAX 3000
device family macrocell-based CPLDs. The final optimization section
covers compilation time optimization, which is device independent.

Initial
Compilation

Ensure that you check all the following suggested compilation
assignments before compiling the design in the Quartus II software.
Significantly different compilation results can occur depending on
assignments made. This section describes the basic assignments and
settings to make for your initial compilation.

Device Setting

Assigning a specific device determines the timing model that the
Quartus II software uses during compilation. It is important to choose the
correct speed grade to obtain accurate results and the best optimization.
The device size and the package determines the device pin-out and how
many resources the Quartus II software can use.

Choose the target device on the Device page of the Settings dialog box
(Assignments menu).

Timing Requirements Settings

An important step in obtaining the highest performance, especially for
high performance FPGA designs, is the application of detailed timing
requirements. The Quartus II PowerFit™ Fitter attempts to meet or exceed
specified timing requirements (depending on the selected options as
described in “Fitter Effort Setting” on page 6–4). The Quartus II physical
synthesis optimizations are also performed based on the constraints in
specified timing requirements (see “Synthesis Netlist Optimizations and
Physical Synthesis Optimizations” on page 6–28 for more information).
In addition, timing requirements are used during timing analysis. The
compilation report shows whether timing requirements were met and
provides detailed timing information on which paths violate the timing
requirements.

Make timing requirement settings in the Timing Requirement &
Options page of the Settings dialog box (Assignments menu) or with the
Assignment Editor. On the Timing Requirement & Options page use the
Delay requirements, Minimum delay requirements, and Clock Settings
boxes to enter global requirements, or select Settings for individual clock
signals to make settings on individual clocks (recommended for
multiple-clock designs). First create the clock setting, then apply it to the
clock node in the design. Running the Timing Wizard makes it easy to
make individual clock settings.

Altera Corporation 6–3
June 2004 Preliminary

Initial Compilation

Every clock signal should have an accurate clock setting assignment. All
I/O pins for which tSU tH, or tCO is to be optimized should also have
settings. In addition, if you have any tPD or minimum tCO constraints,
those should be specified as well. Therefore, if there is more than one
clock or there are different I/O requirements for different pins, use the
Timing Wizard to make multiple clock settings and the Assignment
Editor to make individual I/O assignments rather than using the global
settings.

It is important to make any complex timing assignments according to the
needs of the design, including multicycle and cut-timing path
assignments. This information allows the Quartus II software to make
appropriate trade-offs between paths. Make these settings with the
Assignment Editor.

1 When there are any timing constraints in the design, the
Quartus II software does not attempt to optimize clocks that are
unconstrained. Specify timing constraints on all clock signals in
the design wherever possible for best results.

f For more information on how to make timing assignments, refer to the
Quartus II Timing Analysis chapter in Volume 3 of the Quartus II
Handbook. Also see Quartus II Help.

Smart Compilation Setting

Smart compilation can reduce compile time, especially when you have
multiple compilation iterations during the optimization phase of the
design process; however, it will use more disk space. Turn on the Use
Smart compilation option on the Compilation Process page of the
Settings dialog box (Assignments menu).

Timing Driven Compilation Settings

Ensure that the Optimize timing and the Optimize I/O cell register
placement for timing options on the Fitter Settings page of the Settings
dialog box (Assignments menu) are set appropriately. Turning on these
options allows the Quartus II software to optimize your design based on
the timing requirements that you have specified with various timing
assignments.

The Optimize hold timing option is another timing-driven compilation
option that directs the Quartus II software to optimize minimum delay
timing constraints. This option is available only for Stratix® II, Stratix,
Stratix GX, Cyclone™ II, Cyclone, and MAX II devices. When this option
is turned on, the Quartus II software adds delay to connections as needed
to guarantee that the minimum delays required by these constraints are

6–4 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

satisfied. If you choose I/O Paths and Minimum TPD Paths (the default
choice), the Fitter works to meet hold times (tH) from device input pins to
registers, minimum delays from I/O pins or registers to I/O pins or
registers (tPD), and minimum clock-to-out time (tCO) from registers to
output pins. If you select All paths, the Fitter also works to meet hold
requirements from registers to registers, as in Figure 6–1, where a derived
clock generated with logic causes a hold time problem on another
register. However, if your design has internal hold time violations
between registers, this is not the recommended way to fix internal hold
violation problems. Altera recommends instead that you fix internal
register to register hold problems by making changes to your design, such
as using a clock enable instead of a derived or gated clock.

Figure 6–1. Optimize Hold Timing Option Fixing an Internal Hold Time
Violation

f For good design practices that can help eliminate internal hold time
violations, see the Design Recommendations for Altera Devices chapter in
Volume 1 of the Quartus II Handbook.

Fitter Effort Setting

You can modify the Fitter Effort setting on the Fitter Settings page of the
Settings dialog box. The default setting in the Quartus II software
depends on the device family specified.

The Standard Fit option attempts to exceed specified timing
requirements and achieve the best possible timing results for your design.
This Fitter effort setting usually involves the longest compilation time.

The Fast Fit option reduces the amount of optimization effort for each
algorithm employed during fitting. This reduces the compilation time by
about 50%, while resulting in a fit that has, on average, 10% lower fMAX
than that achieved using the Standard Fit setting. For a small minority of
hard-to-fit circuits, the reduced optimization resulting from using the
Fast Fit option can result in the first fitting attempt being unroutable,
resulting in multiple fitting attempts and a long fitting time.

derived_clk Hold time violation
Logic

clk

D Q

D Q

Altera Corporation 6–5
June 2004 Preliminary

Initial Compilation

The Auto Fit option (available for Stratix II, Stratix, Stratix GX,
Cyclone II, Cyclone, and MAX II devices only) decreases compilation
time by directing the Fitter to reduce Fitter effort after meeting the
design’s timing requirements if it meets internal routability requirements.
The internal routability requirements reduce the possibility of routing
congestion and help ensure quick, successful routing. If you want the
Fitter to try to exceed the timing requirements by a certain margin before
reducing Fitter effort, you can specify a minimum slack that the Fitter
must try to achieve before reducing Fitter effort in the Desired worst case
slack box. This option also causes the Quartus II Fitter to optimize for
shorter compile times instead of maximum performance when there are
no timing constraints. For designs with no timing requirements, the
resulting fMAX is an average of 15% lower than using the Standard Fit
option. If your design has aggressive timing requirements or is hard to
route, the placement does not stop early and the compile time is the same
as using the Standard Fit option. For designs with easy or no timing
requirements, the Auto Fit option reduces compile time by 40% on
average.

1 Note that selecting this option does not guarantee that the Fitter
will meet the design's timing requirements, and specifying a
minimum slack does not guarantee that the Fitter will achieve
the slack.

I/O Assignments

The I/O standards and drive strengths specified for a design affect I/O
timing. Specify these assignments so that the Quartus II software uses
accurate I/O timing delays in timing analysis and Fitter optimizations.

The Quartus II software can choose pin locations automatically for best
quality of results. If your pin locations are not fixed due to printed circuit
board (PCB) layout requirements, Altera recommends leaving pin
locations unconstrained to achieve the best results. If your pin locations
are already fixed, make the pin assignments in the Quartus II software to
constrain the compilation appropriately. “Optimization Techniques for
Macrocell-Based (MAX 7000 and MAX 3000) CPLDs” on page 6–41
includes recommendations for making pin assignments, since your pin
assignments can have a larger effect on your quality of results in smaller
macrocell-based architectures.

You can assign I/O standards and pin locations with the Assignment
Editor (Assignments menu) or Tcl script commands.

6–6 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

f For more information on I/O standards and pin constraints, see the
appropriate device data sheet or handbook. For information on using the
Assignment Editor, refer to the Assignment Editor chapter in Volume 2 of
the Quartus II Handbook. For information on scripting, see the Tcl
Scripting chapter in Volume 2 of the Quartus II Handbook.

Design Analysis The initial compilation establishes whether the design achieves a
successful fit and meets the specified performance. The Compilation
Report reports the design results. This section describes how to analyze
your design results, which is the first stage in the design optimization
process.

After design analysis, proceed to the other optimization stages, as
follows.

For LUT-based devices (FPGAs and MAX II CPLDs) see “Optimization
Techniques for LUT-Based (FPGA and MAX II) Devices” on page 6–12:

■ If your design does not fit, see “Resource Utilization Optimization
Techniques (LUT-Based Devices)” on page 6–13 before trying to
optimize I/O timing or fMAX timing.

■ If the I/O timing performance requirements are not met, see “I/O
Timing Optimization Techniques (LUT-Based Devices)” on
page 6–21 before trying to optimize fMAX timing.

■ If fMAX performance requirements are not met, see “fMAX Timing
Optimization Techniques (LUT-Based Devices)” on page 6–27.

For Macrocell-based devices (MAX 7000 and MAX 3000 CPLDs) see
“Optimization Techniques for Macrocell-Based (MAX 7000 and MAX
3000) CPLDs” on page 6–41:

■ If your design does not fit, see “Resource Utilization Optimization
Techniques (Macrocell-based CPLDs)” on page 6–41 before trying to
optimize I/O timing or fMAX timing.

■ If the timing performance requirements are not met, see “Timing
Optimization Techniques (Macrocell-based CPLDs)” on page 6–49.

For techniques to reduce the compilation time, see “Compilation Time
Optimization Techniques” on page 6–55.

Resource Utilization

Determining device utilization is important regardless of whether a
successful fit is achieved. If your compilation results in a no-fit error, then
resource utilization information is important to analyze the fitting

Altera Corporation 6–7
June 2004 Preliminary

Design Analysis

problems in your design. If your fitting is successful, review the resource
utilization information to determine whether the future addition of extra
logic or any other design changes could introduce fitting difficulties.

To determine resource usage, see the Flow Summary section of the
Compilation Report. This section reports how many pins are used, as well
as other device resources such as memory bits, digital signal processing
(DSP) block 9-bit elements, and phase-locked loops (PLLs). The Flow
Summary indicates whether the design exceeds the available device
resources. More detailed information is available by viewing the reports
under Resource Section in the Fitter section of the Compilation Report
(Processing menu).

1 Note that for Stratix II devices, a device with low utilization
does not have the lowest adaptive logic module (ALM)
utilization possible. For Stratix II devices, the Fitter uses
adaptive look-up tables (ALUTs) in different ALMs even when
the logic could be placed within one ALM. The Quartus II Fitter
spreads out a design as much as possible while trying to meet
any timing constraints set by the user. As the device fills up, the
Fitter automatically searches for logic functions with common
inputs to place in one ALM. The number of partnered ALUTs
and packed registers also increases.

If resource usage is reported as less than 100% and a successful fit was not
achieved, then it is likely that there were not enough routing resources or
that some assignments were illegal. In either case, a message appears in
the Processing tab of the Messages window to explain the problem.

If the Fitter finishes very quickly, then a resource may be over-utilized or
there may be an illegal assignment (an error message is also reported for
illegal assignments). If the Quartus II software runs for a long time, then
it is likely that a legal placement or route cannot be found. Look for
compilation messages that give an indication of the problem.

You can use the Timing Closure Floorplan to view areas of routing
congestion.

f For details on using the Timing Closure Floorplan, see the Timing Closure
Floorplan chapter in Volume 2 of the Quartus II Handbook.

I/O Timing (including tPD)

To determine whether I/O timing has been met, see the Timing Analyzer
section of the Compilation Report (Processing menu). The tSU, tH, and tCO
reports list the I/O paths, along with the “Required” timing number if
you have made a timing requirement, its “Actual” timing number for the

6–8 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

parameter as reported by the Quartus II software, and the slack, or
difference between your requirement and the actual number as specified
by the Quartus II software. If you have any point-to-point propagation
delay assignments (tPD), the tPD report lists the corresponding paths.

The I/O paths that have not met the required timing performance are
reported as having negative slack and are displayed in red, as shown in
Figure 6–2. Even if you have not made an I/O timing assignment on that
pin, the “Actual” number is the timing number that you must meet when
the device runs in your system.

Figure 6–2. I/O Timing Report

To analyze the reasons that your timing requirements were not met, right-
click a particular entry in the report and choose List Paths (as shown in
Figure 6–2). A message listing the paths appears in the System tab of the
Messages window. You can expand a selection by clicking the “+” icon at
the beginning of the line, as shown in Figure 6–3. This is a good method
of determining where along the path the greatest delay is located.

The List Paths report lists the slack time and how that slack time was
calculated. By expanding the different entries, you can see the
incremental delay through each node in the path as well as the total delay.
The incremental delay is the sum of the interconnect delay (IC) and the
cell delay (CELL) through the logic.

Altera Corporation 6–9
June 2004 Preliminary

Design Analysis

Figure 6–3. I/O Slack Report

To visually analyze I/O timing, right-click on an I/O entry in the report
and select Locate in Timing Closure Floorplan (right button pop-up
menu) to highlight the I/O path on the floorplan. Negative slack indicates
paths that failed to meet their timing requirements. There are also options
to allow you to see all the intermediate nodes (i.e., combinational logic
cells) on a path and the delay for each level of logic. You can also look at
the fan-in and fan-out of a selected node.

f For more information on how timing numbers are calculated, refer to the
Quartus II Timing Analysis chapter in Volume 3 of the Quartus II
Handbook. For details on using the Timing Closure Floorplan, see the
Timing Closure Floorplan chapter in Volume 2 of the Quartus II Handbook.

fMAX Timing

To determine whether fMAX timing requirements are met, see the Timing
Analyzer section of the Compilation Report (Processing menu). The
Clock Setup folder gives figures for the actual register-to-register fMAX, as
reported by the Quartus II software, and the slack, or difference between
the timing requirement you have specified and the actual number
specified by the Quartus II software. The paths that do not meet timing
requirements are shown with a negative slack and appear in red (see
Figure 6–4).

6–10 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 6–4. fMAX Timing Analysis Report

To analyze why your timing requirements were not met, right click on a
particular entry in the report and choose List Paths (as shown in
Figure 6–4). A message listing the paths appears in the System tab of the
Messages window. You can expand a selection by clicking the “+” icon at
the beginning of the line, as shown in Figure 6–5. This is a good method
of determining where along the path the greatest delay is located.

The List Paths report lists the slack time and how that slack time was
calculated. By expanding the different entries, you can see the
incremental delay through each node in the path as well as the total delay.
The incremental delay is the sum of the interconnect delay (IC) and the
cell delay (CELL) through the logic.

Altera Corporation 6–11
June 2004 Preliminary

Design Analysis

Figure 6–5. fMAX Slack Report

You can visually analyze fMAX paths by right-clicking on a path in the
report and selecting Locate in Timing Closure Floorplan to display the
Timing Closure Floorplan, which then highlights the path. You can also
view all failing paths in the Timing Closure Floorplan using the Show
Critical Paths command.

f For more information on how timing analysis results are calculated, refer
to the Quartus II Timing Analysis chapter in Volume 3 of the Quartus II
Handbook. For details on using the Timing Closure Floorplan, see the
Timing Closure Floorplan chapter in Volume 2 of the Quartus II Handbook.

Compilation Time

In long compilations, most of the time is spent in the Analysis & Synthesis
and Fitter modules. Analysis & Synthesis includes synthesis netlist
optimizations, if you have turned on those options. The Fitter includes
two steps, placement and routing, and includes Physical Synthesis if you
have turned on those options. The Flow Elapsed Time section of the
Compilation Report shows how much time the Analysis & Synthesis and
Fitter modules took. The Fitter Messages report in the Fitter section of the
Compilation Report shows how much time was spent in placement and
how much time was spent in routing.

1 The applicable messages say Info: Fitter placement
operations ending: elapsed time = n seconds and
Info: Fitter routing operations ending: elapsed
time = n seconds.

6–12 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Placement describes the process of finding optimum locations for the
logic in your design. Routing describes the process of connecting the nets
between the logic in your design. There are many possible placements for
the logic in a design, and finding better placements typically takes more
compilation time. Good logic placement allows you to more easily meet
your timing requirements and makes the design easy to route.

Optimization
Techniques for
LUT-Based
(FPGA and
MAX II) Devices

This section of the chapter addresses resource and timing optimization
issues for LUT-based Altera devices, which consists of all FPGA devices
and MAX II device family CPLDs.

For information on optimizing MAX 7000 and MAX 3000 CPLD designs,
refer to “Optimization Techniques for Macrocell-Based (MAX 7000 and
MAX 3000) CPLDs” on page 6–41. For information on optimizing
compilation time (when targeting any device), refer to “Compilation
Time Optimization Techniques” on page 6–55.

Optimization Advisors

The Quartus II software includes the Resource Optimization Advisor
and the Timing Optimization Advisor (Tools menu) that provide
guidance for making settings to optimize your design. The advisors cover
many of the suggestions listed in this chapter. If you open the advisors
after compilation, the Optimization Advisors show icons that indicate
which resources or timing constraints were not met.

When you expand one of the categories (such as Logic Element Usage or
Maximum Frequency (fMAX)), recommendations are split into stages. The
stages show the order in which you should apply the recommended
settings. The first stage contains the options that are easiest to change,
make the least drastic changes to your design optimization, and have the
least effect on compilation time. Icons indicate whether each
recommended setting has been made in the current project. Refer to the
“How to use” page in the Advisor for a legend that describes each icon.

There is a link from each recommendation to the appropriate location in
the Quartus II user interface where you can change the setting. This
provides you with the most control over which settings are made, and
helps you learn about the settings in the software.

Altera Corporation 6–13
June 2004 Preliminary

Resource Utilization Optimization Techniques (LUT-Based Devices)

Resource
Utilization
Optimization
Techniques
(LUT-Based
Devices)

After design analysis, the next stage of design optimization is to improve
resource utilization. Complete this stage before proceeding to I/O timing
optimization or fMAX timing optimization. First, ensure that you have set
the basic constraints described in “Initial Compilation” on page 6–2. If a
design is not fitting into a specified device, use the techniques in this
section to achieve a successful fit.

Use Register Packing

The Auto Packed Registers option is available regardless of the tool used
to synthesize the design. Register packing combines a logic cell where
only the register is used with another logic cell where only the lookup
table (LUT) is used, and implements both functions in a single logic cell.
Figure 6–6 shows the packing and the gain of one logic cell.

Figure 6–6. Register Packing

Registers may also be packed into DSP blocks as shown in Figure 6–7.

Figure 6–7. Register Packing in DSP Blocks

LUT2

LUT
REG

REG2

LUT1
REG1

Register Packing
Turned on

DSP Block DSP Block
Register Packing

Turned on

6–14 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

The following list indicates the most common cases in which register
packing can help to optimize a design:

■ A LUT can be implemented in the same cell as an unrelated register
with a single data input

■ A LUT can be implemented in the same cell as the register that is fed
by the LUT

■ A LUT can be implemented in the same cell as the register that feeds
the LUT

■ A register can be packed into a RAM block
■ A register can be packed into a DSP block
■ A register can be packed into an I/O Element (IOE)

The following options are available for register packing (for certain
device families):

■ Off—Does not pack registers.
■ Normal—Default setting packs registers when this is not expected to

hurt timing results.
■ Minimize Area—Aggressively packs registers to reduce area.
■ Minimize Area with Chains—Aggressively packs registers to

reduce area. This option packs registers with carry chains. It also
converts registers into register cascade chains and packs them with
other logic to reduce area. This option is available only for Stratix II,
Stratix, Stratix GX, Cyclone II, Cyclone, and MAX II devices.

■ Auto—Attempts to achieve the best performance while maintaining
a fit for the design in the specified device. The Fitter combines all
combinational (LUT) and sequential (register) functions that are
deemed to benefit circuit speed. In addition, more aggressive
combinations of unrelated combinational and sequential functions
are performed to the extent required to reduce the area of the design
to achieve a fit in the specified device. This option is available only
for Stratix II, Stratix, Stratix GX, Cyclone II, Cyclone, and MAX II
devices.

Turning on register packing decreases the number of logic elements (LEs)
or adaptive logic modules (ALMs) in the design, but could also decrease
performance. To turn on register packing, turn on the Auto Packed
Registers option by clicking More Settings on the Fitter Settings page of
the Settings dialog box (Assignments menu).

The area reduction and performance results can vary greatly depending
on the design. Typical results for register packing are shown in the
following tables. Table 6–1 shows typical results for Stratix II devices,
Table 6–2 shows typical results for Cyclone II devices, and Table 6–3
shows typical results for Stratix, Stratix GX, and Cyclone devices.

Altera Corporation 6–15
June 2004 Preliminary

Resource Utilization Optimization Techniques (LUT-Based Devices)

Note that the Auto setting performs more aggressive register packing as
needed, so the typical results vary depending on the device logic
utilization.

Table 6–1. Typical Register Packing Results for Stratix II Devices

Register Packing Setting Relative fMAX Relative LE Count

Off 0.95 1.29

Normal 1.00 1.00

Minimize Area 0.98 0.97

Minimize Area with Chains 0.98 0.97

Auto (default) 1.0 until device is very
full, then gradually to

0.98 as required

1.0 until device is very
full, then gradually to

0.97 as required

Table 6–2. Typical Register Packing Results for Cyclone II Devices

Register Packing Setting Relative fMAX Relative LE Count

Off 0.97 1.40

Normal 1.00 1.00

Minimize Area 0.96 0.93

Minimize Area with Chains 0.94 0.91

Auto (default) 1.0 until device is very
full, then gradually to

0.94 as required

1.0 until device is very
full, then gradually to

0.91 as required

Table 6–3. Typical Register Packing Results for Stratix, Stratix GX, and
Cyclone Devices

Register Packing Setting Relative fMAX Relative LE Count

Off 1.00 1.12

Normal 1.00 1.00

Minimize Area 0.97 0.93

Minimize Area with Chains 0.94 0.90

Auto (default) 1.0 until device is very
full, then gradually to

0.94 as required

1.0 until device is very
full, then gradually to

0.90 as required

6–16 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Remove Fitter Constraints

A design with too many user constraints may not fit the targeted device.
This occurs when the location or LogicLock™ assignments are too strict
and there are not enough routing resources. In this case, use the Routing
Congestion view in the Timing Closure Floorplan to locate routing
problems in the floorplan, then remove any location and/or LogicLock
region assignments in that area. If your design still does not fit, the design
is over-constrained. To correct the problem, remove all location and
LogicLock assignments and run successive compilations, incrementally
constraining the design before each compilation.

f For more information on the Routing Congestion view in the Timing
Closure Floorplan, see the Quartus II Help.

Perform WYSIWYG Resynthesis for Area

If you use another EDA synthesis tool and wish to see if the Quartus II
software can re-map the circuit so that fewer LEs or ALMs are used,
perform the following steps:

1. Turn on Perform WYSIWYG primitive resynthesis (using
optimization techniques specified in Analysis & Synthesis
settings) on the Synthesis Netlist Optimizations page under
Analysis & Synthesis Settings in the Settings dialog box
(Assignments menu), or apply the Perform WYSIWYG Primitive
Resynthesis logic option to a specific module in your design with
the Assignment Editor (Assignments menu).

2. Choose Area for Optimization Technique on the Analysis &
Synthesis Settings page of the Settings dialog box (Assignments
menu), or set the Optimization Technique logic option to Area for a
specific module in your design with the Assignment Editor
(Assignments menu).

3. Recompile the design.

1 Performing WYSIWYG resynthesis for Area in this way
typically reduces fMAX.

Optimize Synthesis for Area

If your design fails to fit because it uses too much logic, resynthesize the
design to improve the area utilization, as follows.

Altera Corporation 6–17
June 2004 Preliminary

Resource Utilization Optimization Techniques (LUT-Based Devices)

First, ensure that you have set your device and timing constraints
correctly in your synthesis tool. Particularly when the area utilization of
the design is a concern, ensure that you do not over-constrain the timing
requirements for the design. Synthesis tools generally try to meet the
specified requirements, which may result in higher device resource usage
if the constraints are too aggressive.

f For information on setting timing requirements and synthesis options in
other synthesis tools, see the appropriate chapter in the Synthesis section
in Volume 1 of the Quartus II Handbook, or your synthesis software's
documentation.

Optimize for Area, Not Speed

If device utilization is an important concern, some synthesis tools offer an
easy way to optimize for area instead of speed. If you are using the
Quartus II integrated synthesis, choose Area for Optimization
Technique on the Analysis & Synthesis Settings page of the Settings
dialog box (Assignments menu). You can also specify this logic option for
specific modules in your design with the Assignment Editor in cases
where you want to reduce area (potentially at the expense of fMAX timing
performance) while leaving the default Optimization Technique setting
at Balanced (for the best trade-off between area and speed for certain
device families) or Speed. In some synthesis tools, not specifying an fMAX
requirement may result in less logic utilization. Other attributes or
options may also be available to help improve the quality of results,
including the recommendations in the following paragraphs.

Change State Machine Encoding

State machines can be encoded using various techniques. Using binary or
Gray code encoding typically results in fewer state registers than one-hot
encoding, which requires one register for every state bit. If your design
contains state machines, changing the state machine encoding to one that
uses the minimal number of registers may reduce device utilization. The
effect of state machine encoding differs depending on the way your
design is structured.

If your design does not manually encode the state bits, you can specify the
state machine encoding in your synthesis tool. In the Quartus II
integrated synthesis, choose Minimal Bits for State Machine Processing
on the Analysis & Synthesis Settings page of the Settings dialog box
(Assignments menu). You can also specify this logic option for specific
modules or state machines in your design with the Assignment Editor.

6–18 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Flatten the Hierarchy

Synthesis tools typically provide you with the option of preserving
hierarchical boundaries, which may be useful for verification or other
purposes. Optimizing across hierarchical boundaries, however, allows
the synthesis tool to perform the most logic minimization, which may
reduce area. Therefore, flatten your design hierarchy whenever possible
to achieve best results. If you are using the Quartus II integrated
synthesis, ensure that the Preserve Hierarchical Boundary logic option is
turned off.

Retarget Memory Blocks

If the design fails to fit because it runs out of device memory resources, it
may be due to a lack of a certain type of memory. For example, a design
may require two M-RAM blocks and be targeted for a Stratix EP1S10
device, which has only one. By building one of the memories with a
different size memory block, such as an M4K memory block, it may be
possible to obtain a fit.

If the memory was created with the MegaWizard® Plug-In Manager,
simply open the MegaWizard and edit the RAM block type so that it
targets a new memory block size.

ROM and RAM memory blocks can also be inferred from your hardware
description language (HDL) code, and your synthesis software may place
large shift registers into memory blocks with the altshift_taps
megafunction. This inference can be turned off in your synthesis tool so
that the memory is placed in logic instead of in memory blocks. In
Quartus II integrated synthesis, disable inference by turning off the Auto
RAM Replacement, Auto ROM Replacement, or Auto Shift Register
Replacement logic option as appropriate for your whole project on the
Analysis & Synthesis Settings page of the Settings dialog box
(Assignments menu), or by disabling the option for a specific block in the
Assignment Editor.

Depending on your synthesis tool, you may be able to set the RAM block
type for inferred memory blocks as well. In Quartus II integrated
synthesis, set the ramstyle attribute to the desired memory type for the
inferred RAM blocks: M512, M4K, or M-RAM.

f For more information on memory inference control, see the appropriate
chapter in the Synthesis section in Volume 1 of the Quartus II Handbook, or
your synthesis software's documentation.

Altera Corporation 6–19
June 2004 Preliminary

Resource Utilization Optimization Techniques (LUT-Based Devices)

Retarget DSP Blocks

A design may not fit because it requires too many DSP blocks. All DSP
block functions can be implemented with logic cells, making it possible to
retarget some of the DSP blocks to logic to obtain a fit.

If the DSP function was created with the MegaWizard Plug-In Manager,
simply open the MegaWizard and edit the block so it targets logic instead
of DSP blocks.

DSP blocks can be inferred from your HDL code from multipliers,
multiply-adders, and multiply-accumulators. This inference can be
turned off in your synthesis tool. In Quartus II integrated synthesis,
disable inference by turning off the Auto DSP Block Replacement logic
option for your whole project on the Analysis & Synthesis Settings page
of the Settings dialog box (Assignments menu), or by disabling the
option for a specific block with the Assignment Editor.

f For more information on disabling DSP block inference in other
synthesis tools, see the appropriate chapter in the Synthesis section in
Volume 1 of the Quartus II Handbook, or your synthesis software's
documentation.

Optimize Source Code

If your design does not fit because of logic utilization, and the methods
described in the preceding sections do not sufficiently improve the
resource utilization in the design, modify the design at the source to
achieve the desired results. You may also be able to improve logic
efficiency by making design-specific changes to your source code. In
many cases, optimizing the design’s source code can have a significant
effect on your logic utilization.

If your design does not fit because of logic resources, but you have
unused memory or DSP blocks, check whether you have code blocks in
your design that describe memory or DSP functions but are not being
inferred and placed in dedicated logic. You may be able to modify your
source code to allow these functions to be placed into dedicated memory
or DSP resources in the target device.

f For coding style guidelines including examples of HDL code for
inferring memory and DSP functions and other coding examples, refer to
the Recommended HDL Coding Styles chapter in Volume 1 of the Quartus II
Handbook.

6–20 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Modify Pin Assignments or Choose a Larger Package

If a design with pin assignments fails to fit, try compiling the design
without the pin assignments to see whether a fit is possible for the design
in the specified device and package. You can also try this approach if a
Quartus II error message indicates fit problems due to pin assignments.

If the design fits when all pin assignments are ignored or when several
pin assignments are ignored or moved, it may be necessary to modify the
pin assignments for the design or choose a larger package.

If the design fails to fit because of lack of available I/Os, a successful fit
can often be obtained by using a larger device package with more
available user I/O pins.

Use a Larger Device

If a successful fit cannot be achieved because of a shortage of LEs or
ALMs, memory, or DSP blocks, you may need to use a larger device.

Resolving Resource Utilization Issues Summary

Table 6–4 shows design options used to reduce excess resource utilization
and the recommended order in which to try the options, starting with
those requiring the least effort and having the greatest effect.

The Quartus II software includes the Design Space Explorer (DSE) Tcl/Tk
script for automating successive compilations of a design, each
employing different design options.

f For more information on the DSE script, see the Design Space Explorer
chapter in Volume 2 of the Quartus II Handbook.

Table 6–4. Techniques for Resolving Resource Utilization Issues (Part 1 of 2)

Issue Design Options to Employ (in Order from Left to Right)

Too many logic cells
used or logic cells
do not fit

Use register
packing

Remove Fitter
constraints

Perform
WYSIWYG
Primitive
Resynthesis

Optimize
synthesis for
area /
change state
machine
encoding

Optimize
source
code

Use a
larger
device

Too many memory
blocks used

Retarget
memory
blocks

Modify synthesis
options

Remove Fitter
constraints

Optimize
source code

Use a
larger
device

Altera Corporation 6–21
June 2004 Preliminary

I/O Timing Optimization Techniques (LUT-Based Devices)

Once resource utilization has been optimized and your design fits in the
desired target device, you can proceed to optimize I/O timing, as
described in the “I/O Timing Optimization Techniques (LUT-Based
Devices)” section.

I/O Timing
Optimization
Techniques
(LUT-Based
Devices)

The next stage of design optimization focuses on I/O timing. Ensure that
you have made the appropriate assignments as described in “Initial
Compilation” on page 6–2, and that the resource utilization is satisfactory,
before proceeding with I/O timing optimization. Because changes to the
I/O path affect the internal fMAX, complete this stage before proceeding to
the fMAX timing optimization stage.

The options presented in this section address how to improve I/O timing,
including the setup delay (tSU), hold time (tH), and clock-to-output (tCO)
parameters.

Timing-Driven Compilation

Perform I/O timing optimization using the Optimize I/O cell register
placement for timing assignment located on the Fitter Settings page of
the Settings dialog box (Assignments menu). This option moves registers
into I/O elements if required to meet tSU or tCO assignments, duplicating
the register if necessary (as in the case where a register fans out to
multiple output locations). This option is on by default and is a global
setting. The option does not apply to MAX II devices because they do not
contain I/O registers.

For APEX™ 20KE and APEX 20KC devices, if the I/O register is not
available, the Fitter tries to move the register into the logic array block
(LAB) adjacent to the I/O element.

Too many DSP
blocks used

Retarget
DSP blocks

Modify synthesis
options

Remove Fitter
constraints

Optimize
source code

Use a
larger
device

Problems placing
I/O pins

Change pin
assignments

Use a larger
package with the
same device
density

Use a larger
device with a
larger pin count

Too many routing
resources used

Remove
Fitter
constraints

Modify synthesis
options

Optimize source
code

Use a larger
device

Table 6–4. Techniques for Resolving Resource Utilization Issues (Part 2 of 2)

Issue Design Options to Employ (in Order from Left to Right)

6–22 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

The Optimize I/O cell register placement for timing option only affects
pins that have a tSU or tCO requirement. Using the I/O register is only
possible if the register directly feeds a pin or is fed directly by a pin. This
setting does not affect registers with the following characteristics:

■ Have combinational logic between the register and the pin
■ Are part of a carry or cascade chain
■ Have an overriding location assignment
■ Use the synchronous load or asynchronous load port, and the value

is not 1 (Stratix, Stratix GX, and Cyclone devices only)
■ Use the synchronous load or asynchronous clear port (APEX and

APEX II devices only)

Registers with the above characteristics are optimized using the regular
Quartus II Fitter optimizations.

Fast Input, Output, & Output Enable Registers

You can manually place individual registers in I/O cells by making fast
I/O assignments with the Assignment Editor. For an input register, use
the Fast Input Register option; for an output register, use the Fast Output
Register option; and for an output enable register, use the Fast Output
Enable Register option. In MAX II devices, which have no I/O registers,
these assignments lock the register into the LAB adjacent to the I/O pin if
there is a pin location assignment on that I/O pin.

If the fast I/O setting is on, the register is always placed in the I/O
element. If the fast I/O setting is off, the register is never placed in the I/O
element. This is true even if the Optimize I/O cell register placement for
timing option, located on the Fitter Settings page of the Settings dialog
box (Assignments menu), is turned on. If there is no fast I/O assignment,
the Quartus II software determines whether to place registers in I/O
elements if the Optimize I/O cell register placement for timing option is
turned on.

The three fast I/O options (Fast Input Register, Fast Output Register,
and Fast Output Enable Register) can also be used to override the
location of a register that is in a LogicLock region and force it into an I/O
cell. If this assignment is applied to a register that feeds multiple pins, the
register is duplicated and placed in all relevant I/O elements. In MAX II
devices, the register is duplicated and placed in each distinct LAB
location that is next to an I/O pin with a pin location assignment.

Altera Corporation 6–23
June 2004 Preliminary

I/O Timing Optimization Techniques (LUT-Based Devices)

Programmable Delays

Various programmable delay options can be used to minimize the tSU and
tCO times. For Stratix II, Stratix, Stratix GX, Cyclone II, Cyclone, and
MAX II devices, the Quartus II software automatically adjusts the
applicable programmable delays to help meet timing requirements. For
the APEX families of devices, the default values are set to generally avoid
any hold time problems. Programmable delays are advanced options that
should be used only after you have compiled a project, checked the I/O
timing, and determined that the timing is unsatisfactory. For detailed
information on the effect of these options, see the device family handbook
or data sheet.

Assign programmable delay options to supported nodes with the
Assignment Editor.

After you have made a programmable delay assignment and compiled
the design, you can view the value of every delay chain for every I/O pin
in the Delay Chain Summary section of the Quartus II Compilation
Report.

You can also view and modify the delay chain setting for the target device
with the Quartus II Chip Editor and Resource Property Editor. Figure 6–8
shows the Resource Property Editor window displaying a programmable
delay implemented in the delay chain of a Stratix device. When you use
the Resource Property Editor to make changes after performing a full
compilation, you don't need to recompile the entire design; you can write
changes directly to the netlist.

f For more information on using the Quartus II Chip Editor and Resource
Property Editor, see the Design Analysis and Engineering Change
Management with Chip Editor chapter in Volume 3 of the Quartus II
Handbook.

6–24 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 6–8. Delay Chain Shown in the Quartus II Resource Property Editor

Table 6–5 summarizes the programmable delays available for Altera
devices.

Table 6–5. Programmable Delays for Altera Devices (Part 1 of 3)

Programmable
Delay Description I/O Timing

Impact Device Families

Decrease input delay
to input register

Decreases propagation delay from an input
pin to the data input of the input register in
the I/O cell associated with the pin. Applied
to input/bidirectional pin or register it feeds.

Decreases tS U
Increases tH

Stratix, Stratix GX,
Cyclone, APEX II,
APEX 20KE,
APEX 20KC, Mercury™,
MAX 7000B

Input delay from pin
to input register

Sets propagation delay from an input pin to
the data input of the input register
implemented in the I/O cell associated with
the pin. Applied to input/bidirectional pin.

Changes tS U
Changes tH

Stratix II, Cyclone II

Altera Corporation 6–25
June 2004 Preliminary

I/O Timing Optimization Techniques (LUT-Based Devices)

Decrease input delay
to internal cells

Decreases the propagation delay from an
input or bidirectional pin to logic cells and
embedded cells in the device. Applied to
input/bidirectional pin or register it feeds.

Decreases tS U
Increases tH

Stratix, Stratix GX,
Cyclone, APEX II,
APEX 20KE,
APEX 20KC, Mercury,
FLEX 10K®,
FLEX® 6000, ACEX® 1K

Input delay from pin
to internal cells

Sets the propagation delay from an input or
bidirectional pin to logic and embedded
cells in the device. Applied to a input or
bidirectional pin.

Changes tS U
Changes tH

Stratix II, Cyclone II,
MAX II

Decrease input delay
to output register

Decreases the propagation delay from the
interior of the device to an output register in
an I/O cell. Applied to input/bidirectional pin
or register it feeds.

Decreases tP D Stratix, Stratix GX,
APEX II, APEX 20KE,
APEX 20KC

Increase delay to
output enable pin

Increases the propagation delay through
the tri-state output to the pin. The signal
can either come from internal logic or the
output enable register in an I/O cell. Applied
to output/bidirectional pin or register
feeding it.

Increases tC O Stratix, Stratix GX,
APEX II, Mercury

Delay to output
enable pin

Sets the propagation delay to an output
enable pin from internal logic or the output
enable register implemented in an I/O cell.

Changes tC O Stratix II

Increase delay to
output pin

Increases the propagation delay to the
output or bidirectional pin from internal logic
or the output register in an I/O cell. Applied
to output/bidirectional pin or register
feeding it.

Increases tC O Stratix, Stratix GX,
Cyclone, APEX II,
APEX 20KE,
APEX 20KC, Mercury

Delay from output
register to output pin

Sets the propagation delay to the output or
bidirectional pin from the output register
implemented in an I/O cell. This option is off
by default.

Changes tC O Stratix II, Cyclone II

Increase input clock
enable delay

Increases the propagation delay from the
interior of the device to the clock enable
input of an I/O input register.

N/A Stratix, Stratix GX,
APEX II, APEX 20KE,
APEX 20KC

Input Delay from Dual
Purpose Clock Pin to
Fan-Out Destinations

Sets the propagation delay from a dual-
purpose clock pin to its fan-out destinations
that are routed on the global clock network.
Applied to an input or bidirectional dual-
purpose clock pin.

N/A Cyclone II

Table 6–5. Programmable Delays for Altera Devices (Part 2 of 3)

Programmable
Delay Description I/O Timing

Impact Device Families

6–26 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Using Fast Regional Clocks in Stratix Devices

Stratix EP1S25, EP1S20, and EP1S10 devices and Stratix GX EP1SGX10
and EP1SGX25 devices contain two fast regional clock networks,
FCLK[1..0], in each quadrant, fed by input pins that can connect to
other fast regional clock networks. In Stratix EP1S30, Stratix GX
EP1SGX40, and larger devices in both families, there are two fast regional
clock networks in each half-quadrant. Dedicated FCLK input pins can
feed these clock nets directly. Fast regional clocks have less delay to I/O
elements than regional or global clocks and are used for high fan-out
control signals. Placing clocks on fast regional clock nets provides better
tCO performance.

Using PLLs to Shift Clock Edges

Using a PLL should improve I/O timing automatically. If the timing
requirements are still not met, most devices allow the PLL to be phase
shifted in order to change the I/O timing. Shifting the clock backwards
gives a better tCO at the expense of the tSU, while shifting it forward gives
a better tSU at the expense of tCO and tH. This technique can be used only
in devices that offer PLLs with the phase shift option. See Figure 6–9.

Figure 6–9. Shift Clock Edges Forward to Improve tSU at the Expense of tCO

Increase output clock
enable delay

Increases the propagation delay from the
interior of the device to the clock enable
input of the I/O output register and output
enable register.

N/A Stratix, Stratix GX,
APEX II, APEX 20KE,
APEX 20KC

Increase output
enable clock enable
delay

Increases the propagation delay from the
interior of the device to the clock enable
input of an output enable register.

N/A Stratix, Stratix GX

Increase tZX delay to
output pin

Used for zero bus-turnaround (ZBT) by
increasing the propagation delay of the
falling edge of the output enable signal.

Increases tC O Stratix, Stratix GX,
APEX II, Mercury

Table 6–5. Programmable Delays for Altera Devices (Part 3 of 3)

Programmable
Delay Description I/O Timing

Impact Device Families

Original

With PLL

Altera Corporation 6–27
June 2004 Preliminary

fMAX Timing Optimization Techniques (LUT-Based Devices)

Improving Setup & Clock-to-Output Times Summary

Table 6–6 shows the recommended order in which to use techniques to
reduce tSU and tCO times. Keep in mind that reducing tSU times increases
hold (tH) times.

Once I/O timing has been optimized, you can proceed to optimize fMAX,
as described in the “fMAX Timing Optimization Techniques (LUT-Based
Devices)” section.

fMAX Timing
Optimization
Techniques
(LUT-Based
Devices)

The next stage of design optimization is to improve the fMAX timing.
There are a number of options available if the performance requirements
are not achieved after compiling with the Quartus II software.

1 It is important to understand your design and apply appropriate
assignments to increase performance. It is possible to decrease
performance if assignments are applied without full
understanding of the design or the effect of the assignments.

Table 6–6. Improving Setup & Clock-to-Output Times Note (1)

Technique tSU tCO

Ensure that the appropriate constraints are set for the failing I/Os v v
Use timing-driven compilation for I/O v v
Use fast input register v
Use fast output register and fast output enable register v
Set Decrease Input Delays to Input Register = ON or decrease the value of Input
Delay from Pin to Input Register v
Set Decrease Input Delays to Internal Cells = ON or decrease the value of Input
Delay from Pin to Internal Cells v
Set Increase Delay to Output Pin = OFF or decrease the value of Delay from Output
Register to Output Pin v
Use PLLs to shift clock edges v v
Use the Fast Regional Clock option v
Note to Table 6–6:
(1) These options may not apply for all device families.

6–28 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Synthesis Netlist Optimizations and Physical Synthesis
Optimizations

The Quartus II software offers advanced netlist optimization options,
including physical synthesis, for certain device families, to optimize your
design further than the optimization performed in the course of the
standard Quartus II compilation.

The effect of these options depends on the structure of your design, but
netlist optimizations can help improve the performance of your design
regardless of the synthesis tool used. Netlist optimizations can be applied
both during synthesis and during fitting.

The synthesis netlist optimizations occur during the synthesis stage of the
Quartus II compilation. Operating either on the output from another
EDA synthesis tool or as an intermediate step in the Quartus II standard
integrated synthesis, these optimizations make changes to the synthesis
netlist that improve either area or speed, depending on your selected
optimization technique.

The following synthesis netlist optimizations are available:

■ WYSIWYG Primitive Resynthesis
■ Gate-level Register Re-timing

You can view and modify the synthesis netlist optimization options on
the Synthesis Netlist Optimizations page under Analysis & Synthesis
Settings in the Settings dialog box (Assignments menu).

The physical synthesis optimizations take place during the Fitter stage of
Quartus II compilation. Physical synthesis optimizations make
placement-specific changes to the netlist that improve speed performance
results for a specific Altera device.

The following physical synthesis optimizations are available:

■ Physical synthesis for combinational logic
■ Physical synthesis for registers:

● Register duplication
● Register retiming

You can also specify the Physical synthesis effort, which sets the level of
physical synthesis optimization you want the Quartus II software to
perform. You can specify the physical synthesis optimization options on
the Physical Synthesis Optimizations page under Fitter Settings in the
Settings dialog box (Assignments menu).

Altera Corporation 6–29
June 2004 Preliminary

fMAX Timing Optimization Techniques (LUT-Based Devices)

f For more information and detailed descriptions of these netlist
optimization options, see the Netlist Optimizations & Physical Synthesis
chapter in Volume 2 of the Quartus II Handbook.

To achieve the best results, use these options in different combinations.
Performance results are design dependant. Typical benchmark results
with netlists from a leading third-party synthesis tool and compiled with
the Quartus II software version 4.1 are shown in Table 6–7. These results
were obtained for Stratix devices, using various designs and numbers of
LEs.

The results for the WYSIWYG primitive re-synthesis option depend on
the Optimization Technique selected on the Analysis & Synthesis page
of the Settings dialog box (Assignments menu). These results use the
default Balanced setting. Changing the setting to Speed or Area can
affect your results.

The DSE Tcl/Tk script can automate successive compilations of a design,
each employing different netlist optimization options.

Table 6–7. Average Performance of Different Netlist Optimizations

Optimization Method
fMAX
Gain
(%)

Win
Ratio

(%) (1)

Winner’s
fMAX Gain
(%) (2)

Change
Logic
(%)

Increase
in

Compile
Time (×)

WYSIWYG primitive resynthesis 2 60 6 -8 1.0

Physical synthesis for combinational logic and registers

Using physical synthesis Fast effort level 10 86 14 4 1.7

Using physical synthesis Normal effort level 15 86 14 4 2.7

Using physical synthesis Extra effort level 17 86 14 4 4.2

WYSIWYG primitive re-synthesis as well as physical synthesis for combinational logic and registers

Using physical synthesis Fast effort level 12 87 16 -5 1.7

Using physical synthesis Normal effort level 17 87 16 -5 2.7

Using physical synthesis Extra effort level 19 87 16 -5 4.2

All options on (WYSIWYG primitive re-synthesis, gate level register re-timing, and physical synthesis for
combinational logic and registers)

Using physical synthesis Extra effort level 19 82 17 -6 4.3

Notes to Table 6–7:
(1) Win is the percentage of designs that showed better performance with the option on, than without the option on.
(2) Winner’s fMAX gain refers to the average improvement for the designs that showed better performance with these

settings (designs considered a Win).

6–30 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

f For more information on the DSE script, see the Design Space Explorer
chapter in Volume 2 of the Quartus II Handbook.

Seed

Changing the seed affects the initial placement configuration and often
causes different Fitter results. To obtain a better fMAX value, you can
experiment with different settings. This method should only be
attempted if the design is finalized and is failing timing on a small
number of paths. The fMAX variation is typically about 3% for Stratix
devices.

Changing the seed changes Fitter results because all Fitter algorithms
have random variations when initial conditions change, and changing the
seed takes advantage of this behavior. However, note that if anything in
the design changes, the results from seed to seed changes.

The seed for initial placement is controlled by the Seed setting on the
Fitter Settings page of the Settings dialog box (Assignments menu).

The DSE Tcl/Tk script can automate successive compilations of a design,
each employing different seeds.

f For more information on the DSE script, see the Design Space Explorer
chapter in Volume 2 of the Quartus II Handbook.

Optimize Synthesis for Speed

The manner in which the design is synthesized has a large impact on its
performance. Performance varies depending on the way the design is
coded, which synthesis tool is used, and which options are specified
when synthesizing. Synthesis options should be changed if a large
number of paths are failing or specific paths are failing by a large amount
and have many levels of logic.

Ensure that you have set your device and timing constraints correctly in
your synthesis tool. Your synthesis tool tries to meet the specified
requirements. If a target frequency is not specified, some synthesis tools
optimize for area.

To achieve best performance with push-button compilation, use the
recommendations in the following paragraphs.

f For information on setting timing requirements and synthesis options in
other synthesis tools, see the appropriate chapter in the Synthesis section
in Volume 1 of the Quartus II Handbook, or see your synthesis software’s
documentation.

Altera Corporation 6–31
June 2004 Preliminary

fMAX Timing Optimization Techniques (LUT-Based Devices)

You can use the DSE to experiment with different Quartus II synthesis
options to optimize for best performance.

f For more information, see the Design Space Explorer chapter in Volume 2
of the Quartus II Handbook.

Optimize for Speed, Not Area

Most synthesis tools optimize to meet your speed requirements. Some
synthesis tools offer an easy way to optimize for speed instead of area. For
the Quartus II integrated synthesis, specify Speed as the Optimization
Technique option on the Analysis & Synthesis Settings page of the
Settings dialog box (Assignments menu). You can also specify this logic
option for specific modules in your design with the Assignment Editor
while leaving the default Optimization Technique setting at Balanced
(for the best trade-off between area and speed for certain device families)
or Area (if area is an important concern).

Flatten the Hierarchy

Synthesis tools typically provide the option of preserving hierarchical
boundaries, which may be useful for verification or other purposes.
However, optimizing across hierarchical boundaries allows the synthesis
tool to perform the most logic minimization, which may improve
performance. Therefore, whenever possible, flatten your design
hierarchy to achieve best results. If you are using the Quartus II
integrated synthesis, ensure that the Preserve Hierarchical Boundary
logic option is turned off.

Set the Synthesis Effort to High (where applicable)

Some synthesis tools offer varying synthesis effort levels to trade off
compilation time with synthesis results. Set the synthesis effort to high to
achieve best results.

Change State Machine Encoding

State machines can be encoded using various techniques. One-hot
encoding, which uses one register for every state bit, usually provides the
best performance. If your design contains state machines, changing the
state machine encoding to one-hot can improve performance at the cost
of area.

If your design does not manually encode the state bits, you can select the
state machine encoding chosen in your synthesis tool. In Quartus II
integrated synthesis, choose One-Hot for State Machine Processing on
the Analysis & Synthesis Settings page of the Settings dialog box

6–32 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

(Assignments menu). You can also specify this logic option for specific
modules or state machines in your design with the Assignment Editor. In
some cases (especially in Stratix II devices), other encoding styles can
offer better performance. You can experiment with different encoding
styles to see what effect the style has on your resource utilization and
timing performance.

Duplicate Logic for Fan-Out Control

Duplicating logic or registers can help improve timing in cases where
moving a register in a failing timing path to reduce routing delay creates
other failing paths, or where there are timing problems due to the fan-out
of the registers.

Many synthesis tools support options or attributes to set the maximum
fan-out of a register. In the Quartus II integrated synthesis, you can set the
Maximum Fan-Out logic option in the Assignment Editor to control the
number of destinations for a node so that the fan-out count does not
exceed a specified value. You can also use the maxfan attribute in your
HDL code. The software duplicates the node as needed to achieve the
specified maximum fan-out.

You can manually duplicate registers in the Quartus II software
regardless of the synthesis tool used. To duplicate a register, apply the
Manual Logic Duplication option to the register with the Assignment
Editor. For more information on the Manual Logic Duplication option,
see the Quartus II Help.

Other Synthesis Options

With your synthesis tool, experiment with the following options if they
are available:

■ Register balancing or retiming
■ Register pipelining

LogicLock Assignments

You can make LogicLock assignments for optimization based on nodes,
design hierarchy, or critical paths. This method can be used if a large
number of paths are failing, but recoding the design is thought to be
unnecessary. LogicLock assignments can help if routing delays form a
large portion of your critical path delay, and placing logic closer together
on the device will help improve the routing delay.

Altera Corporation 6–33
June 2004 Preliminary

fMAX Timing Optimization Techniques (LUT-Based Devices)

1 Note that improving fitting results, especially for larger devices
such as Stratix and Stratix II, can be difficult. LogicLock
assignments will not always improve the performance of the
design. In many cases you will not be able to improve upon the
results from the Fitter.

When making LogicLock assignments, it is important to consider how
much flexibility to leave the Fitter. LogicLock assignments provide more
flexibility than hard location assignments. Assignments that are more
flexible require higher Fitter effort, but reduce the chance of design
over-constraint. The following types of LogicLock assignments are
available, listed in order of decreasing flexibility:

■ Soft LogicLock regions
■ Auto size, floating location regions
■ Fixed size, floating location regions
■ Fixed size, locked location regions

To determine what to put into a LogicLock region, see the timing analysis
results and the Timing Closure Floorplan. The register-to-register fMAX
paths in the Timing Analyzer section of the Compilation Report can
provide a helpful method of recognizing patterns. The following
paragraphs describe cases in which LogicLock regions can help to
optimize a design.

f For more information on the LogicLock design methodology, see the
LogicLock Design Methodology chapter in Volume 2 of the Quartus II
Handbook.

Hierarchy Assignments

For a design with the hierarchy shown in Figure 6–10, which has failing
paths in the timing analysis results similar to those shown in Table 6–8,
mod_A is probably a problem module. In this case, mod_A could be placed
in a LogicLock region to attempt to put all the nodes in the module closer
together in the floorplan.

6–34 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 6–10. Design Hierarchy

Table 6–8 shows the failing module paths in timing analysis.

Path Assignments

If you see a pattern such as the one shown in Figure 6–11 and Table 6–9,
it is probably an indication of paths with a common problem. In this case,
a path-based assignment could be made from all d_reg registers to all
memaddr registers. A path-based assignment can be made to place all
source registers, destination registers, and the nodes between them in a
LogicLock region using the wild cards characters “*” and “?”.

You can also explicitly place the nodes of a critical path in a LogicLock
region. There may be alternate paths between the source and destination
registers that could become critical if you use this method instead of
path-based assignments.

f For information on making path-based assignments, using wild cards,
and individual node assignments, see the LogicLock Design Methodology
chapter in Volume 2 of the Quartus II Handbook.

Table 6–8. Failing Module Paths in Timing Analysis

|mod_A|reg1 |mod_A|reg9

|mod_A|reg3 |mod_A|reg5

|mod_A|reg4 |mod_A|reg6

|mod_A|reg7 |mod_A|reg10

|mod_A|reg0 |mod_A|reg2

top

BA

Altera Corporation 6–35
June 2004 Preliminary

fMAX Timing Optimization Techniques (LUT-Based Devices)

Figure 6–11. Failing Paths in Timing Analysis

Location Assignments & Back Annotation

If a small number of paths are failing, you can use hard location
assignments to optimize placement. Location assignments are less
flexible for the Quartus II Fitter than LogicLock assignments. In some
cases when you are very familiar with your design, you may be able to
enter location constraints in a way that produces better results than the
Quartus II Fitter.

1 Note that improving fitting results, especially for larger devices
such as Stratix and Stratix II, can be difficult; location
assignments will not always improve the performance of the
design. In many cases you will not be able to improve upon the
results from the Fitter.

Table 6–9. Failing Paths in Timing Analysis

From To

|d_reg[1] |memaddr[5]

|d_reg[1] |memaddr[6]

|d_reg[1] |memaddr[7]

|d_reg[2] |memaddr[0]

|d_reg[2] |memaddr[1]

D Q

memaddr[2]

D Q

memaddr[7]

D Q

d_reg[7]

D Q

d_reg[1]

D Q

memaddr[0]

D Q

d_reg[0]

6–36 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

The following are commonly used location assignments, listed in order of
decreasing flexibility:

■ Custom regions
■ Back-annotated LAB location assignments
■ Back-annotated LE or ALM location assignments

Custom Regions

A custom region is a rectangular region containing user-assigned nodes.
These assigned nodes are then constrained in the region's boundaries. If
any portion of a block in the device floorplan overlaps with a custom
region, such as part of a M-RAM, it is considered to be entirely in that
region.

Custom regions are hard location assignments that cannot be overridden
and are very similar to fixed-size, locked-location LogicLock regions.
Custom regions are commonly used when logic must be constrained to a
specific portion of the device.

Back Annotation and Manual Placement

Fixing the location of nodes in a design in the locations resulting from the
last compilation is known as back-annotation. When all the nodes are
back-annotated, manually moving nodes does not affect the locations of
other design nodes that are locked down. This is referred to as manual
placement.

1 Locking down node locations is very restrictive to the Compiler,
so you should only back-annotate when the design has been
finalized and no further changes are expected. The assignments
may become invalid if the design is changed. Combinational
nodes often change names when a design is resynthesized, even
if they are unrelated to the logic that was changed.

1 Moving nodes manually can be very difficult for large devices,
and in many cases you will not be able to improve upon the
results from the Fitter.

1 Illegal or unroutable location constraints may cause “no fit”
errors.

Before making location assignments, determine whether to lock down the
location of all nodes in the design. When you are using a hierarchical
design flow, you can choose to lock down node locations in only one
LogicLock region, while the other node locations are left as floating in a

Altera Corporation 6–37
June 2004 Preliminary

fMAX Timing Optimization Techniques (LUT-Based Devices)

fixed LogicLock region. A hierarchical approach using the LogicLock
design methodology can reduce the dependence of logic blocks with
other logic blocks in the device.

f For more information on a block-based design approach, see the
Hierarchical Block-Based Design & Team-Based Design Flows chapter in
Volume 1 of the Quartus II Handbook.

When you back-annotate a design, you can choose that the nodes be
assigned either to LABs (this is preferred because of increased flexibility)
or LEs/ALMs. You can also choose to back-annotate routing to further
restrict the Fitter and force a specific routing within the device.

1 Using back-annotated routing with physical synthesis
optimizations may cause a routing failure.

f For more information on back-annotation of routing, see Quartus II
Help.

When performing manual placement on a detailed level, Altera suggests
that you move LABs, not logic cells (LEs or ALMs). The Quartus II
software places nodes that share the same control signals in appropriate
LABs. Successful place-and-route is more difficult when you move
individual logic cells.

In general, when you are performing manual place-and-route, it is best to
fix all I/O paths first. This is because there are often fewer options
available to meet I/O timing. After I/O timing has been met, focus on
manually placing fMAX paths. This strategy follows the methodology
outlined in this chapter.

The best way to meet performance is to move nodes closer together. For a
critical path such as the one shown in Figure 6–12, moving the destination
node closer to the other nodes reduces the delay and may cause it to meet
your timing requirements.

6–38 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 6–12. Reducing Delay of Critical Path

Optimizing Placement for Stratix II, Stratix, Stratix GX, & Cyclone II
Devices

In Stratix II, Stratix, Stratix GX, and Cyclone II architectures, the row
interconnect delay is slightly faster than the column interconnect delay.
Therefore, when placing nodes, optimal placement is typically an ellipse
around the source or destination node. In Figure 6–13, if the source is
located in the center, any of the shaded LABs should give approximately
the same delay.

Figure 6–13. Possible Optimal Placement Ellipse

In addition, you should avoid crossing any M-RAM memory blocks for
node-to-node routing, if possible, because routing paths across M-RAM
blocks requires using R24 or C16 routing lines.

Altera Corporation 6–39
June 2004 Preliminary

fMAX Timing Optimization Techniques (LUT-Based Devices)

To determine the actual delays to and from a resource, use the Show
Physical Timing Estimate feature in the Timing Closure Floorplan.

f For more information on using the Timing Closure Floorplan, see the
Timing Closure Floorplan chapter in Volume 2 of the Quartus II Handbook.

Optimizing Placement for Cyclone Devices

In Cyclone devices, the row and column interconnect delays are similar;
therefore, when placing nodes, optimal placement is typically a circle
around the source or destination node.

Try to avoid long routes across the device because they require more than
one routing line to cross the Cyclone device.

Optimizing Placement for Mercury, APEX II, & APEX 20KE/C Devices

For the Mercury, APEX II, and APEX 20KE/C architectures, the delay for
paths should be reduced by placing the source and destination nodes in
the same geographical resource location. The following list shows the
device resources in order from fastest to slowest:

■ LAB
■ MegaLAB™ structure
■ MegaLAB column
■ Row

For example, if the nodes cannot be place in the same MegaLAB structure
to reduce the delay, they should be place in the same MegaLAB column.
For the actual delays to and from resources, use the Show Physical
Timing Estimate feature in the Timing Closure Floorplan.

Optimize Source Code

If the methods described in the preceding sections do not sufficiently
improve the timing in the design, you must modify the design at the
source to achieve the desired results. You may be able to rearchitect the
design using pipelining or more efficient coding techniques. In many
cases, optimizing the design’s source code can have a very significant
effect on your design performance. In fact, optimizing your source code
is often a better choice of optimization than using LogicLock or location
assignments.

If your critical path involved memory or DSP functions, check whether
you have code blocks in your design that describe memory or DSP
functions that are not being inferred and placed in dedicated logic. You

6–40 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

may be able to modify your source code to allow these functions to be
placed into high-performance dedicated memory or DSP resources in the
target device.

f For coding style guidelines including examples of HDL code for
inferring memory and DSP functions, refer to the Inferring and
Instantiating Altera Megafunctions section of the Recommended HDL Coding
Styles chapter in Volume 1 of the Quartus II Handbook.

Ensure that your state machines are recognized as state machine logic and
optimized appropriately in your synthesis tool. State machines that are
recognized are generally optimized better than if the synthesis tool treats
them as generic logic. In the Quartus II software, you can check for the
State Machine report under Analysis & Synthesis in the Compilation
Report (Processing menu). This report provides details, including the
state encoding for each state machine that was recognized during
compilation. If your state machine is not being recognized, you may need
to change your source code to enable it to be recognized.

f For guidelines and sample HDL code for state machines, refer to the
State Machines section in the Recommended HDL Coding Styles chapter in
Volume 1 of the Quartus II Handbook.

Improving fMAX Summary

The choice of options and the adjustment of settings to improve fMAX
depends on the failing paths in the design. To achieve the best results
relative to your performance requirements, apply the following options,
compiling after each:

1. Apply netlist optimization options (including physical synthesis).

2. Modify the seed. (This step may be omitted if a large number of
critical paths are failing, or if paths are failing by large amounts.)

3. Apply synthesis options to optimize for speed.

4. Use the DSE Tcl/Tk script as appropriate to automate successive
compilations of a design, each employing the different options in
steps 1 through 3.

5. Make LogicLock assignments.

6. Make location assignments, or perform manual placement by
back-annotating the design.

Altera Corporation 6–41
June 2004 Preliminary

Optimization Techniques for Macrocell-Based (MAX 7000 and MAX 3000) CPLDs

If these options do not achieve performance requirements, design source
code modifications may be required.

f For more information on the DSE script, see the Design Space Explorer
chapter in Volume 2 of the Quartus II Handbook.

Optimization
Techniques for
Macrocell-
Based (MAX
7000 and MAX
3000) CPLDs

This section of the chapter addresses resource and timing optimization
issues for Macrocell-based Altera devices, MAX 7000 and MAX 3000
CPLD device families.

For information on optimizing FPGA and MAX II CPLD designs, refer to
“Optimization Techniques for LUT-Based (FPGA and MAX II) Devices”
on page 6–12. For information on optimizing compilation time (when
targeting any device), refer to “Compilation Time Optimization
Techniques” on page 6–55.

Resource
Utilization
Optimization
Techniques
(Macrocell-
based CPLDs)

The following recommendations will help you take advantage of the
macrocell-based architecture in the MAX 7000 and MAX 3000 device
families to yield maximum speed, reliability, and device resource
utilization while minimizing fitting difficulties.

After design analysis, the first stage of design optimization is to improve
resource utilization. Complete this stage before proceeding to timing
optimization. First, ensure that you have set the basic constraints
described in “Initial Compilation” on page 6–2. If your design is not
fitting into a specified device, use the techniques in this section to achieve
a successful fit.

Use Dedicated Inputs for Global Control Signals

MAX 7000 and MAX 3000 devices have four dedicated inputs that can be
used for global register control. Because the global register control signals
can bypass the logic cell array and directly feed registers, product terms
for primary logic can be preserved. Also, because each signal has a
dedicated path into the LAB, global signals can also bypass logic and data
path interconnect resources.

Because the dedicated input pins are designed for high fan-out control
signals and provide low skew, you should always assign global signals
(e.g., clock, clear, and output enable) to the dedicated input pins.

You can use logic-generated control signals for global control signals
instead of dedicated inputs. However, the disadvantages to using
logic-generated controls signals include:

6–42 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

■ More resources are required (i.e., logic cells, interconnect)
■ May result in more data skew
■ If the logic-generated control signals have high fan-out, the design

may be more difficult to fit

By default, the Quartus II software uses dedicated inputs for global
control signals automatically. You can assign the control signals to
dedicated input pins in one of four ways:

■ In the Assignment Editor, choose one of two methods:
● Assign pins to dedicated pin locations
● Assign global signal settings to the pins

■ Choose Register Control Signals in the Auto Global Options
section of the Analysis & Synthesis Settings page of the Settings
dialog box (Assignments menu)

■ Insert a global primitive after the pins

1 If you have already assigned pins in the MAX+PLUS II software
for the design, choose Import Assignments (Assignments
menu).

Reserve Device Resources

Because pin and logic option assignments might be necessary for board
layout and performance requirements, and because full utilization of the
device resources may cause the design to be more difficult to fit, Altera
recommends that you leave 10% of the device’s logic cells and 5% of the
I/O pins unused to accommodate future design modifications. Following
the Altera-recommended device resource reservation guidelines
increases the chance that the Quartus II software will be able to fit the
design during recompilation after changes or assignments have been
made.

Pin Assignment Guidelines & Procedures

Sometimes user-specified pin assignments are necessary for board layout.
This section discusses pin assignment guidelines and procedures.

To minimize fitting issues with pin assignments, follow these guidelines:

■ Assign speed-critical control signals to dedicated inputs
■ Assign output enables to appropriate locations
■ Estimate fan-in to assign output pins to appropriate LAB
■ Assign output pins in need of parallel expanders to macrocells

numbered 4 to 16

Altera Corporation 6–43
June 2004 Preliminary

Resource Utilization Optimization Techniques (Macrocell-based CPLDs)

1 Altera recommends that you allow the Quartus II software to
automatically choose pin assignments when possible.

Control Signal Pin Assignments

You should assign speed-critical control signals to dedicated input pins.
Every MAX 7000 and MAX 3000 device has four dedicated input pins
(GCLK1, OE2/GCLK2, OE1, GCLRn). You can assign clocks to global
clock dedicated inputs (GCLK1, OE2/GCLK2), clear to the global clear
dedicated input (GCLRn), and speed-critical output enable to global OE
dedicated inputs (OE1, OE2/GCLK2).

Figure 6–14 shows the EPM3032A device’s pin-out information for the
dedicated pins. You can use the Quartus II Help to determine the
dedicated input pin numbers.

Figure 6–14. Quartus II Help EPM3032A Dedicated Pin-Out Information

Output Enable Pin Assignments

Occasionally, because the total number of required output enable pins is
more than the dedicated input pins, output enable signals may need to be
assigned to I/O pins. Therefore, to minimize the possibility of fitting
errors, refer to Quartus II Help when assigning the output enable pins for
MAX 7000 and MAX 3000 devices. Search for the device name (e.g.,
EPM3032A) in Quartus II Help to bring up the device pin table with
output enable information.

Figure 6–15 shows the dedicated pin-out information for the EPM3512A
device from Quartus II Help. Specifically, Figure 6–15 shows that the first
row Pin;LCell value is 8/5; which means that GOE8 can be driven by pin
170 or C6 (depending on package) and GOE5 can be driven by logic cell
21.

Dedicated Input Pins Pin Numbers

6–44 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 6–15. Quartus II Help EPM3512A Dedicated Pin-Out Information

Estimate Fan-In When Assigning Output Pins

Macrocells with high fan-in can cause more placement problems for the
Quartus II Fitter than those with low fan-in. The maximum number of
fan-in per LAB should not exceed 36 in MAX 7000 and MAX 3000 devices.
Therefore, it is important to estimate the fan-in of logic (e.g., x-input AND
gate) that feeds each output pin. If the total fan-in of logic that feeds each
output pin in the same LAB exceeds 36, compilation may fail. To save
resources and prevent compilation errors, avoid assigning pins that have
high fan-in.

Outputs Using Parallel Expander Pin Assignments

Figure 6–16 illustrates how parallel expanders are used within a LAB.
MAX 7000 and MAX 3000 devices contain chains that can lend or borrow
parallel expanders. The Quartus II Fitter places macrocells in a location
that allows them to lend and borrow parallel expanders appropriately.

As shown in Figure 6–16, only macrocells 2 through 16 can borrow
parallel expanders. Therefore, you should assign output pins that may
need parallel expanders to pins adjacent to macrocells 4 through 16.
Altera recommends using macrocells 4 through 16 because they can
borrow the largest number of parallel expanders.

This column lists the possible sources for
the output enable signals (i.e., GOE1, GOE2, etc), (1)

Global output enable signals that are fed by
logic cell in the corresponding LCell column.

Global output enable signals that are fed by
pin in the corresponding Function column.

Altera Corporation 6–45
June 2004 Preliminary

Resource Utilization Optimization Techniques (Macrocell-based CPLDs)

Figure 6–16. LAB Macrocells & Parallel Expander Associations

Resolving Resource Utilization Problems

During compilation with the Quartus II software, you may receive an
error message (see Figure 6–17) alerting you that the compilation was not
successful.

There are two common Quartus II compilation fitting issues: macrocell
usage and routing resources. Macrocell usage errors occur when the total
number of macrocells in the design exceeds the available macrocells in
the device. Routing errors occur when the available routing resources
cannot implement the design. To resolve your design issues, check the
Message Window (see Figure 6–17) for the no-fit compilation results.

Macrocell 1

LAB A

Macrocell 2

Macrocell 3

Macrocell 4

Macrocell 5

Macrocell 6

Macrocell 7

Macrocell 8

Macrocell 9

Macrocell 10

Macrocell 11

Macrocell 12

Macrocell 13

Macrocell 14

Macrocell 15

Macrocell 16

Macrocells 4 through 16 borrow
up to 15 parallel expanders from the
three immediately-preceding macrocells.

Macrocell two borrows up to five
parallel expanders from macrocell one.

Macrocell three borrows up to ten
parallel expanders from macrocell
one and two.

Macrocell one cannot borrow
any parallel expanders.

6–46 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

1 Messages in the Message Window are also copied in the Report
Files. Right-click on a message and select Help (right button
pop-up menu) for more information.

Figure 6–17. Quartus II Software Compilation No-Fit Error Message WIndow

Resolving Macrocell Usage Issues

Occasionally, a design requires more macrocell resources than are
available in the selected device, resulting in a no-fit compilation. The
following list provides tips for resolving macrocell-usage issues as well as
tips to minimize the amount of macrocells used:

■ Turn off Auto Parallel Expanders on the Analysis & Synthesis
Settings page of the Settings dialog box (Assignments menu)—If the
design’s clock frequency (fMAX) is not an important part of the design
requirements, you should turn off the parallel expanders for all or
part of the project. The design will usually require more macrocells if
parallel expanders are turned on.

■ Change Optimization Technique from Speed to Area—An
algorithm that is written to give preference to device-fitting rather
than device-speed (fMAX) is selected when the Area Optimization
technique is enabled. As expected, the device-fitting algorithm
produces a slower compilation result. You can change the
Optimization Technique option in the Analysis & Synthesis
Settings page of the Settings dialog box (Assignments menu).

■ Use D-flip-flops instead of latches—Altera recommends that you
always use D-flip-flops instead of latches in your design because
D-flip-flops may reduce the macrocell fan-in, and thus reduce
macrocell usage. The Quartus II software uses extra logic to
implement latches in MAX 7000 and MAX 3000 designs because
individual MAX 7000 and MAX 3000 macrocells contain D-flip-flops
instead of latches.

Design Requires
Too Many Pins

Design Requires
Too Many Macrocells

Altera Corporation 6–47
June 2004 Preliminary

Resource Utilization Optimization Techniques (Macrocell-based CPLDs)

■ Use asynchronous clear and preset instead of synchronous clear and
preset—To reduce the product term usage, use asynchronous clear
and preset in your design whenever possible. Using other control
signals such as synchronous clear will produce macrocells and pins
with higher fan-out.

1 If you have followed the suggestions listed in this section and
your project still does not fit the targeted device, consider using
a larger device. When upgrading to a different density device,
the vertical-package-migration feature of the MAX 7000 and
MAX 3000 device families allows pin assignments to be
maintained.

Resolving Routing Issues

The other resource that can cause design-fitting issues is routing. For
example, if the total fan-in into a LAB exceeds the maximum allowed, the
result may be a no-fit error during compilation. If your design does not fit
the targeted device because of routing issues, consider the following
suggestions:

■ Use dedicated inputs/global signals for high fan-out signals—The
dedicated inputs in MAX 7000 and MAX 3000 devices are designed
for speed-critical and high fan-out signals. Therefore, Altera
recommends that you always assign high fan-out signals to
dedicated inputs/global signals.

■ Change the Optimization Technique option from Speed to Area—
This option may resolve routing resource and the macrocell usage
issues. See the same suggestion in “Resolving Macrocell Usage
Issues” on page 6–46.

■ Reduce the fan-in per cell—If you are not limited by the number of
macrocells used in the design, you can use the Fanin per cell (%)
option to reduce the fan-in per cell. The allowable values are 20-100%
and the default value is 100%. Reducing the fan-in can reduce
localized routing congestion but increase the macrocell count. You
can set this logic option in the Assignment Editor (Assignments
menu) or under More Settings in the Analysis & Synthesis Settings
page of the Settings dialog box (Assignments menu).

■ Turn off Auto Parallel Expanders in the Analysis & Synthesis
Settings page of the Settings dialog box (Assignments menu)—By
turning off the parallel expanders, the Quartus II software will have
more fitting flexibility for each macrocell, i.e., allowing macrocells to
relocate. For example, each macrocell (previously grouped together
in the same LAB) may move to a different LAB to reduce routing
constraints.

6–48 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

■ Inserting logic cells—Inserting logic cells reduces fan-in and shared
expanders used per macrocell, increasing routability. By default, the
Quartus II software will automatically insert logic cells when
necessary. You can turn this feature off by turning off Auto Logic
Cell Insertion under More Settings in the Analysis & Synthesis
Settings page of the Settings dialog box (Assignments menu). See
“Using LCELL Buffers to Reduce Required Resources” on page 6–48
for more information.

■ Change pin assignments—If you are willing to discard your pin
assignments, you can let the Quartus II Fitter automatically ignore all
the assignments, the minimum number of assignments, or specific
assignments.

1 If you prefer reassigning the pins to increase the
device-routing efficiency, refer to “Pin Assignment
Guidelines & Procedures” on page 6–42.

Using LCELL Buffers to Reduce Required Resources

Complex logic, such as multi-level XOR gates, will often be implemented
with more than one macrocell. When this occurs, the Quartus II software
automatically allocates shareable expanders—or additional macrocells
(called synthesized logic cells)—to supplement the logic resources that
are available in a single macrocell. You can also break down complex logic
by inserting logic cells in the project to reduce the average fan-in and total
number of shareable expanders needed. Manually inserting logic cells
can provide greater control over speed-critical paths.

Instead of using the Quartus II software’s Auto Logic Cell Insertion
option, you can manually insert logic cells. However, Altera recommends
that you use the Auto Logic Cell Insertion option unless you know
which part of the design is causing the congestion.

A good location to manually insert LCELL buffers is where a single
complex logic expression feeds multiple destinations in your design. You
can insert an LCELL buffer just after the complex expression; the
Quartus II Fitter extracts this complex expression and places it in a
separate logic cell. Rather than duplicating all the logic for each
destination, the Quartus II software feeds the single output from the logic
cell to all destinations.

To reduce fan-in and prevent no-fit compilations caused by routing
resource issues, insert an LCELL buffer after a NOR gate, see Figure 6–18.
The Figure 6–18 design was compiled for a MAX 7000AE device. Without
the LCELL buffer, the design requires two macrocells, eight shareable

Altera Corporation 6–49
June 2004 Preliminary

Timing Optimization Techniques (Macrocell-based CPLDs)

expanders, and the average fan-in is 14.5. However, with the LCELL
buffer, the design requires three macrocells, eight shareable expanders,
and the average fan-in is just 6.33.

Figure 6–18. Reducing the Average Fan-In by Inserting LCELL Buffers

Timing
Optimization
Techniques
(Macrocell-
based CPLDs)

The stage of design optimization after resource optimization focuses on
timing. Ensure that you have made the appropriate assignments as
described in “Initial Compilation” on page 6–2, and that the resource
utilization is satisfactory, before proceeding with timing optimization.

Maintaining the system’s performance at or above certain timing
requirements is an important goal of circuit designs. The five main timing
parameters that determine a design’s system performance are: setup time
(tSU), hold time (tH), clock-to-output time (tCO), pin-to-pin delays (tPD),
and maximum clock frequency (fMAX). The setup and hold times are the
propagation time for input data signals. Clock-to-output time is the
propagation time for output signals, pin-to-pin delay is the time required
for a signal from an input pin to propagate through combinational logic
and appear at an external output pin, and the maximum clock frequency
is the internal register-to-register performance.

XOR
a0

b0

XOR
a1

b1

XOR
a2

b2

XOR
a3

b3

XOR
a4

b4

XOR
a5

b5

clk

PRN

CLRN

D Q

DFF

Output

PRN

CLRN

D Q

DFF

Output

Insert LCELL Buffer After NOR Gate

6–50 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

This section provides guidelines to improve the timing if the timing
requirements are not met. Figure 6–19 shows the parts of the design that
determine the tSU, tH, tCO, tPD, and fMAX timing parameters.

Figure 6–19. Main Timing Parameters That Determine the System’s Performance

Timing results for tSU, tH, tCO, tPD, and fMAX are found in the Compilation
Report, as discussed in “Design Analysis” on page 6–6.

When you are analyzing a design to improve its performance, be sure to
consider the two major contributors to long delay paths:

■ Excessive levels of logic
■ Excessive loading (high fan-out)

For MAX 7000 and MAX 3000 devices, when a signal drives out to more
than one LAB, the programmable interconnect array (PIA) delay
increases by 0.1 ns per additional LAB fan-out. Therefore, to minimize the
added delay, you should concentrate the destination macrocells into
fewer LABs, minimizing the number of LABs that are driven. The main
cause of long delays in circuit design is excessive levels of logic.

Improving Setup Time

Sometimes the tSU timing reported by the Quartus II Fitter may not meet
your timing requirements. To improve the tSU timing, refer to the
guidelines listed below:

■ Turn on the Fast Input Register option—The Fast Input Register
option allows input pins to directly drive macrocell registers via the
fast-input path, thus minimizing the pin-to-register delay. This
option is helpful when a pin drives a D-flip-flop without
combinational logic between the pin and the register.

Input

Logic
PRN

CLRN

D Q

DFF

PRN

CLRN

D Q

DFF
Output

Logic

Input

Set up & hold time

Clock frequency

Clock-to-output-time

Logic Logic

Altera Corporation 6–51
June 2004 Preliminary

Timing Optimization Techniques (Macrocell-based CPLDs)

■ Reduce the amount of logic between the input and the register—
Excessive logic between the input pin and register will cause more
delays. Therefore, to improve setup time, Altera recommends that
you reduce the amount of logic between the input pin and the
register whenever possible.

■ Reduce fan-out—The delay from input pins to macrocell registers
increases when the fan-out of the pins increases. Therefore, to
improve the setup time, minimize the fan-out.

Improving Clock-to-Output Time

To improve a design’s clock-to-output time, you should minimize the
register-to-output-pin delay. To improve the tCO timing, refer to the
guidelines listed below:

■ Use the global clock—Besides minimizing the delay from the register
to output pin, minimizing the delay from the clock pin to the register
can also improve the tCO timing. Altera recommends that you always
use the global clock for low-skew and speed-critical signals.

■ Reduce the amount of logic between the register and output pin—
Excessive logic between the register and the output pin will cause
more delay. Always minimize the amount of logic between the
register and output pin for faster clock-to-output time.

Table 6–10 lists timing results for an EPM7064AETC100-4 device when a
combination of the Fast Input Register option, global clock, and minimal
logic is used. When the Fast Input Register option is turned on, the tSU
timing is improved (tSU decreases from 1.6 ns to 1.3 ns and from 2.8 ns to
2.5 ns). The tCO timing is improved when the global clock is used for
low-skew and speed-critical signals (tCO decreases from 4.3 ns to 3.1 ns).
However, if there is additional logic used between the input pin and the
register or the register and the output pin, the tSU and tCO timing will
increase.

Table 6–10. EPM7064AETC100-4 Device Timing Results (Part 1 of 2)

Number
of

Registers
tSU tH tCO

Global
Clock
Used

Fast
Input

Register
Option

D Input
Location

Q Output
Location

Additional
Logic

Between D
Input

Location &
Register

Additional
Logic

Between
Register & Q

Output
Location

One 1.3 ns 1.2 ns 4.3 ns No On LAB A LAB A No No

One 1.6 ns 0.3 ns 4.3 ns No Off LAB A LAB A No No

One 2.5 ns 0 ns 3.1 ns Yes On LAB A LAB A No No

6–52 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Improving Propagation Delay (tPD)

Achieving fast propagation delay (tPD) timing is required in many system
designs. However, if there are long delay paths through complex logic,
achieving fast propagation delays can be difficult. To improve your
design’s tPD, Altera recommends that you follow the guidelines discussed
in this section.

■ Turn on Auto Parallel Expanders in the Analysis & Synthesis
Settings page of the Settings dialog box (Assignments menu)—
Turning on the parallel expanders for individual nodes or
subdesigns can increase the performance of complex logic functions.
However, if the project’s pin or logic cell assignments use parallel
expanders placed physically together with macrocells (which can
reduce routability), parallel expanders can cause the Quartus II Fitter
to have difficulties finding and optimizing a fit. Additionally, the
number of macrocells required to implement the design will also
increase and result in a no fit error during compilation if the device’s
resources are limited. For more information on turning the Auto
Parallel Expanders option on, refer to “Resolving Macrocell Usage
Issues” on page 6–46.

■ Set the Optimization Technique to Speed—By default, the
Quartus II software sets the Optimization Technique option to
Speed for MAX 7000 and MAX 3000 devices. Thus, you should only
need to reset the Optimization Technique option back to Speed if
you have previously set it to Area. You can reset the Optimization
Technique option in the Analysis & Synthesis Settings page of the
Settings dialog box (Assignments menu).

One 2.8 ns 0 ns 3.1 ns Yes Off LAB A LAB A No No

One 3.6 ns 0 ns 3.1 ns Yes Off LAB A LAB A Yes No

One 2.8 ns 0 ns 7.0 ns Yes Off LAB D LAB A No Yes

16
registers
with the
same D
and clock
inputs

2.8 ns 0 ns All
6.2 ns

Yes Off LAB D LAB A, B No No

32
registers
with the
same D
and clock
inputs

2.8 ns 0 ns All
6.4 ns

Yes Off LAB C LAB A,
B, C

No No

Table 6–10. EPM7064AETC100-4 Device Timing Results (Part 2 of 2)

Altera Corporation 6–53
June 2004 Preliminary

Timing Optimization Techniques (Macrocell-based CPLDs)

Improving Maximum Frequency (fMAX)

Maintaining the system clock at or above a certain frequency is a major
goal in circuit design. For example, if you have a fully synchronous
system that must run at 100 MHz, the longest delay path from the output
of any register to the input(s) of the register(s) it feeds must be less than
10 ns. Maintaining the system clock speed can be difficult if there are long
delay paths through complex logic. Altera recommends that you follow
the guidelines below to improve your design’s clock speed (i.e., fMAX).

■ Turn on Auto Parallel Expanders in the Analysis & Synthesis
Settings page of the Settings dialog box (Assignments menu)—
Turning on the parallel expanders for individual nodes or
subdesigns can increase the performance of complex logic functions.
However, if the project’s pin or logic cell assignments use parallel
expanders placed physically together with macrocells (which can
reduce routability), parallel expanders can cause the Quartus II
Compiler to have difficulties finding and optimizing a fit.
Additionally, the amount of macrocells required to implement the
design will also increase and result in a no fit error during
compilation if the device’s resources are limited. For more
information on turning the Auto Parallel Expanders option on, refer
to “Resolving Macrocell Usage Issues” on page 6–46.

■ Use global signals/dedicated inputs—Altera MAX 7000 and MAX
3000 devices’ dedicated inputs provide low skew and high speed for
high fan-out signals. Thus, Altera recommends that you always
minimize the number of control signals in the design and use the
dedicated inputs to implement them.

■ Set the Optimization Technique to Speed—By default, the
Quartus II software sets the Optimization Technique option to
Speed for MAX 7000 and MAX 3000 devices. Thus, you should only
need to reset the Optimization Technique option back to Speed if
you have previously set it to Area. You can reset the Optimization
Technique option in the Analysis & Synthesis Settings page of the
Settings dialog box (Assignments menu).

■ Pipeline the design—Pipelining, which increases clock frequency
(fMAX), refers to dividing large blocks of combinational logic by
inserting registers. For more information on pipelining, see
“Optimizing Source Code—Pipelining for Complex Register Logic”.

Optimizing Source Code—Pipelining for Complex Register Logic

If the methods described in the preceding sections do not sufficiently
improve your results, modify the design at the source to achieve the
desired results. Using a pipelining technique can consume device
resources, but it also lowers the propagation delay between registers,
allowing you to maintain high system clock speed.

6–54 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

The benefits of pipelining can be demonstrated with a 4- to 16-pipelined
decoder that decodes the 4-bit numbers. The decoder is based on five 2- to
4-pipelined decoders with outputs that are registered using D-flip-flops.
Figures 6–20 shows one of the 2- to 4-pipelined decoders. The function
2TO4DEC is the 2- to 4-decoder that feeds all four decoded outputs (i.e.,
out1, out2, out3, and out4) to the D-flip-flops in 4REG.

Figure 6–20. A 2- to 4-Pipelined Decoder

Figures 6–21 shows five 2- to 4-decoders (2TO4REGDEC) that are
combined to form a 4- to 16-pipelined decoder. The first decoder
(2TO4REGDEC1) will decode the two most significant bits (MSB) (i.e., in3
and in4) of the 4- to 16-decoder. The decoded output from the
2TO4REGDEC1 decoder will only enable one of the rest of the 2- to
4-decoders (i.e., 2TO4REGDEC2, 2TO4REGDEC3, 2TO4REGDEC4, or
2TO4REGDEC5). The inputs in1 and in2 are decoded by the enabled
2- to 4-decoder. Because the time to generate the decoded output
increases with the size of the decoder, pipelining the design reduces the
time consumed to generate the decoded output, thus improving the
maximum frequency. In Figures 6–21, the MSBs (i.e.,in3 and in4) are
decoded in the first clock cycle, while the other bits (i.e., in1, and in2)
are decoded in the following clock cycle.

in1

in2

clk

reset

in0

in1
out1

out2

out3

out4

2TO4DEC

out1

out2

out3

out4

d1

d2

d3

d4

clk

reset

q1

q2

q3

q4

4REG

Altera Corporation 6–55
June 2004 Preliminary

Compilation Time Optimization Techniques

Figure 6–21. Five 2- to 4-Pipelined Decoders Combined to Form a 4- to 16-Pipelined Decoder

Compilation
Time
Optimization
Techniques

If optimizing the compilation time of your design is important, use the
techniques in this section. Be aware that reducing compilation time using
these techniques may reduce the overall quality of results.

Reducing Synthesis and Synthesis Netlist Optimization Time

You can use Quartus II integrated synthesis to synthesize and optimize
HDL designs. You can also use synthesis netlist optimizations to optimize
netlists synthesized by third-party EDA software. Using these
optimizations can make the Analysis & Synthesis module take much

in1

in2

reset

2TO4REGDEC2

in1

in2

clk

reset

out1

out2

out3

out4

2TO4REGDEC1

in1

in2

clk

reset

out1

out2

out3

out4

2TO4REGDEC3

in1

in2

clk

reset

out1

out2

out3

out4

2TO4REGDEC4

in1

in2

clk

reset

out1

out2

out3

out4

2TO4REGDEC5

out13

out14

out15

out16

in1

in2

clk

reset

out1

out2

out3

out4

clk

in3

in4

out9

out10

out11

out12

out1

out2

out3

out4

out5

out6

out7

out8

6–56 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

longer to run. Look at the Analysis & Synthesis messages to find out how
much time these optimizations take. Note that the compilation time spent
in Analysis & Synthesis is typically small compared to the compilation
time spent in the Fitter.

If your design meets your performance requirements without synthesis
netlist optimizations, turn the optimizations off to save time. If you need
to turn on synthesis netlist optimizations to meet performance, separately
optimize parts of your design hierarchy to reduce analysis and synthesis.
Create ATOM netlists for parts of your design you have already
synthesized and optimized. The Quartus II Analysis & Synthesis module
will not need to reoptimize those netlists, resulting in reduced synthesis
and netlist optimization time.

f For more information on creating hierarchical designs with multiple
netlists, refer to the Hierarchical Block-Based & Team-Based Design Flows
chapter in Volume 1 of the Quartus II Handbook.

Reducing Placement Time

The time needed to place a design depends on two factors:

■ The number of ways the logic in the design can be placed in the
device

■ The settings that control how hard the placer works to find a good
placement

You can reduce the placement time in two ways: change the settings for
the placement algorithm, or use LogicLock regions to manually control
where parts of the design are placed. Sometimes there is a trade-off
between placement time and routing time. Routing time can increase if
the placer does not run long enough to find a good placement. When you
reduce placement time, make sure that it does not increase routing time
and cancel out the time reduction.

Fitter Effort Setting

Use the Fitter effort setting on the Fitter Settings page of the Settings
dialog box (Assignments menu) to shorten run time by changing the
effort level to Auto Fit or Fast Fit.

Physical Synthesis Effort Settings

You can use the physical synthesis options to optimize your
post-synthesis netlist and improve your timing performance. These
options, which affect placement, can significantly increase compilation
time. Refer to Table 6–7 on page 6–29 for detailed results.

Altera Corporation 6–57
June 2004 Preliminary

Compilation Time Optimization Techniques

If your design meets your performance requirements without physical
synthesis options, turn them off to save time. You can also use the
Physical synthesis effort setting on the Physical Synthesis
Optimizations page under Fitter Settings in the Settings dialog box
(Assignments menu) to reduce the amount of extra compilation time used
by these optimizations. The Fast setting directs the Quartus II software to
use a lower level of physical synthesis optimization that, compared to the
normal level, may cause a smaller increase in compilation time. However,
the lower level of optimization may result in a smaller increase in design
performance.

Incremental Fitting

Incremental fitting can reduce placement time after an initial compilation
because the placer tries to place unchanged nodes in your design in their
previous locations. The matching is based on the nodes’ logic and
connectivity, not just their names. Even if all of the combinational node
names have changed, incremental fitting should be able to match the
original nodes’ functionality and recreate the same placement. Not all
nodes need to match, making this mode perfect for Engineering Change
Orders (ECOs). Incremental fitting can start an entirely new placement
under some conditions:

■ More than 500 nodes in the design do not match
■ Performance drops by more than 5%
■ You significantly change LogicLock regions
■ You target a new device
■ You delete the design database

Start incremental fitting by choosing Start > Start Incremental Fitting
(Processing menu).

LogicLock Regions

Preserving information about previous placements can make future
placements take less time. To successfully preserve information, node
names must not change from placement to placement, and node locations
must be preserved so they will not change from placement to placement.

To preserve node names, you must use atom netlists. Atom netlists
include Verilog Quartus Mapping (.vqm) files and EDIF files, which are
the outputs of third-party synthesis software. If you use Quartus II
integrated synthesis, or turn on any Quartus II netlist optimizations, you
must generate VQM files and turn off netlist optimizations in future
compilations.

6–58 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

To preserve node locations, use back-annotated LogicLock regions. After
you back-annotate a LogicLock region, the node locations are fixed and
the placer skips those nodes, saving time. If you change part of your
design in a back-annotated LogicLock region, delete the back-annotated
contents of the region and recompile the design. The placer will find a
new placement for the changed logic and any logic that is not in a
LogicLock region.

Follow these steps to reduce placement time with atom netlists and
LogicLock regions:

1. Choose hierarchies in your design to assign to LogicLock regions.
You do not have to use LogicLock regions for all hierarchies in your
design, just the hierarchies for which you want to reduce placement
time.

2. Create separate atom netlists for the chosen hierarchies and assign
them to LogicLock regions

3. Turn off netlist optimizations on each LogicLock region

4. Compile the design

5. Back-annotate the LogicLock regions

Follow these steps when you change logic in a back-annotated LogicLock
region

1. Create a new atom netlist for the hierarchy

2. Delete the back-annotated contents of the appropriate LogicLock
region

3. Recompile the design

4. Back-annotate the LogicLock region

f For more information on creating hierarchical designs with multiple
netlists, refer to the Hierarchical Block-Based & Team-Based Design Flows
chapter in Volume 1 of the Quartus II Handbook.

Altera Corporation 6–59
June 2004 Preliminary

Scripting Support

Reducing Routing Time

The time needed to route a design depends on three factors: the device
architecture, the placement of the design in the device, and the
connectivity between different parts of the design. Typically the routing
time is not a significant amount of the compilation time. If your design
takes a long time to route, perform one or more of the following actions:

■ Check for routing congestion
■ Let the placer run longer to find a more routable placement
■ Use LogicLock regions to preserve routing information

Routing Congestion

To identify congested routing areas in your design, open the Timing
Closure Floorplan. Choose Timing Closure Floorplan (Assignments
menu) and turn on Show Routing Congestion. A routing resource usage
above 90% indicates routing congestion.

If the area with routing congestion is in a LogicLock region or between
LogicLock regions, remove the LogicLock regions and recompile the
design. If the routing time remains the same, then the time is a
characteristic of the design and the placement. If the routing time
decreases, you should consider changing the size, location, or contents of
the LogicLock regions to reduce congestion and decrease routing time.

LogicLock Regions

You can use LogicLock regions back-annotated to the routing level to
preserve routing information between compilations. This can reduce the
time required to route a design. Follow the same steps as for using
LogicLock regions to reduce placement time, but back-annotate to the
routing level.

Scripting
Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some of these procedures at a command
prompt.

For detailed information about specific scripting command options and
Tcl API packages, type quartus_sh --qhelp at a system command
prompt to run the Quartus II Command-Line and Tcl API Help browser.

f For more information on Quartus II scripting support, including
examples, refer to the Tcl Scripting and Command-Line Scripting chapters
in Volume 2 of the Quartus II Handbook.

6–60 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

You can specify many of the options described in this section either in an
instance, or at a global level, or both.

Use the following Tcl command to make a global assignment:

set_global_assignment -name <QSF Variable Name> <Value>

Use the following Tcl command to make an instance assignment:

set_instance_assignment -name <QSF Variable Name> <Value> \
-to <Instance Name>

Initial Compilation Settings

Table 6–11 lists the QSF variable name and applicable values for the
settings discussed in “Initial Compilation” on page 6–2. The QSF variable
name is used in the Tcl assignment to make the setting along with the
appropriate value. The Type column indicates whether the setting is
supported as a Global setting, an Instance setting, or both.

Resource Utilization Optimization Techniques (LUT-Based
Devices)

Table 6–12 lists the QSF variable name and applicable values for the
settings discussed in “Resource Utilization Optimization Techniques
(LUT-Based Devices)” on page 6–13. The QSF variable name is used in the

Table 6–11. Initial Compilation Settings

Setting Name QSF Variable Name Values Type

Use Smart
Compilation

SPEED_DISK_USAGE_TRADEOFF SMART, NORMAL Global

Optimize Timing OPTIMIZE_TIMING OFF, “NORMAL
COMPLIATION”, “EXTRA
EFFORT”

Global

Optimize I/O Cell
Register
Placement

OPTIMIZE_IOC_REGISTER_PLACEMENT_FOR
_TIMING

ON,OFF Global

Optimize Hold
Timing

OPTIMIZE_HOLD_TIMING OFF, “IO PATHS AND
MINIMUM TPD PATHS”,
“ALL PATHS”

Global

Fitter Effort FITTER_EFFORT “STANDARD FIT”, “FAST
FIT”, “AUTO FIT”

Global

Altera Corporation 6–61
June 2004 Preliminary

Scripting Support

Tcl assignment to make the setting along with the appropriate value. The
Type column indicates whether the setting is supported as a Global
setting, an Instance setting, or both.

I/O Timing Optimization Techniques (LUT-Based Devices)

Table 6–13 lists the QSF variable name and applicable values for the
settings discussed in “I/O Timing Optimization Techniques (LUT-Based
Devices)” on page 6–21. The QSF variable name is used in the Tcl

Table 6–12. Resource Utilization Optimization Settings

Setting Name QSF Variable Name Values Type

Auto Packed
Registers

AUTO_PACKED_REGISTERS
_<Device Family Name>

OFF, NORMAL,
“MINIMIZE AREA”

Global,
Instance

Auto Packed
Registers

AUTO_PACKED_REGISTERS
_<CYCLONE|MAXII|STRATIX|STRATIXII>

OFF, NORMAL,
“MINIMIZE AREA”,
“MINIMIZE AREA WITH
CHAINS”, AUTO

Global,
Instance

Perform
WYSIWYG
Primitive
Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_
REMAP

ON, OFF Global,
Instance

Optimization
Technique

<Device Family Name>_OPTIMIZATION_
TECHNIQUE

AREA, SPEED,
BALANCED

Global,
Instance

State Machine
Encoding

STATE_MACHINE_PROCESSING AUTO, “ONE-HOT”,
“MINIMAL BITS”,
“USER-ENCODED”

Global,
Instance

Preserve
Hierarchy

PRESERVE_HIERARCHICAL_BOUNDARY OFF, RELAXED, FIRM, Instance

Auto RAM
Replacement

AUTO_RAM_RECOGNITION ON, OFF Global,
Instance

Auto ROM
Replacement

AUTO_ROM_RECOGNITION ON, OFF Global,
Instance

Auto Shift Register
Replacement

AUTO_SHIFT_REGISTER_RECOGNITION ON, OFF Global,
Instance

Auto DSP Block
Replacement

AUTO_DSP_RECOGNITION ON, OFF Global,
Instance

6–62 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

assignment to make the setting along with the appropriate value. The
Type column indicates whether the setting is supported as a Global
setting, an Instance setting, or both.

FMAX Timing Optimization Techniques (LUT-Based Devices)

Table 6–14 lists the QSF variable name and applicable values for the
settings discussed in “fMAX Timing Optimization Techniques (LUT-Based
Devices)” on page 6–27. The QSF variable name is used in the Tcl
assignment to make the setting along with the appropriate value. The
Type column indicates whether the setting is supported as a Global
setting, an Instance setting, or both.

Table 6–13. I/O Timing Optimization Settings

Setting Name QSF Variable Name Values Type

Optimize I/O cell
register placement
for timing

OPTIMIZE_IOC_REGISTER_PLACEMENT_FOR
_TIMING

ON, OFF Global

Fast Input Register FAST_INPUT_REGISTER ON, OFF Instance

Fast Output
Register

FAST_OUTPUT_REGISTER ON, OFF Instance

Fast Output
Enable Register

FAST_OUTPUT_ENABLE_REGISTER ON, OFF Instance

Table 6–14. FMAX Timing Optimization Settings (Part 1 of 2)

Setting Name QSF Variable Name Values Type

Perform
WYSIWYG
Primitive
Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_
REMAP

ON, OFF Global,
Instance

Perform Gate
Level Register
Retiming

ADV_NETLIST_OPT_SYNTH_GATE_RETIME ON, OFF Global

Allow Register
Retiming to trade
off Tsu/Tco with
fMAX

ADV_NETLIST_OPT_RETIME_CORE_AND_IO ON, OFF Global

Perform Physical
Synthesis for
Combinational
Logic

PHYSICAL_SYNTHESIS_COMBO_LOGIC ON, OFF Global

Altera Corporation 6–63
June 2004 Preliminary

Conclusion

Conclusion Today's complex designs have complex requirements. Methodologies for
fitting your design and for achieving timing closure are fundamental to
optimal performance in today's designs. Using the Quartus II design
optimization methodology closes timing quickly on complex designs,
reduces iterations by providing more intelligent and better linkage
between analysis and assignment tools, and balances multiple design
constraints including multiple clocks, routing resources, and area
constraints.

The Quartus II software provides many features to effectively achieve
optimal results. Follow the techniques presented in this chapter to
efficiently optimize a design for area or timing performance or to reduce
compilation time.

Perform Register
Duplication

PHYSICAL_SYNTHESIS_REGISTER_
DUPLICATION

ON, OFF Global

Perform Register
Retiming

PHYSICAL_SYNTHESIS_REGISTER_RETIMING ON, OFF Global

Physical Synthesis
Effort

PHYSICAL_SYNTHESIS_EFFORT NORMAL, EXTRA, FAST Global

Seed SEED <integer> Global

Maximum Fan-Out MAX_FANOUT <integer> Instance

Manual Logic
Duplication

DUPLICATE_ATOM <node name> Instance

Table 6–14. FMAX Timing Optimization Settings (Part 2 of 2)

Setting Name QSF Variable Name Values Type

6–64 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Altera Corporation 7–1
June 2004 Preliminary

7. Timing Closure Floorplan

Introduction With FPGA designs surpassing the million-gate mark, designers need
advanced tools to better analyze timing closure issues to achieve their
system performance goals.

The Altera® Quartus® II software offers many advanced design analysis
tools that allow detailed timing analysis of your designs, including a fully
integrated Timing Closure Floorplan Editor. With these tools and options,
the critical paths in your design can be easily determined and located in
the floorplan of the targeted device. This chapter explains how to use
these tools and options to enhance your FPGA design analysis.

Design Analysis
Using the
Timing Closure
Floorplan

The Timing Closure Floorplan Editor assists you in visually analyzing
your designs before and after performing a full design compilation in the
Quartus II software. This floorplan editor, used in conjunction with
traditional Quartus II timing analysis features, provides a powerful
method to perform design analysis.

Timing Closure Floorplan Views

The Timing Closure Floorplan Editor allows you to customize the views
of your design. The Field View is a color-coded, high-level view of
resources. Figure 7–1 shows the Field View of a Stratix® device.

qii52006 2.0

7–2 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 7–1. Field View of a Stratix Device

In the field view, you can view the details of a resource by selecting the
resource, right-clicking, then selecting Show Details from the
right-button pop-up menu. To hide the details, select all the resources,
right-click, and select Hide Details. See Figure 7–2.

You can also view your design in the Timing Closure Floorplan Editor
with the traditional Interior Cells, Package Top, and Package Bottom
views. Use the View menu to change to the various floorplan views.

M4K
Blocks

I/O Blocks

DSP
Blocks

M512
Blocks

M-RAM

Altera Corporation 7–3
June 2004 Preliminary

Design Analysis Using the Timing Closure Floorplan

Figure 7–2. Show Details & Hide Details of a LAB in Field View

Viewing Assignments

The Timing Closure Floorplan Editor differentiates between user
assignments and fitter placements. User assignments are location and
LogicLock™ assignments that you make. Fitter placements are the
locations where the Quartus II software placed all nodes after the last
compilation. You can view both user assignments and fitter placements at
the same time.

To see user assignments, click the User Assignments icon in the
Floorplan Editor toolbar, or choose Assignments (View menu) and select
Show User Assignments. See Figure 7–3.

7–4 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 7–3. User Assignments

To see fitter placements, click the Fitter Assignments icon in the
Floorplan Editor toolbar, or choose Assignments (View menu) and select
Show Fitter Placements. See Figure 7–4.

Altera Corporation 7–5
June 2004 Preliminary

Design Analysis Using the Timing Closure Floorplan

Figure 7–4. Fitter Placements

Viewing Critical Paths

The View Critical Paths feature displays routing paths in the floorplan
and ranks their importance, as shown in Figure 7–5. The criticality of a
path is determined by either delay or slack. You can view a percentage of
critical paths or specify how many paths you wish to see. You can also
choose to see paths for all clock domains or a specific clock domain. The
following paths can be displayed:

■ tPD - The time required for a signal from an input pin to propagate
through combinational logic and appear at an external output pin.

■ tSU - The length of time for which data that feeds a register via its data
or enable input(s) must be present at an input pin before the clock
signal that clocks the register is asserted at the clock pin.

■ tCO - The maximum time required to obtain a valid output at an
output pin that is fed by a register after a clock signal transition on
an input pin that clocks the register. This time always represents an
external pin-to-pin delay.

7–6 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

■ tH - The minimum length of time for which data that feeds a register
through data or enable input(s) must be retained at an input pin after
the clock signal that clocks the register is asserted at the clock pin.

■ Register-to-Register (fMAX) - The maximum clock frequency that can
be achieved without violating internal setup (tSU) and hold (tH) time
requirements.

To view critical paths in the floorplan, click the Show Critical Paths icon
or chose Routing > Show Critical Paths (View menu). To set the criteria
for the critical path you want to view, select the Critical Paths Settings
icon or choose Routing > Critical Paths Settings (View menu). See
Figure 7–5.

Figure 7–5. Critical Paths

When viewing critical paths by slack, the settings are specified with the
By Slack tab of the Critical Path Settings dialog box shown in Figure 7–6.
You determine which path to view and specify the slack threshold
beyond which you would like the path displayed in the floorplan. For
example, you can view all paths with a slack of -1 ns or worse.

1 Timing settings must be made for paths to be displayed in the
floorplan.

Altera Corporation 7–7
June 2004 Preliminary

Design Analysis Using the Timing Closure Floorplan

Figure 7–6. Critical Paths Settings, by Slack

When viewing critical paths by delay, the settings are specified with the
By Delay tab of the Critical Path Settings dialog box shown in
Figure 7–7. This view displays the critical paths with the longest delay.

7–8 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 7–7. Critical Paths Settings, by Delay

The critical path feature is extremely useful in determining the criticality
of nodes based on placement. There are a number of options to view the
details of critical path. To see the delay of the critical path, click the Show
Routing Delays icon or choose Routing > Show Routing Delays (View
menu). See Figure 7–8.

Altera Corporation 7–9
June 2004 Preliminary

Design Analysis Using the Timing Closure Floorplan

Figure 7–8. Routing Delays for Critical Paths

The default view shows the path. You can also view all the combinational
nodes to see the worst-case path between the source and destination
nodes. To view the full path, select the path by clicking on the delay label,
right click, and select Show Path Edges. Figure 7–9 shows a critical path
through combinational nodes. To hide the combinational nodes, select the
path, right click, and select Hide Path Edges.

1 The routing delays must be shown in order to be able to select a
path.

7–10 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 7–9. Worst-Case Combinational Paths of Critical Paths

You can also assign the path to a LogicLock region in the Paths dialog box;
select the path, right click, and select Properties.

You can determine the maximum routing delay between two nodes
within a LogicLock region. To use this feature, click the Show
Intra-region Delay icon or go to Routing> Show Intra-region Delay
(View menu). Place your cursor over a fitter-placed LogicLock region to
see the maximum delay. Figure 7–10 shows the maximum routing delay
of a LogicLock region.

Figure 7–10. Maximum Intra-Region Delay

Altera Corporation 7–11
June 2004 Preliminary

Design Analysis Using the Timing Closure Floorplan

f For more information on making path assignments with the Paths dialog
box, see the LogicLock Design Methodology chapter in Volume 2 of the
Quartus II Handbook.

Physical Timing Estimates

In the Timing Closure Floorplan Editor, you can select a resource and see
the approximate delay to any other resource on the chip. Once a resource
is selected, the delay is represented by the color of potential destination
resources. The darker the resource, the longer the delay, as shown in
Figure 7–11.

Figure 7–11. Physical Timing Estimates for Large Floorplan

You can also get an approximation of the delay between two points by
selecting a source and holding your cursor over a potential destination
resource, as shown in Figure 7–12.

7–12 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 7–12. Delay for Physical Timing Estimate

The delays represent an estimate based on probable best-case routing. It
is possible the delay is greater than what is shown, depending on the
availability of routing resources. In general, there is a strong correlation
between the probable and actual delay.

To view the physical timing estimates, click the Show Physical Timing
Estimate icon or choose Routing > Show Physical Timing Estimates
(View menu).

The physical timing estimate information can be used when manually
placing logic in a device. This allows you to place critical nodes and
modules closer together and non-critical or unrelated nodes and modules
further apart. This reduces the routing congestion between critical and
non-critical entities and modules allowing the Quartus II Fitter to select
the timing requirements.

LogicLock Region Connectivity

You can also see how logic in LogicLock regions interface by viewing the
connectivity between assigned LogicLock regions. This capability is
extremely valuable when entities are assigned to LogicLock regions. It is
also possible to see the fan-in and fan-out of selected LogicLock regions.

Figure 7–13 shows standard LogicLock region connections. To view the
connections in the timing closure floorplan, click the Show LogicLock
Regions Connectivity icon in the toolbar or choose Routing > Show
LogicLock Regions Connectivity (View menu).

Altera Corporation 7–13
June 2004 Preliminary

Design Analysis Using the Timing Closure Floorplan

Figure 7–13. LogicLock Region Connections with Connection Count

The connection line thickness indicates how many connections exist
between regions. To view the number of connections between regions,
click the Show Connection Count icon or choose Routing > Show
Connection Count (View menu).

LogicLock region connectivity is applicable only when the user
assignments are viewed in the floorplan. When floating LogicLock
regions are used, the origin of the user-assigned region is not necessarily
the same as the fitter-placed region. This allows you to unlock a region
and then lock it down again at a later time. You can change the origin of
your floating LogicLock regions to that of the last compilation origin in

7–14 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

the LogicLock Regions window (Assignments Menu), or by selecting
Back-Annotate Origin and Lock under Location in the LogicLock
Regions Properties dialog box.

To see the fan-in or fan-out of a LogicLock region, select the user-assigned
LogicLock region while the fan-in or the fan-out option is turned on. To
set the fan-in option, click the Show Node Fan-In icon or choose Routing
> Show Node Fan-In (View menu). To set the fan-out option, select the
Show Node Fan-Out icon or choose Routing > Show Node Fan-Out
(View menu). Only the nodes that have user assignments are seen when
viewing fan-in or fan-out of LogicLock regions. Figure 7–14 shows the
fan-out of a selected LogicLock region.

Figure 7–14. Fan-In or Fan-Out

Altera Corporation 7–15
June 2004 Preliminary

Design Analysis Using the Timing Closure Floorplan

Viewing Routing Congestion

The View Routing Congestion feature allows you to determine the
percentage of routing resources used after a compilation. This feature
identifies where there is a lack of routing resources.

The congestion is visually represented by the color and shading of logic
resources. The darker shading represents a greater routing resource
utilization. Logic resources that are red have routing resource utilization
greater than the specified threshold.

To view routing congestion in the floorplan, click the Show Routing
Congestion icon, or choose Routing > Show Routing Congestion (View
menu). To set the criteria for the critical path you wish to view, click the
View Routing Congestion Settings icon or choose Routing > Routing
Congestion Settings (View menu). Figure 7–15 shows the Routing
Congestion Settings dialog box.

Figure 7–15. Routing Congestion Settings Window

You can choose the routing resource you want to examine and set the
congestion threshold. Routing congestion is calculated based on the total
resource usage divided by the total available resources.

If you are using the routing congestion viewer to determine where there
is a lack of routing resources, examine each routing resource individually
to see which ones use close to 100% of available resources.

7–16 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

I/O Timing Analysis Report File

Use the Timing Analyzer folder in the Compilation Report (Processing
menu) to determine whether I/O timing has been met. The tSU, tH, and tCO
reports list the I/O paths and the slack associated with each. The I/O
paths that have not met the required timing are reported with a negative
slack and are displayed in red as shown in Figure 7–16.

Figure 7–16. I/O Requirements

To determine why timing requirements are not met, right-click a
particular I/O entry and choose List Paths. A message appears in the
System tab of the Message window. You can expand a selection by
clicking the "+" icon at the beginning of the line, as shown in Figure 7–17.
This is a good method of determining where along the path the greatest
delay is located.

Altera Corporation 7–17
June 2004 Preliminary

Design Analysis Using the Timing Closure Floorplan

Figure 7–17. I/O Slack Report

To visually analyze I/O timing, right-click on an I/O entry in the report
and select Locate in Timing Closure Floorplan as shown in Figures 7–18
and 7–19. The Timing Closure Floorplan Editor is displayed, highlighting
the I/O path. Note that you can set the level of detail in the floorplan in
the View menu.

Figure 7–18. Locate Failing Path in Timing Closure Floorplan Editor

7–18 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 7–19. Failing Path in Timing Closure Floorplan Editor, Field View

In Figure 7–20 the arrows indicate the critical path (i.e., a register) from
the beginning point to the end point (i.e., another register). The times
shown are the slack figures for each path. Negative slack indicates paths
that failed to meet their timing requirements.

To see all the intermediate nodes (i.e., combinational logic cells) on a path
and the delay for each level of logic, right-click the title bar above a path's
slack number and choose Expand (right button pop-up menu). To view
all these paths in the Timing Closure Floorplan Editor choose Routing >
Show Critical Paths (View menu).

Altera Corporation 7–19
June 2004 Preliminary

Design Analysis Using the Timing Closure Floorplan

Figure 7–20. Critical I/O Paths in the Timing Closure Floorplan

fMAX Timing Analysis Report File

To determine whether your system performance or fMAX timing
requirements are met, the Quartus II software generates a timing analysis
report that provides detailed timing information on every clock in your
design. This report is accessed by opening the Timing Analyzer folder in
the Compilation Report (Processing menu). The Clock Setup folder of
the Compilation Report provides figures for slack and
register-to-register fMAX. The paths that are not meeting timing
requirements are shown in red. See Figure 7–21.

Figure 7–21. fMAX Requirements

7–20 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

To analyze why timing was not met, right-click on a particular path
reported in the System tab of the Message window (Figure 7–22) and
select List Paths (right button pop-up menu) to determine the location of
the greatest delay. You can expand a selection by clicking the "+" icon at
the beginning of the line.

Figure 7–22. fMAX Slack Report

Visually analyze fMAX paths by right-clicking on a path in the report and
selecting Locate in Timing Closure Floorplan to display the Timing
Closure Floorplan Editor, which highlights the path. See Figure 7–23.
Figure 7–24 shows the Timing Closure Floorplan Editor displaying a
failing path.

1 Double-clicking the section Info: - Longest register to register
delay is <slack value> ns in the list path text locates the path in
the Timing Closure Floorplan.

Altera Corporation 7–21
June 2004 Preliminary

Design Analysis Using the Timing Closure Floorplan

Figure 7–23. Locate Failing Path in Timing Closure Floorplan

7–22 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 7–24. Failing Path in Timing Closure Floorplan

You can view all failing paths in the Timing Closure Floorplan Editor
using the Show Critical Paths feature. Figure 7–25 shows critical fMAX
paths in the Timing Closure Floorplan Editor.

Altera Corporation 7–23
June 2004 Preliminary

Conclusion

Figure 7–25. Critical Paths in the Timing Closure Floorplan Editor

The Design Optimization for Altera Devices chapter in Volume 2 of the
Quartus II Handbook shows you how to optimize your design in the
Quartus II software. With the options and tools available in the Timing
Closure Floorplan and the techniques described in that chapter, the
Quartus II software can assist you in achieving timing closure in a more
time efficient manner.

Conclusion Design analysis for timing closure is a fundamental requirement for
optimal performance in highly complex designs. The Quartus II Timing
Closure Floorplan Editor assists in closing timing quickly on complex
designs, reduces iterations by providing more intelligent and better
linkage between analysis and assignment tools, and balances multiple
design constraints including multiple clocks, routing resources, and area
constraints.

7–24 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Altera Corporation 8–1
June 2004

8. Netlist Optimizations and
Physical Synthesis

Introduction The Quartus® II software offers advanced netlist optimization options,
including physical synthesis, to optimize your design further than the
optimization performed in the course of the standard Quartus II
compilation flow. Device support for these optimizations vary; see the
appropriate section for details.

The effect of these options depends on the structure of your design, but
netlist optimizations can help improve the performance of your design
regardless of the synthesis tool used. These options work with your
design's atom netlist, which specifies a design as Altera®-specific
primitives. An example of an atom netlist file is an EDIF Input File (.edf)
or a Verilog Quartus Mapping (.vqm) file generated by a third-party
synthesis tool, or an internal netlist generated within the Quartus II
software. Netlist optimizations are applied at different stages of the
Quartus II compilation flow, either during synthesis or during fitting.

The synthesis netlist optimizations occur during the synthesis stage of the
Quartus II compilation flow. Operating on the output from a third-party
synthesis tool, or operating as an intermediate step in the Quartus II
standard integrated synthesis, these optimizations make changes to the
synthesis netlist. These netlist changes are beneficial in terms of area or
speed, depending on your selected optimization technique.

The physical synthesis optimizations take place during the fitter stage of
the Quartus II compilation flow. Physical synthesis optimizations make
placement-specific changes to the netlist that improve performance
results for a specific Altera device.

This chapter explains how the netlist optimizations in the Quartus II
software can modify your design's netlist and help improve your quality
of results. The following sections “Synthesis Netlist Optimizations” on
page 8–2 and “Physical Synthesis Optimizations” on page 8–9 explain
how the available optimizations work. This chapter also provides
information on preserving your compilation results through
back-annotation and writing out a new netlist, and provides guidelines
for applying the various options.

qii52007-2.0

8–2 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

1 When synthesis netlist optimization or physical synthesis
options are turned on, the node names for primitives in the
design can change. The fact that nodes may be renamed must be
considered if you are using a LogicLock™ or verification flow
that may require fixed node names, such as SignalTap® II or
formal verification. Primitive node names are specified during
synthesis and are contained in atom netlists from third-party
synthesis tools. When netlist optimizations are applied, node
names may change as primitives are created and removed. HDL
attributes applied to preserve logic in third-party synthesis tools
cannot be honored because those attributes are not written into
the atom netlist read by the Quartus II software. If you are
synthesizing in the Quartus II software, you can use the
Preserve Register (preserve) and Keep Combinational Logic
(keep) attributes to maintain certain nodes in the design. For
more information on using these attributes during synthesis in
the Quartus II software, see the Quartus II Integrated Synthesis
chapter in Volume 1 of the Quartus II Handbook.

1 Any nodes or entities that have the logic option Netlist
Optimizations set to Never allow are not affected during netlist
optimizations (including physical synthesis). This logic option
can be applied with the Assignment Editor (Assignments
menu) if you want to disable all netlist optimizations for parts of
your design.

Synthesis Netlist
Optimizations

You can view and modify the synthesis netlist optimization options in the
Synthesis Netlist Optimizations page under Analysis & Synthesis
Settings in the Settings dialog box (Assignments Menu).

The sections “WYSIWYG Primitive Resynthesis” on page 8–2 and
“Gate-Level Register Retiming” on page 8–4 describe these synthesis
netlist optimizations, and how they can help improve the quality of
results for your design.

WYSIWYG Primitive Resynthesis

You can use the Perform WYSIWYG primitive resynthesis (using
optimization technique specified in Analysis & Synthesis settings)
synthesis option when you have an atom netlist file that specifies a design
as Altera-specific primitives. Atom netlist files can be either an EDIF
(.edf) or VQM (.vqm) file generated by a third-party synthesis tool. This
option can be found on the Synthesis Netlist Optimizations page under
Analysis & Synthesis Settings in the Settings dialog box (Assignments
menu). If you want to perform WYSIWYG resynthesis on only a portion
of your design, you can use the Assignment Editor (Assignments menu)

Altera Corporation 8–3
June 2004 Preliminary

Synthesis Netlist Optimizations

to assign the Perform WYSIWYG primitive resynthesis logic option to a
lower-level entity in your design. This option can be used with the
Cyclone™ II, MAX® II, Stratix® II, Stratix GX, Stratix, Cyclone, or APEX™
device families.

The Perform WYSIWYG primitive resynthesis option directs the
Quartus II software to un-map the logic elements (LEs) in an atom netlist
to logic gates, and then re-map the gates back to Altera-specific
primitives. This feature allows the Quartus II software to use different
techniques specific to the device architecture during the re-mapping
process. The Quartus II technology mapper optimizes the design for
Speed, Area, or Balanced, according to the setting of the Optimization
Technique option on the Analysis & Synthesis Settings page in the
Settings dialog box (Assignments menu). The Balanced setting is default
for most Altera device families; this setting optimizes the timing-critical
parts of the design for speed and the rest for area.

f See the Quartus II Integrated Synthesis chapter in Volume 1 of the
Quartus II Handbook for details on the Optimization Technique option.

Figure 8–1 shows the Quartus II software flow for this feature.

Figure 8–1. WYSIWYG Primitive Resynthesis

Un-Map

Re-Map

Atom
Netlist

Place
&

Route

8–4 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

This option is not applicable if you are using Quartus II integrated
synthesis. With Quartus II synthesis, you do not need to un-map Altera
primitives; they are already mapped during the synthesis step using the
techniques that are used with the WYSIWYG primitive resynthesis
option.

The Perform WYSIWYG primitive resynthesis option only un-maps and
re-maps logic cell (also referred to as LCELL or LE) primitives and regular
I/O primitives (which may contain registers). DDR (double data rate)
I/O primitives, memory primitives, digital signal processing (DSP)
primitives, and logic cells in carry/cascade chains are not touched. Logic
specified in an encrypted VQM or EDIF file, such as third-party
intellectual property (IP), is not touched.

Turning on this option can cause drastic changes to the node names in the
VQM or EDIF atom netlist from your third-party synthesis tool, because
the primitives in the netlist are being broken apart and then remapped
within the Quartus II software. Registers can be minimized away and
duplicates removed, but registers that are not removed have the same
name after remapping.

Any nodes or entities that have the Netlist Optimizations logic option set
to Never allow are not affected during WYSIWYG primitive resynthesis.
This logic option can be applied with the Assignment Editor
(Assignments menu) if you want to disable WYSIWYG resynthesis for
parts of your design.

Gate-Level Register Retiming

The Perform gate-level register retiming option enables movement of
registers across combinational logic to balance timing, allowing the
Quartus II software to trade off the delay between timing-critical paths
and non-critical paths. See Figure 8–2 for an example. It can be used with
the Cyclone II, MAX II, Stratix II, Stratix, Stratix GX, Cyclone, and APEX
device families. The option is found on the Synthesis Netlist
Optimizations page under Analysis & Synthesis Settings in the
Settings dialog box (Assignments menu).

The functionality of your design is not changed when the Perform
gate-level register retiming option is turned on. However, if any registers
in your design have the Power-Up Don't Care logic option assigned, the
values of registers during power-up may change due to this register and
logic movement. The Power-Up Don't Care logic option is turned on
globally by default. You can change the default setting for the option on
the Analysis & Synthesis Settings page in the Settings dialog box
(Assignments menu) by clicking More Settings. You can also set the logic

Altera Corporation 8–5
June 2004 Preliminary

Synthesis Netlist Optimizations

option for individual registers or entities using the Assignment Editor.
Registers that are explicitly assigned power-up values are not combined
with registers that have been explicitly assigned other values.

Figure 8–2 shows an example of gate-level register retiming where the
10 ns critical delay is reduced by moving the register relative to the
combinational logic.

Figure 8–2. Gate-Level Register Retiming Diagram

Register retiming makes changes at the gate level. If you are using an
atom netlist from a third-party synthesis tool, you must also use the
Perform WYSIWYG primitive resynthesis option to un-map atom
primitives to gates (so that register retiming can be performed) and then
to re-map gates to Altera primitives. If your design uses Quartus II
integrated synthesis, retiming occurs during synthesis before the design
is mapped to Altera primitives. Megafunctions instantiated in a design
are always synthesized using the Quartus II software.

The design flows for the case of integrated Quartus II synthesis and a
third-party atom netlist are shown in Figure 8–3.

D Q D Q D Q10 ns 5 ns

D Q D Q D Q7 ns 8 ns

8–6 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 8–3. Gate-Level Synthesis

The gate-level register retiming options only moves registers across
combinational gates. Registers are not moved across LCELL primitives
instantiated by the user, memory blocks, DSP blocks, or carry/cascade
chains that you have instantiated. Carry/cascade chains are always left
intact when performing register retiming.

One of the benefits of register retiming is the ability to move registers
from the inputs of a combinational logic block to the output, potentially
combining the registers. In this case, some registers are removed, and one
is created at the output. This case is shown in Figure 8–4.

Figure 8–4. Combining Registers with Register Retiming

Retiming can only move and combine registers in this type of situation if
the following conditions are met:

■ All registers have the same clock signal
■ All registers have the same clock enable signal
■ All registers have asynchronous control signals that are active under

the same conditions
■ Only one register has an asynchronous load other than VCC or GND

Quartus II Integrated Synthesis

Third-Party ATOM Netlist

Gate
Synthesis Retiming

Technology
Map Place & Route

Unmap Retiming Remap Place & Route

D Q

D Q

D Q

Altera Corporation 8–7
June 2004 Preliminary

Synthesis Netlist Optimizations

Retiming can always create multiple registers at the input of a
combinational block from a register at the output of a combinational
block. In this case, the new registers have the same clock and clock enable.
The asynchronous control signals and power-up level are derived from
previous registers to provide equivalent functionality.

The Gate-level Retiming report provides a list of registers that were
created and removed during register retiming. This report can be found
in the Analysis & Synthesis Netlist Optimizations section of the
Analysis & Synthesis Optimization Results folder under Analysis &
Synthesis in the Compilation Report (Processing menu). See Figure 8–5.
Note that the node names for these registers change during the retiming
process.

Figure 8–5. Gate-Level Retiming Report

You can set the Netlist Optimizations logic option to Never Allow for
registers to prevent movement during register retiming. This option can
be applied either to individual registers or entities in the design and is
applied through the Assignment Editor (Assignments menu).

The following registers are not moved during gate-level register retiming:

■ Registers that have any timing constraint other than global fMAX, tSU,
or tCO. For example, any node affected by a Multicycle or Cut Timing
assignment is not moved.

■ Registers that feed asynchronous control signals on another register
■ Registers feeding the clock of another register
■ Registers feeding a register in another clock domain
■ Registers that are fed by a register in another clock domain
■ Registers connected to serializer/deserializer (SERDES)

8–8 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

■ Registers that have the Netlist Optimizations logic option set to
Never Allow

■ Registers feeding output pins (without logic between the register
and the pin)

■ Registers fed by an input pin (without logic between register and
input pin)

■ Both registers in a connection from input pin-register-register
connection if both registers have the same clock and the first register
does not fan out to anywhere else (since these are considered
synchronization registers).

If you want to consider registers with any of these conditions for register
retiming, you can override these rules by setting the Netlist
Optimizations logic option to Always Allow on a given set of registers.

Allow Register Retiming to Trade-Off tSU/tCO with fMAX

The Allow register retiming to trade off tSU/ tCO with fMAX option on the
Synthesis Netlist Optimizations page under Analysis & Synthesis
Settings in the Settings dialog box (Assignments menu) determines
whether the Quartus II compiler should attempt to increase fMAX at the
expense of tSU or tCO times. This option affects the optimizations
performed due to the gate-level register retiming option.

When both the Perform gate-level register retiming and the Allow
register retiming to trade off tSU/tCO with fMAX options are turned on,
retiming can affect registers that feed and are fed by I/O pins. If the latter
option is not turned on, the retiming option does not touch any registers
that connect to I/O pins through one or more levels of combinational
logic.

Preserving Your Synthesis Netlist Optimization Results

Given the same source code and settings on a given system, the
Quartus II software generates the same results on every compilation.
Therefore, it is typically not necessary to take any steps to preserve your
results from compilation to compilation. When changes are made to the
source code or to the settings, you usually get the best results by allowing
the software to compile without using any previous compilation results
or location assignments. In addition, in some cases you may skip the
synthesis stage of the compile by avoiding running Analysis &
Synthesis, or quartus_map, and instead just running the Fitter or another
desired Quartus II executable.

However, if you wish, you may preserve the netlist resulting from netlist
optimizations. Preserving the netlist can be required if you use the
LogicLock flow to preserve placement and/or import one design into

Altera Corporation 8–9
June 2004 Preliminary

Physical Synthesis Optimizations

another. If you are using any Quartus II synthesis netlist optimization
options, you can save your optimized results by turning on the Save a
node-level netlist into a persistent source file (Verilog Quartus
Mapping File) option on the Compilation Process page in the Settings
dialog box (Assignments menu). This option saves your final results as an
atom-based netlist in Verilog Quartus Mapping File (.vqm) format. By
default, the Quartus II software places the VQM file in the atom_netlists
directory under the current project directory. If you'd like to create a
different VQM file using different Quartus II settings, you may do so by
changing the file name setting on the Compilation Process page in the
Settings dialog box (Assignments menu).

If you are using the synthesis netlist optimizations (and not any physical
synthesis optimizations), generating a VQM file is optional. You may lock
down the location of all LEs and other device resources in the design
using the Back-Annotate Assignments command (Assignments menu)
with or without a Quartus II-generated VQM file. Altera recommends
against using back-annotated location assignments unless the design has
been finalized. Making any changes to the design invalidates your
back-annotated location assignments. If you need to make changes later
on, use the new source HDL code as your input files, and remove the
back-annotated assignments corresponding to the old code or netlist.

If you create a VQM file and wish to recompile the design, use the new
VQM file as the input source file and turn off the synthesis netlist
optimizations for the new compilation.

Physical
Synthesis
Optimizations

Traditionally, the Quartus II design flow has involved separate steps of
synthesis and fitting. The synthesis step optimizes the logical structure of
a circuit for area, speed, or both. The fitter then places and routes the logic
elements to ensure critical portions of logic are close together and use the
fastest possible routing resources. While this push-button flow produces
excellent results, the synthesis stage is unable to anticipate the routing
delays seen in the fitter. Since routing delays are a significant part of the
typical critical path delay, performing synthesis operations with physical
delay knowledge allows the tool to target its timing-driven optimizations
at these parts of the design. This tight integration of the fitting and
synthesis processes is known as physical synthesis.

The following sections describe the physical synthesis optimizations
available in the Quartus II software, and how they can help improve your
performance results. Physical synthesis optimization options can be used
with the MAX II, Stratix II, Stratix, Stratix GX, or Cyclone device families.

You can view and modify the physical synthesis optimization options on
the Physical Synthesis Optimizations page in the Fitter Settings section
of the Settings dialog box (Assignments Menu).

8–10 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

The physical synthesis optimizations are split into two groups, those that
affect only combinational logic and not registers, and those that can affect
registers. The options are split to allow designers to keep their registers
intact for formal verification or other reasons.

The following physical synthesis optimizations are available:

■ Physical synthesis for combinational logic
■ Physical synthesis for registers:

● Register duplication
● Register retiming

You can control the effect of physical synthesis with the Physical
synthesis effort option. The default selection is Normal. The Extra effort
setting uses extra compile time to try for extra circuit performance, while
the Fast effort setting uses less compilation time than Normal but may not
achieve the same gains.

The Physical Synthesis report in the Fitter Netlist Optimizations section
under Fitter in the Compilation Report (Processing menu) provides a list
of atoms that were modified, created, or deleted during physical
synthesis. See the“Physical Synthesis Report” on page 8–13.

Nodes or entities that have the Netlist Optimizations logic option set to
Never Allow are not affected by the Physical Synthesis algorithms. This
logic option can be applied with the Assignment Editor (Assignments
menu) if you want to disable physical synthesis optimizations for parts of
your design.

Physical Synthesis for Combinational Logic

The Perform physical synthesis for combinational logic option on the
Physical Synthesis Optimizations page in the Fitter section of the
Settings dialog box (Assignments menu) allows the Quartus II fitter to
resynthesize the design to reduce delay along the critical path. Physical
Synthesis can achieve this type of optimization by swapping the look-up
table (LUT) ports within LEs so that the critical path has fewer layers
through which to travel. See Figure 8–6 for an example. This option also
allows the duplication of LUTs to enable further optimizations on the
critical path.

Altera Corporation 8–11
June 2004 Preliminary

Physical Synthesis Optimizations

Figure 8–6. Physical Synthesis for Combinational Logic

In first case, the critical input feeds through the first LUT to the second
LUT. The Quartus II software swaps the critical input to the first LUT
with an input feeding the second LUT. This reduces the number of LUTs
contained in the critical path. The synthesis information for each LUT is
altered to maintain design functionality.

The Physical Synthesis for combinational logic option only affects
combinational logic in the form of LUTs. The registers contained in the
affected logic cells are not modified. Inputs into memory blocks, DSP
blocks, and I/O elements are not swapped.

The Quartus II software does not perform combinational optimization on
logic cells that have the following properties:

■ Are part of a carry/cascade chain
■ Drive global signals
■ Are constrained to a single logic array block (LAB) location
■ Have the Netlist Optimizations option set to Never Allow

If you want to consider logic cells with any of these conditions for
physical synthesis, you can override these rules by setting the Netlist
Optimizations logic option to Always Allow on a given set of nodes.

Physical Synthesis for Registers - Register Duplication

The Perform register duplication fitter option on the Physical synthesis
Optimizations page in the Fitter Settings section of the Settings dialog
box allows the Quartus II fitter to duplicate registers based on fitter
placement information. Combinational logic can also be duplicated when
this option is enabled. A logic cell that fans out to multiple locations can
be duplicated to reduce the delay of one path without degrading the
delay of another. The new logic cell may be placed closer to critical logic
without affecting the other fan-out paths of the original logic cell.
Figure 8–7 shows an example of register duplication.

8–12 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 8–7. Register Duplication

The Quartus II software does not perform register duplication on logic
cells that have the following properties:

■ Are part of a carry/cascade chain
■ Contain registers that drive asynchronous control signals on another

register
■ Contain registers that drive the clock of another register
■ Contain registers that drive global signals
■ Contain registers that are constrained to a single LAB location
■ Contain registers that are driven by input pins without a tSU

constraint
■ Contain registers that are driven by a register in another clock

domain
■ Are considered virtual I/O pins
■ Have the Netlist Optimizations option set to Never Allow

f For more information on virtual I/O pins, see the LogicLock Design
Methodology chapter in Volume 2 of the Quartus II Handbook.

If you want to consider logic cells with any of these conditions for
physical synthesis, you can override these rules by setting the Netlist
Optimizations logic option to Always Allow on a given set of nodes.

Altera Corporation 8–13
June 2004 Preliminary

Physical Synthesis Optimizations

Physical Synthesis for Registers - Register Retiming

The Perform register retiming fitter option in the Physical Synthesis
Optimizations page in the Fitter Settings section of the Settings dialog
box allows the Quartus II fitter to move registers across combinational
logic to balance timing. This option enables algorithms similar to the
Perform gate-level register retiming option (see ““Gate-Level Register
Retiming” on page 8–4). This option applies to the atom level (registers
and combinational logic have already been placed into logic cells), and it
compliments the synthesis gate-level option.

The Quartus II software does not perform register retiming on logic cells
that have the following properties:

■ Are part of a cascade chain
■ Contain registers that drive asynchronous control signals on another

register
■ Contain registers that drive the clock of another register
■ Contain registers that drive a register in another clock domain
■ Contain registers that are driven by a register in another clock

domain
■ Contain registers that are constrained to a single LAB location
■ Contain registers that are connected to serializer/deserializer

(SERDES)
■ Are considered virtual I/O pins
■ Registers that have the Netlist Optimizations logic option set to

Never Allow

f For more information on virtual I/O pins, see the LogicLock Design
Methodology chapter in Volume 2 of the Quartus II Handbook.

If you want to consider logic cells with any of these conditions for
physical synthesis, you can override these rules by setting the Netlist
Optimizations logic option to Always Allow on a given set of registers.

Physical Synthesis Report

All the Physical Synthesis optimizations write results to the Physical
Synthesis report in the Fitter Netlist Optimizations section under Fitter
in the Compilation Report (Processing menu). This report provides a list
of atoms that were modified, created, and deleted during physical
synthesis. Note that the node names for these atoms change during the
physical synthesis process.

8–14 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Preserving Your Physical Synthesis Results

Given the same source code and settings on a given system, the
Quartus II software generates the same results on every compilation.
Therefore, it is typically not necessary to take any steps to preserve your
results from compilation to compilation. When changes are made to the
source code or to the settings, you usually get the best results by allowing
the software to compile without using any previous compilation results
or location assignments. However, if you do wish to preserve the
compilation results, make sure to follow the guidelines outlined in this
section.

If you are using any Quartus II physical synthesis optimization options,
you can save your optimized results using the Save a node-level netlist
into a persistent source file (Verilog Quartus Mapping File) option on
the Compilation Process page in the Settings dialog box (Assignments
menu). This option saves your final results as an atom-based netlist in
VQM file format. By default, the Quartus II software places the VQM File
in the atom_netlists directory under the current project directory. If you
want to create a different VQM file using different Quartus II settings,
you may do so by changing the file name setting on the Compilation
Process page in the Settings dialog box (Assignments menu).

If you are using the physical synthesis optimizations and you wish to lock
down the location of all LEs and other device resources in the design
using the Back-Annotate Assignments command (Assignments menu),
a VQM netlist is required to preserve the changes that were made to your
original netlist. Since the physical synthesis optimizations depend on the
placement of the nodes in the design, back-annotating the placement
changes the results from physical synthesis. Changing the results means
that node names are different, and your back-annotated locations are no
longer valid.

Altera recommends against using a Quartus II-generated VQM or
back-annotated location assignments with Physical Synthesis
Optimizations unless the design has been finalized. Making any changes
to the design invalidates your physical synthesis results and
back-annotated location assignments. If you need to make changes later,
use the new source HDL code as your input files, and remove the
back-annotated assignments corresponding to the Quartus II-generated
VQM.

To back-annotate logic locations for a design that was compiled with
physical synthesis optimizations, first create a VQM. When recompiling
the design with the hard logic location assignments, use the new VQM
file as the input source file and turn off the physical synthesis
optimizations for the new compilation.

Altera Corporation 8–15
June 2004 Preliminary

Applying Netlist Optimization Options

If importing a VQM and back-annotated locations into another project
that has any Netlist Optimizations turned on, it is important to apply the
Netlist Optimizations = Never Allow constraint, to make sure node
names don't change, otherwise the back-annotated location or LogicLock
assignments are not valid.

Applying Netlist
Optimization
Options

Netlist optimizations options can have various effects on different
designs. Designs that are well coded or have already been restructured to
balance critical path delays may not see a noticeable difference in
performance.

To obtain optimal results when using netlist optimization options, you
may need to vary the options applied to find the best results. By default,
all options are off. Turning on additional options leads to the largest effect
on the node names in the design. Take this into consideration if you are
using a LogicLock or verification flow such as SignalTap II or formal
verification that requires fixed or known node names. In general,
applying all of the Physical Synthesis options at the Extra effort level
produces the best results for those options, but adds significantly to the
compilation time. You can use the Physical synthesis effort option to
decrease the compilation time.

The Synthesis Netlist Optimizations typically do not add much
compilation time, relative to the overall design compilation time.

1 When using a third-party atom netlist (VQM or EDIF), the
WYSIWYG Primitive Resynthesis option must be turned on in
order to use the Gate-level Register Retiming option.

A design space explorer (DSE) Tcl/Tk script is provided with the
Quartus II software to automate the application of various sets of netlist
optimization options.

f For more information on using the DSE script to run multiple
compilations, see the Design Space Explorer chapter in Volume 2 of the
Quartus II Handbook.

f For information on typical performance results using combinations of
netlist optimization options and other optimization techniques, see the
Design Optimization for Altera Devices chapter in Volume 2 of the
Quartus II Handbook.

8–16 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Scripting
Support

You can run procedures and make settings described in this chapter in a
Tcl script.

For detailed information about specific scripting command options and
Tcl API packages, type quartus_sh --qhelp at a system command
prompt to run the Quartus II Command-Line and Tcl API Help utility.

f For more information on Quartus II scripting support, including
examples, refer to the Tcl Scripting and Command-Line Scripting chapters
in Volume 2 of the Quartus II Handbook.

You can specify many of the options described in this section either on an
instance, or at a global level, or both.

Use the following Tcl command to make a global assignment:

set_global_assignment -name <QSF variable name> <value> r
Use the following Tcl command to make an instance assignment:

set_instance_assignment -name <QSF variable name> <value> -to <instance name> r

Synthesis Netlist Optimizations

Table 8–1 lists the QSF variable name and applicable values for the
settings discussed in “Synthesis Netlist Optimizations” on page 8–2. The
QSF variable name is used in the Tcl assignment to make the setting along
with the appropriate value. The Type column indicates whether the
setting is supported as a Global setting, an Instance setting, or both.

Table 8–1. Synthesis Netlist Optimizations and Associated Settings (Part 1 of 2)

Setting Name QSF Variable Name Values Type

Perform WYSIWYG
Primitive Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP ON, OFF Global,
Instance

Optimization Technique <Device Family Name>_OPTIMIZATION_TECHNIQUE AREA,
SPEED,
BALANCED

Global,
Instance

Perform Gate-Level
Register Retiming

ADV_NETLIST_OPT_SYNTH_GATE_RETIME ON, OFF Global

Power-Up Don't Care ALLOW_POWER_UP_DONT_CARE ON, OFF Global

Allow Register Retiming
to trade off Tsu/Tco with
fMAX

ADV_NETLIST_OPT_RETIME_CORE_AND_IO ON, OFF Global

Altera Corporation 8–17
June 2004 Preliminary

Scripting Support

Physical Synthesis Optimizations

Table 8–2 lists the QSF variable name and applicable values for the
settings discussed in “Physical Synthesis Optimizations” on page 8–9.
The QSF variable name is used in the Tcl assignment to make the setting,
along with the appropriate value. The Type column indicates whether the
setting is supported as a Global setting, an Instance setting, or both.

Save a node-level netlist
into a persistent source
file

LOGICLOCK_INCREMENTAL_COMPILE_ASSIGNMENT ON, OFF Global

LOGICLOCK_INCREMENTAL_COMPILE_FILE <filename>

Allow Netlist
Optimizations

ADV_NETLIST_OPT_ALLOWED "ALWAYS
ALLOW",
DEFAULT,
"NEVER
ALLOW"

Instance

Table 8–1. Synthesis Netlist Optimizations and Associated Settings (Part 2 of 2)

Setting Name QSF Variable Name Values Type

Table 8–2. Physical Synthesis Optimizations and Associated Settings

Setting Name QSF Variable Name Values Type

Physical Synthesis for
Combinational Logic

PHYSICAL_SYNTHESIS_COMBO_LOGIC ON, OFF Global

Perform Register
Duplication

PHYSICAL_SYNTHESIS_REGISTER_DUPLICATION ON, OFF Global

Perform Register
Retiming

PHYSICAL_SYNTHESIS_REGISTER_RETIMING ON, OFF Global

Power-Up Don't Care ALLOW_POWER_UP_DONT_CARE ON, OFF Global

Allow Netlist
Optimizations

ADV_NETLIST_OPT_ALLOWED "ALWAYS
ALLOW",
DEFAULT,
"NEVER
ALLOW"

Instance

Save a node-level netlist
into a persistent source
file

LOGICLOCK_INCREMENTAL_COMPILE_ASSIGNMENT ON, OFF Global

LOGICLOCK_INCREMENTAL_COMPILE_FILE <filename>

8–18 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Back-Annotating Assignments

Use the logiclock_back_annotate Tcl command to back-annotate
resources in your design. This command can back-annotate resources in
LogicLock regions, and resources in designs without LogicLock regions.

f For more information on back-annotating assignments, refer to
“Preserving Your Synthesis Netlist Optimization Results” on page 8–8 or
“Preserving Your Physical Synthesis Results” on page 8–14.

The following Tcl command back-annotates all registers in your design.

logiclock_back_annotate -resource_filter "REGISTER"

The logiclock_back_annotate command is in the backannotate
package.

Conclusion Synthesis Netlist Optimizations and Physical Synthesis Optimizations
work in different ways to restructure and optimize your design netlist.
Taking advantage of these Quartus II Netlist Optimizations can help
improve your quality of results.

Altera Corporation 9–1
June 2004 Preliminary

9. Design Space Explorer

Introduction The Quartus® II software includes many advanced optimization
algorithms to help you achieve timing closure. The various settings and
parameters control the behavior of the algorithms. These options provide
complete control over the Quartus II software optimization techniques.

Because each FPGA design is unique, there is no standard set of options
that always results in the best performance. Each design requires a unique
set of options to achieve optimal performance. This section describes the
Design Space Explorer (DSE), a utility that automates the process of
finding the best set of options for your design. DSE explores the design
space of your design by applying various optimization techniques and
analyzing the results.

DSE Concepts

This section provides an explanation of concepts and terminology used
by DSE.

Exploration Space & Exploration Point

Before a design is explored by DSE, an exploration space is created. An
exploration space is a composition of various Synthesis and Fitter settings
that are available in the Quartus II software. A single group of settings in
the exploration space is referred to as a point. DSE traverses the points in
an exploration space to determine the optimal settings for your design.

Seed & Seed Sweeping

The Quartus II Fitter utilizes seeds that specify the starting value which
randomly determines the initial placement for the current design. The
value of the seed can be any non-negative integer value. Changing the
starting value may or may not produce better fitting. By varying the value
of the seed value or seed sweeping, an optimal value can be determined
for the current design.

DSE extends the concept of fitter seed sweeping with exploration spaces,
providing a method for sweeping through general compilation and fitter
parameters to find the best options for your design. You can run DSE in a
variety of exploration modes, ranging from an exhaustive try-all-options-
and-values mode to one that focuses on one parameter.

qii52008-2.0

9–2 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

DSE Exploration

DSE compares all exploration space point results with the results of a base
compilation. This base compile result is generated from the initial settings
that were specified in the original Quartus II project files. As DSE
traverses all points in the exploration space, all settings that are not
explicitly modified by DSE defaults to the base compile setting. For
example, if an exploration space point turns on register retiming and does
not modify the register packing setting, the register packing setting
defaults to the value specified in the base compile.

1 The base compilation is the original Quartus II project and is
restored after DSE traverses all points in the exploration space.

DSE General
Information

You can use DSE in either graphical user interface (GUI) or command-line
mode. In either mode, you should run DSE with the Quartus II shell. To
run DSE in user interface mode, type quartus_sh --dser at a
command prompt. To run DSE in command-line mode, type
quartus_sh --dse --nogui <options>r at a command prompt. The
example below lists available command-line options.

DSE Command Line Options
Command-line Mode: quartus_sh --dse -nogui [<options>]

Options:
-project <project name>
-revision <revision name>
-seeds <seed list>
-llr-restructuring
-exploration-space <space>
-optimization-goal <goal>
-search-method <method>
-custom-file <filename>
-stop-after-gain <stop-after-gain value>
-stop-after-time <stop-after-time value>
-ignore-failed-base
-archive
-run-assembler
-slaves <slave list>
-use-lsf
-slack-column <column name>
-help

Altera Corporation 9–3
June 2004 Preliminary

DSE General Information

The DSE Tcl/Tk script is in the default Quartus II software installation at
<Quartus II install directory>\bin\tcl_scripts\dse\dse.tcl on the PC
platform and <Quartus II install directory>/<platform>/tcl_scripts on the
Solaris, HP-UX, and Linux platforms.

1 For more information, type quartus_sh --help=dser at the
command prompt.

Figure 9–1 shows the DSE user interface. The main user interface is
divided into two sections: project settings and exploration settings.

Figure 9–1. DSE User Interface

9–4 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

DSE Flow You can run DSE at any point in the design process. However, Altera
recommends that you run DSE very late in your design cycle when you
are increasing the performance of the design. The results gained from
different combinations of optimization options may not persist over large
changes in a design. You can run DSE in signature mode at the midpoint
in your design cycle to see the effect of various parameters, such as the
register packing logic option.

DSE launches the Quartus II software for every compilation specified in
the Exploration Settings option. DSE selectively determines the best
settings for your design based upon the Optimization Goal selected for
the exploration. For example, if the Optimization Goal is set to Optimize
for Speed the Quartus II software tries to achieve all your timing
requirements and DSE reports the compile with the smallest slack.
Therefore, it is important that you correctly specify all timing
requirements in your Quartus II project before performing a design
exploration with DSE.

You can change the initial placement configuration used by the Quartus II
Fitter by varying the Fitter Seed value. You can enter seeds in the Seeds
field of the DSE user interface.

1 When using the Quartus II software, the seed value is set in the
Fitter Settings page of the Settings dialog box (Assignments
menu).

Compilation time increases as DSE exploration spaces become more
comprehensive. This increase in compilation time comes as a result of
running several compilations and comparing the reported slack with the
original compilation results.

For typical designs, varying only the seed value results in a 5% fMAX
increase. For example, when compiling with three different seeds,
one-third of the time fMAX does not improve over the initial compilation,
one-third of the time fMAX gets 5% better, and one-third of the time fMAX
gets 10% better.

Altera Corporation 9–5
June 2004 Preliminary

DSE Support for Altera Device Families

DSE Support for
Altera Device
Families

The following device families support all Advanced Exploration Space
types:

■ Stratix® II
■ Stratix
■ Stratix GX
■ CycloneTM
■ MAX® II

The Advanced Exploration Space supports the following device families,
as shown in Table 9–1:

■ APEXTM 20K
■ APEX 20KC
■ APEX 20KE
■ APEX II
■ FLEX® 10K
■ FLEX 10KA
■ FLEX 10KE

The following device families support the Synthesis Space type:

■ MAX 3000A
■ MAX 7000AE
■ MAX 7000B
■ MAX 7000S

1 The Synthesis Space type support for the MAX device family is
supported only at the command line.

Table 9–1. Advanced Exploration Space Support for APEX 20K, APEX II, and
FLEX 10K Devices

Seed sweep Area optimization space

Extra effort space Signature fitting effort level

Extra effort for Quartus Integrated Synthesis
Projects

Custom space

9–6 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

DSE Exploration

DSE compares all exploration space point results with the results of a base
compilation. This base compile result is generated from the initial settings
that were specified in the original Quartus II project files. As DSE
traverses all points in the exploration space, all settings that are not
explicitly modified by DSE defaults to the base compile setting. For
example, if an exploration space point turns on register retiming and does
not modify the register packing setting, the register packing setting
defaults to the value specified in the base compile.

1 The base compilation is the original Quartus II project and is
restored after DSE traverses all points in the exploration space.

DSE Project
Settings

DSE Project Settings

This section includes information about setting up the working
environment for DSE, specifying the project and revision, setting the
initial seed, and restructuring LogicLock regions.

The DSE user interface provides two methods to open a Quartus II project
for a design exploration. By selecting Open Project (File menu) you can
browse to your project. The Open icon can also be used to open a project
for a design exploration.

You can specify the revision to be explored with the Revision field in the
DSE user interface. The Revision field is populated once the Quartus II
project has been opened.

1 If no revisions are created in the Quartus II project, the default
revision which is the top-level entity is used. For more
information refer to Quartus II Project Management chapter in
Volume 2 of the Quartus II Handbook

The Seed field allows you to specify the seed DSE uses in an exploration.
The seed value determines the initial placement for your design in a
Quartus II compilation.

If your design is written in VHDL or Verilog HDL, turn on the Project
Uses Quartus II Integrated Synthesis option to allow DSE to explore
synthesis options.

The Allow LogicLock Region Restructuring option allows DSE to
modify the state of any LogicLock regions in your design.

The section below describes the options available in the Exploration
Settings section of the DSE user interface.

Altera Corporation 9–7
June 2004 Preliminary

Performing an Advanced Search in Design Space Explorer

Use the Exploration Settings field to select the type of exploration to
perform: Search for Best Area, Search for Best Performance, or
Advanced Search.

Use the section “Exploration Space” on page 9–8 to select the type of
exploration to perform: “Search for Best Area or Performance Options”
below, or “Performing an Advanced Search in Design Space Explorer” on
page 9–7.

Search for Best Area or Performance Options

The Search for Best Performance option uses a predefined exploration
space that targets performance improvements for your design.
Depending on the device your design targets, you can select up to four
predefined exploration spaces: low (seed sweep), medium (extra effort
space), high (physical synthesis space), and highest (physical synthesis
with retiming space). As you move from “low” to “highest,” the number
of options explored by DSE and compilation time increases.

Advanced Search Option

The Advanced Search option allows full control over the exploration
space, the optimization goal for your design, and the search method used
in a design exploration. The section titled “Performing an Advanced
Search in Design Space Explorer” on page 9–7 provides detailed
information on how to set up and perform an advanced search in DSE.

1 The advanced search can be used to define equivalent
exploration spaces to those found in the Search for Best Area
and Search for Best Performance options.

Performing an
Advanced
Search in
Design Space
Explorer

You must make three exploration settings in the Advanced Search dialog
box before exploring a design space. These three settings, Exploration
Space, Optimization Goal, and Search Method, are described in the
following sections. Figure 9–2 shows the Advanced Search dialog box.

9–8 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 9–2. DSE Advanced Search Dialog Box

Allow LogicLock Region Restructuring

The Allow LogicLock Region Restructuring option allows DSE to modify
LogicLock region properties in your design if any exist. DSE applies the
Soft property to LogicLock regions to improve timing. Also, DSE may
remove LogicLock regions that negatively affect the performance of the
design.

Exploration Space

The exploration space list controls the exploration type that DSE
performs on your design. DSE traverses the points in an exploration
space, applying the settings to the design and comparing the compilation
results to determine the best settings for your design. DSE offers the
following predefined exploration spaces:

■ Seed sweep
■ Extra effort search
■ Physical synthesis search
■ Retiming search
■ Area optimization search
■ Custom space
■ Signature mode

Altera Corporation 9–9
June 2004 Preliminary

Performing an Advanced Search in Design Space Explorer

1 Not all advanced exploration spaces are available for every
device family. See “DSE Support for Altera Device Families” on
page 9–5 for advanced exploration space support for various
device families.

Compilation time increases proportionally to the breadth of the
exploration; the design space increases as more optimization options and
parameters are explored.

1 The Exploration Space field is enabled after a project has been
opened in DSE.

Turn on Save exploration space to file (Option menu) to save an XML file
representing the exploration space. The exploration space is written to a
file named <project name>.dse in the project directory. You can modify this
file to create a custom exploration space.

f For more information on using custom exploration spaces in DSE, see
“Creating Custom Spaces for DSE” on page 9–16.

Seed Sweep

The Seed Sweep exploration space leverages the seed sweeping concept
and automates the process. Enter the seed values in the Seeds field in the
DSE user interface. There are no “magic” seeds. Because the variation
between seeds is truly random, any integer value is as likely to produce
good results. DSE defaults to seeds 3, 5, 7, and 11. The Seed Sweep
exploration space does not make changes to your netlist.

1 The seed field accepts individual seed values, e.g., 2, 3, 4, and 5,
or seed ranges, e.g. 2-5.

There is a 1× increase in compilation time for every seed value specified.
For example, if you enter five seeds, the compilation time is 5× the initial
compilation time.

Extra Effort Search

The Extra Effort Search exploration space adds the Register Packing
option to the exploration space performed by the Seed Sweep. This
exploration type also increases the Quartus II Fitter effort during the
place-and-route stage. This type of exploration makes no changes to your
netlist.

The Extra Effort Search for Quartus Integrated Synthesis Projects
exploration space includes all the options in Extra Effort, and explores
various Quartus II integrated synthesis optimization options. The Extra

9–10 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Effort Search for Quartus Integrated Synthesis Projects exploration
space works only for designs that have been synthesized using the
Quartus II integrated synthesis.

f For more information on integrated synthesis options, see the Quartus II
Integrated Synthesis chapter in Volume 1 of the Quartus II Handbook.

Physical Synthesis Search

The Physical Synthesis Search exploration space adds physical synthesis
options such as register retiming and physical synthesis for
combinational logic to the options included in the Extra Effort Search
exploration space. These netlist optimizations move registers in your
design. Look-up tables (LUTs) may be modified. The design behavior is
not affected by these options.

f For more information about physical synthesis, see the Netlist
Optimization & Physical Synthesis chapter in Volume 2 of the Quartus II
Handbook.

The Physical Synthesis for Quartus Integrated Synthesis Projects
exploration space includes all the options in the Physical Synthesis
exploration space and explores various Quartus II integrated synthesis
optimization options. The Physical Synthesis for Quartus Integrated
Synthesis Projects exploration space works only for designs that have
been synthesized using Quartus II integrated synthesis.

Retiming Search

The Retiming Search exploration space includes all the options in the
Physical Synthesis Search exploration space and explores register
retiming. The register retiming may move registers in your design.

The Retiming Search for Quartus Integrated Synthesis Projects
exploration space includes all the options in Retiming Search exploration
space, and explores various Quartus II integrated synthesis optimization
options. The Retiming Search for Quartus integrated synthesis Projects
exploration space works only for designs that have been synthesized
using the Quartus II integrated synthesis.

Area Optimization Search

The Area Optimization Search exploration space explores options that
affect logic cell utilization for your design. These options include register
packing and Quartus II Optimization Technique set to Area.

Altera Corporation 9–11
June 2004 Preliminary

Performing an Advanced Search in Design Space Explorer

Custom Space

Use the Custom Space exploration space to selectively explore the effects
of various optimization options on your design. This exploration type
gives you complete control over which options are explored and in what
mode. In the Custom Space mode you can explore all optimization
options available in DSE.

For summaries of exploration spaces, refer to Table 9–2.

f For more information about using custom exploration spaces with DSE,
see “Creating Custom Spaces for DSE” on page 9–16.

Table 9–2. Summaries of Exploration Spaces Note (1)

Search Type

Exploration Spaces

Seed
Sweep Extra Effort Physical

Synthesis Retiming Area
Optimization Custom

Analysis & Synthesis Settings

Optimization technique v v v vx
Perform WYSIWYG resynthesis v v v vx
Perform gate-level register
retiming v vx
Fitter Settings

Fitter seed v v v v v v
Register packing v v v v v
Increase PowerFit fitter effort v v v v
Perform physical synthesis for
combinational logic v v v
Perform register retiming v v
Note to Table 9–2:
(1) For exploration spaces that include Quartus Integrated Synthesis, DSE increases the synthesis effort.

9–12 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Signature Mode

In Signature mode, DSE analyzes the fMAX, slack, compile time, and area
trade-offs of a single parameter. Running the single parameter over
multiple seeds, DSE reports the average of these values. With this
information you gain a better understanding of how that parameter
affects your design. There are four signature mode settings in DSE:

■ Signature: Fitting Effort Level
■ Signature: Netlist Optimizations
■ Signature: Fast Fit
■ Signature: Register Packing

Each setting explores a specific optimization option for your design. For
example, in Signature: Register Packing mode, DSE explores the Auto
Packed Registers logic option with its four settings (OFF, Normal,
Minimized Area, and Minimize Area with Chains), and reports the
effects of each on your design.

Optimization Goal

Design metrics are extremely important when exploring the design space
of your design whether it be performance, logic utilization, or a
combination of both. These metrics allow you to selectively determine
which compilation is best, based on the requirements of the design. DSE
uses the Optimization Goal setting to determine the best compilation
results. Here you can specify to DSE which optimization goal you are
trying to achieve. Table 9–3 summarizes the four available optimization
goals.

Table 9–3. Optimization Goal Settings

Setting Description

Optimize for speed The exploration space point that contains the best worst-case slack
value is selected by DSE as the best run.

Optimize for area The exploration space point that contains the lowest logic cell count is
selected by DSE as the best run.

Optimize for failing paths The exploration space point that contains the least amount of failing
paths is selected by DSE as the best run.

Optimize for negative slack and failing
path

The exploration space point that contains the best average negative
worst-case slack and lowest number of failing paths is selected by DSE
as the best run.

Altera Corporation 9–13
June 2004 Preliminary

DSE Flow Options

The optimization goal is independent of the exploration space. An
optimization goal that looks for the best performance, bases its
best/worst decisions on the exploration space that produces the highest
performance and not one with the smallest logic resource utilization.

Search Method

The Search Method setting allows you to control the breadth of the search
performed by DSE. DSE provides three search methods: exhaustive
search of exploration space, accelerated search of exploration space, and
distributed search of exploration space. These three search methods are
described in Table 9–4.

DSE Flow
Options

You can control the run time of the design exploration with the options
described in this section.

Continue Exploration Even if Base Compile Fails

DSE continues even if an error occurs during the design compilation. For
example, an error occurs in DSE if timing settings are not applied to your
design. Turn off this option to make DSE continue with the exploration
instead of halting if an error occurs.

Run Quartus Assembler During Exploration

By default, DSE does not generate programming files for each
compilation during exploration. Turn on Run Quartus Assembler
During Exploration to generate programming files for each compilation.

Table 9–4. Search Methods

Search Method Description

Exhaustive search of exploration space Applies all settings available in the exploration space to all seeds
specified. This search method yields the optimal settings for your
design, but requires the most time.

Accelerated search of exploration space Finds the best exploration space for your design based on the initial
seed specified. This sub-space is then applied to all subsequent
seeds specified.

Distributed search of exploration space Equivalent to the exhaustive search of exploration space except that
this search method uses cluster computing technology to decrease
DSE run time.

9–14 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Archive All Compiles

Turn on Archive All Compiles to create a Quartus Archive File (.qar) for
each compilation. These archive files are saved to the dse directory in the
design's working directory.

Save Exploration Space to File

Turn on Save Exploration Space to File to write out a <project name>.dse
file that contains all options explored by DSE. You can use or modify this
file to perform a custom exploration.

Stop Flow After Time

Turn on Stop Flow After Time to stop further exploration after a specified
number of days, hours, and/or minutes.

1 Exploration time might exceed the specified value because DSE
does not stop in the middle of a compile.

Stop Flow After Gain

Turn on Stop Flow After Gain to stop further exploration after a specified
percentage gain.

Altera Corporation 9–15
June 2004 Preliminary

DSE Advanced Information

DSE Advanced
Information

This section covers advanced features that are available in DSE. These
features are made available to increase the processing efficiency of design
space exploration as well as the further customization of the design space.

Computer Load Sharing in DSE Using Distributed Exploration
Searches

When the Search Method is set to Distributed Search of Exploration
Space, DSE uses cluster computing technology to decrease exploration
search time. DSE uses multiple client computers to compile points in the
specified exploration space. Two modes of operation are available when
using the Distributed DSE option. The first mode uses the Platform LSF
grid computing technology to distribute exploration space points to a
computing network. In the second mode, DSE acts as a master and
distributes exploration space points to client computers. Both modes use
an Exhaustive Search of Exploration Space search method.

Distributed DSE Using LSF

The easiest way to use distributed DSE technology is to submit the
compilations to a pre-configured LSF cluster at your local site. For more
information on LSF software, see www.platform.com, or contact your
system administrator. Turn on Use LSF resources to enable this feature.

Distributed DSE Using a Quartus II Master Process

Before DSE can use machines in the local area network to compile points
in the exploration space, you need to create Quartus II software slave
instances on the machines. In most cases, creating a slave instance on a
machine is simple. Enter the following command at a command prompt
on a client machine:

 quartus_sh --qslave r
Repeating this on several machines creates a cluster of Quartus II
software slaves for DSE to use. Once you have created a set of Quartus II
software slaves on the network, add the names of each slave machine in
Enter Clients dialog box. This dialog box appears after selecting
Exhaustive Search of Exploration Space. Figure 9–3 shows an example
of client entries for a distributed search.

9–16 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 9–3. Client Entry in DSE

At the start of an exploration, DSE assumes the role of a Quartus II
software master process and submits points to the slaves on the list to
compile. If the list is empty, DSE issues an error and the search stops.

1 For more information on running and configuring Quartus
slaves, type quartus_sh --help=qslave r at the command
prompt.

The version of the Quartus II software that you use for the Quartus II
software slaves must be the same as the version of the Quartus II software
you use to run DSE. To see the version of the Quartus II software you are
using to run DSE, choose About DSE (Help menu). Unexpected results
can occur if you mix Quartus II software versions when using the
Distributed DSE search feature.

Creating Custom Spaces for DSE

You can use custom spaces to explore combinations of options that are
outside the predefined exploration spaces in the Exploration Space list.
An exploration space is defined in an XML file. The following is a
description of the tags used to create a custom space for DSE to process.

Altera Corporation 9–17
June 2004 Preliminary

DSE Advanced Information

A custom space is defined by three pairs of major tags, which are:

● <DESIGNSPACE> and </DESIGNSPACE>
● <POINT> and </POINT>
● <PARAM> and </PARAM>

DESIGNSPACE Tag

The <DESIGNSPACE> tag defines the start of the exploration space of a
custom space. The end tag is </DESIGNSPACE>. This tag defines the end
of the exploration space. These are both required tags for all custom
spaces.

POINT Tag

The POINT tag pair must occur within the DESIGNSPACE tag pair. The
<POINT <name>=<stage> enabled=”<value>”> tag defines the start of the
exploration space point of a custom space. The end tag is </POINT>. This
tag defines the end of the exploration space point. The POINT also allows
you to specify “stage” and whether a particular point is active for a
particular DSE exploration.

The “<stage>” value in the POINT tag can be one of the following:

■ map—indicating an Analysis & Synthesis setting change for that
particular point

■ fit—indicating a Fitter setting change for that particular point
■ seed—indicating a Fitter seed change
■ logiclock—indicating a LogicLock property change

The <value> value in the POINT tag can either be "1," indicating that the
exploration space point is active, or "0" for an inactive point. An example
of a POINT tag is as follows:

<POINT space=”map” enabled=”1”>
...
</POINT>

The preceding point indicates a point that has Analysis & Synthesis
setting changes and is active.

9–18 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

PARAM Tag

The PARAM tag pair must occur within the POINT tag pair. The <PARAM
name=”<parameter>”> tag defines the start of a parameter to be modified
for that particular exploration space point. The end tag is </PARAM>. This
tag defines the end of the parameter. The Analysis & Synthesis settings
and the “<parameter>” values are shown in Table 9–5. Table 9–6 shows the
Fitter settings. An example of a POINT tag is shown below:

<PARAM name=”ADV_NETLIST_OPT_SYNTH_GATE_RETIME”> ON
</PARAM>

The point in the example above indicates that the Analysis & Synthesis
setting gate-level retiming is turned on for the exploration space point.

Table 9–5. Analysis & Synthesis Settings Note (1)

Analysis & Synthesis Settings Description Value

STRATIX_OPTIMIZATION_TECHNIQUE Type of optimization technique to use
during Analysis & Synthesis stage of a
Quartus II software compilation for a
Stratix device.

SPEED,
AREA,
BALANCED

CYCLONE_OPTIMIZATION_TECHNIQUE Type of optimization technique to use
during Analysis & Synthesis stage of a
Quartus II software compilation for a
Cyclone device.

SPEED,
AREA,
BALANCED

ADV_NETLIST_OPT_SYNTH_GATE_RETIME Gate-level register retiming OFF, ON

ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP WYSIWYG primitive resynthesis OFF, ON

DSE_SYNTH_EXTRA_EFFORT_MODE Controls the Quartus II software
synthesis effort.

MODE_1,
MODE_2,
MODE_3

Note to Table 9–5:
(1) Not all Analysis & Synthesis settings are available for all device families.

Table 9–6. Fitter Settings (Part 1 of 2) Note (1)

Fitter Settings Description Value

AUTO_PACKED_REGISTERS_STRATIX Register packing for
Stratix devices

NORMAL, MINIMIZE_AREA,
MINIMIZE_AREA_WITH_CHAINS

AUTO_PACKED_REG_CYCLONE Register packing for
Cyclone devices

OFF, MINIMIZE_AREA,
MINIMIZE_AREA_WITH_CHAINS

INNER_NUM PowerFit fitter effort
level

{integer value}

Altera Corporation 9–19
June 2004 Preliminary

DSE Advanced Information

The custom space example below shows a simple custom exploration
space that performs a seed sweep with various Analysis & Synthesis
settings and Fitter settings.

Simple Custom Space
<DESIGNSPACE>
<POINT space="map">
</POINT>
<POINT space="fit">
</POINT>
<POINT space="map" enabled="1">
 <PARAM name="CYCLONE_OPTIMIZATION_TECHNIQUE">SPEED</PARAM>
 <PARAM name="ADV_NETLIST_OPT_SYNTH_GATE_RETIME">ON</PARAM>
 <PARAM name="ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP">ON</PARAM>
 <PARAM name="STRATIX_OPTIMIZATION_TECHNIQUE">SPEED</PARAM>
 </POINT>
<POINT space="fit" enabled="1">
 <PARAM name="PHYSICAL_SYNTHESIS_REGISTER_RETIMING">ON</PARAM>
 <PARAM name="PHYSICAL_SYNTHESIS_REGISTER_DUPLICATION">

ON</PARAM>
 <PARAM name="AUTO_PACKED_REG_CYCLONE">OFF</PARAM>
 <PARAM name="AUTO_PACKED_REGISTERS_STRATIX">OFF</PARAM>
 <PARAM name="SEED">3</PARAM>
 <PARAM name="PHYSICAL_SYNTHESIS_COMBO_LOGIC">ON</PARAM>
 </POINT>
</DESIGNSPACE>

The example, “Simple Custom Space”, defines a custom exploration
space that has four points. The first two points in the space are special
points: an empty “map” point and an empty “fit” point. DSE expects the
first two points in any custom exploration space to be an empty map
point and an empty fit point, as seen in this example.

Following the empty map and fit points are one map point and one fit
point that change the Quartus II Fitter settings. The map point sets the
optimization technique to speed, turns on gate level retiming, and turns

PHYSICAL_SYNTHESIS_COMBO_LOGIC Physical synthesis for
combinational logic

OFF, ON

PHYSICAL_SYNTHESIS_REGISTER_
DUPLICATION

Physical synthesis for
register duplication

OFF, ON

PHYSICAL_SYNTHESIS_REGISTER_
RETIMING

Physical synthesis for
register retiming

OFF, ON

Note to Table 9–6:
(1) Not all Fitter settings are available for all device families.

Table 9–6. Fitter Settings (Part 2 of 2) Note (1)

Fitter Settings Description Value

9–20 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

on the WYSIWYG resynthesis. For the fit point, register retiming, register
duplication, and physical synthesis for combinational logic is turned on;
register packing is turned off; and a seed value of three is used.

The example, “Custom Space XML Schema”, contains an XML schema
that describes the XML format for custom exploration space files. You can
use an advanced XML editor or XML verification tool to validate any
custom exploration files against this schema.

Altera Corporation 9–21
June 2004 Preliminary

Conclusion

Custom Space XML Schema
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:element name="DESIGNSPACE">
<xs:annotation>

<xs:documentation>The root element of a design space
description</xs:documentation>

</xs:annotation>
<xs:complexType>

<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="POINT"/>

</xs:sequence>
<xs:attribute name="project" type="xs:string" use="optional"/>
<xs:attribute name="revision" type="xs:string" use="optional"/>

</xs:complexType>
</xs:element>
<xs:element name="POINT">

<xs:annotation>
<xs:documentation>A point in the design space</xs:documentation>

</xs:annotation>
<xs:complexType>

<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="PARAM"/>

</xs:sequence>
<xs:attribute name="space" type="xs:string" use="required"/>
<xs:attribute name="enabled" type="xs:boolean" use="optional" default="1"/>

</xs:complexType>
</xs:element>
<xs:element name="PARAM" type="xs:string" nillable="0">

<xs:annotation>
<xs:documentation>A single Quartus II software setting</xs:documentation>

</xs:annotation>
</xs:element>

</xs:schema>

Conclusion DSE automates the process of finding the best set of options for your
design. It explores the design space of your design by applying various
optimization techniques and analyzing the results to shorten your
design's timing closure cycle.

9–22 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Altera Corporation 10–1
August 2004 Preliminary

10. LogicLock Design
Methodology

Introduction Available exclusively in the Altera® Quartus® II software, the

LogicLock™ block-based design flow enables you to design, optimize,
and lock down your design one module at a time. With the LogicLock
methodology, you can independently create and implement each logic
module into a hierarchical or team-based design. With this method, you
can preserve the performance of each module during system integration.
Additionally, you can reuse logic modules in other designs, further
leveraging resources and shortening design cycles.

The Quartus II software version 4.1 supports the LogicLock block-based
design flow for the following devices:

■ Stratix® II, Stratix, Stratix GX, MAX II®, and Cyclone™

■ APEX® and APEX II

■ Excalibur™

■ Mercury™ (Mercury devices only support locked and fixed regions)

1 This chapter assumes that you are familiar with the basic
functionality of the Quartus II software. See the “LogicLock
Module” in the Quartus II Help for instructions on using the
LogicLock feature in a sample design.

f For more information and guidelines for hierarchical design flow, see the
Hierarchical Block-Based & Team-Based Design Flows chapter in Volume 1 of
the Quartus II Handbook.

Improving Design Performance

You can use the LogicLock flow for performance optimization and
preservation. You can use the LogicLock flow to place modules, entities,
or any group of logic into regions in a device’s floorplan. Because
LogicLock assignments are generally hierarchical, you have more control
over the placement and performance of modules and groups of modules.

In addition to hierarchical blocks, you can use the LogicLock feature on
individual nodes, e.g., to make a wildcard path-based LogicLock
assignment on a critical path. This technique is useful if the critical path
spans multiple design blocks.

qii52009-2.1

10–2 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

1 Although LogicLock constraints can improve performance, they
can also degrade performance if they are not applied correctly.

Preserving Module Performance

The LogicLock design flow allows you to lock the placement and routing
of nodes in a region of a device so that the placement of logic in the region
remains constant. The Quartus II software then places the LogicLock
region into the top-level design with these constraints.

Designing with
the LogicLock
Feature

To design with the LogicLock feature, create a LogicLock region in a
supported device and then assign logic to the region. The LogicLock
region can contain any contiguous, rectangular block of device resources.
After you have optimized the logic placed within the boundaries of a
region to achieve the required performance, back-annotate the region’s
contents to lock the logic placement and routing. Then, when you
integrate the region with the rest of the design, the performance is
preserved.

This section explains the basics of designing with the LogicLock feature,
including:

■ Creating LogicLock Regions
■ Floorplan Editor View
■ LogicLock Region Properties
■ Hierarchical (Parent/Child) LogicLock Regions
■ Assigning LogicLock Region Content
■ Tcl Scripts
■ Quartus II Block-Based Design Flow
■ Additional Quartus II LogicLock Design Features

Creating LogicLock Regions

There are four ways to create a LogicLock region:

■ In the LogicLock Regions window (Assignments menu)
■ Using the Create New Region button in the Timing Closure

Floorplan
■ Using the Compilation Hierarchy window
■ Using a Tool Command Language (Tcl) script

LogicLock Regions Window

The LogicLock window is comprised of the LogicLock Regions window
and LogicLock Region Properties dialog box. Use the LogicLock
Regions window to create LogicLock regions and assign nodes and

Altera Corporation 10–3
August 2004 Preliminary

Designing with the LogicLock Feature

entities to them. The dialog box provides a summary of all LogicLock
regions in your design. You can modify a LogicLock region’s size, state,
width, height, and origin as well as whether the region is Soft or
Reserved, in this window. When the region is back-annotated, the
placement of the nodes within a region are relative to the region’s origin,
and the region’s node placement during subsequent compilations is
maintained.

1 For Stratix, Stratix GX, Stratix II, MAX II, and Cyclone devices,
the LogicLock region’s origin is located at the bottom-left corner
of the region. For all other supported devices, the origin is
located at the top-left corner of the region.

The LogicLock Regions window displays any LogicLock regions that
contain illegal assignments in red as shown in Figure 10–1. If you make
illegal assignments, you can use the Repair Branch command to reset the
assignments for the currently selected region and its descendents to legal
default values.

f For more information on the Repair Branch command, see the “Repair
Branch” on page 10–22.

Figure 10–1. LogicLock Regions Window

You can customize the LogicLock Regions window by dragging and
dropping the various columns. The columns can also be hidden.

1 The Soft and Reserved columns are not shown by default.

For designs targeting Stratix, Stratix GX, Stratix II, MAX II, and Cyclone
devices, the Quartus II software automatically creates a LogicLock region
that encompasses the entire device. This default region is labelled
Root_region, and it is effectively locked and fixed.

10–4 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Use the LogicLock Region Properties dialog box to obtain detailed
information about your LogicLock region, such as which entities and
nodes are assigned to your region and what resources are required (see
Figure 10–2). The LogicLock Region Properties dialog box shows the
properties of the current selected regions.

1 The LogicLock Region Properties dialog box can be opened by
double-clicking any region in the LogicLock Regions window
or right-clicking the region and selecting Properties.

Figure 10–2. LogicLock Region Properties Dialog Box

To back-annotate the contents of your LogicLock regions, perform these
steps:

1. In the LogicLock Region Properties dialog box, click
Back-Annotate Contents.

Altera Corporation 10–5
August 2004 Preliminary

Designing with the LogicLock Feature

2. Select the contents you wish to back-annotate using the
Back-Annotate Assignments (Advanced type) (Assignment menu)
dialog box (Figure 10–3)

3. Click OK.

Figure 10–3. Back-Annotate Assignments Dialog Box (Advanced Type)

1 You can also back-annotate routing within LogicLock regions
for increased region portability. For more information on back-
annotating routing information, see “Back-Annotating Routing
Information” on page 10–33.

10–6 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

When you back-annotate a region’s contents and demote all cell
assignments, all of the design element nodes appear under Back-
annotated nodes with an assignment to a device resource (e.g., logic
array block [LAB], M512, M4K, M-RAM, digital signal processing [DSP]
block, etc.) under Node Location. Each node’s location is the placement
of the node after the last compilation. If the origin of the region changes,
the node’s location changes to maintain the same relative placement. This
relative placement preserves the performance of the nodes. If cell
assignments are demoted, then the nodes are assigned to LABs rather
than directly to logic cells.

Timing Closure Floorplan Editor

The Timing Closure Floorplan Editor has toolbar buttons with which you
can manipulate LogicLock regions, as shown in Figure 10–4. You can use
the Create New Region button to draw LogicLock regions in the device
floorplan.

1 The Timing Closure Floorplan Editor displays LogicLock
regions when Show User Assignments or Show Fitter
Placements is selected. The type of region determines its
appearance in the floorplan.

The Timing Closure Floorplan Editor differentiates between user
assignments and fitter placements. When the Show User Assignments
option is turned on in the Timing Closure Floorplan, current assignments
made to a LogicLock region are visible. When the Fitter Placement option
is turned on, you can see the properties of the LogicLock region after the
last compilation. User-assigned LogicLock regions appear in the
Floorplan Editor with a dark blue LogicLock border. Fitter-placed regions
appear in the Floorplan Editor with a magenta border.

Altera Corporation 10–7
August 2004 Preliminary

Designing with the LogicLock Feature

Figure 10–4. Floorplan Editor Toolbar Buttons

Hierarchy Window

After you have performed either a full compilation or Analysis &
Elaboration on the design, the Quartus II software displays the hierarchy
of the design in the Compilation Hierarchy window. With the hierarchy
of the design fully expanded, as shown in Figure 10–5, you can
conveniently create a LogicLock region by right clicking on any design
entity in the design and selecting Create New LogicLock Region in the
right button pop-up menu.

User Placed RegionShow User Assignments

Create New LogicLock Region

Fitter Placed RegionShow Fitter Placements

10–8 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Figure 10–5. Hierarchy Window Used to Create LogicLock Regions

Tcl Scripts

You can create LogicLock regions and assign nodes to them with Tcl
commands that you can run from the Tcl Console or at the command
prompt.

f For more information, refer to the Scripting Support chapter in Volume 2
of the Quartus II Handbook.

Altera Corporation 10–9
August 2004 Preliminary

Designing with the LogicLock Feature

Floorplan Editor View

The Timing Closure Floorplan view provides you with current and last
compilation assignments on one screen. You can display device resources
in either of two views: the Field View and the Interior Cells View, as
shown in Figure 10–6. The Field View provides an uncluttered view of the
device floorplan in which all device resources such as ESBs and

MegaLAB™ blocks are outlined. The interior Cells View provides a
detailed view of device resources this includes individual Logic Elements
within a MegaLAB and device pins.

Figure 10–6. Floorplan Editor⎯Timing Closure

(Field View) (Interior Cells View)

10–10 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

LogicLock Region Properties

A LogicLock region is defined by its size (height and width) and location
(where the region is located on the device). You can specify the size
and/or location of a region, or the Quartus II software can generate them
automatically. The Quartus II software bases the size and location of the
region on its contents and the module’s timing requirements. Table 10–1
describes the options for creating LogicLock regions.

1 The Quartus II software cannot automatically define a region’s
size if the location is locked. Therefore, if you want to specify the
exact location of the region, you must also specify the size.
Mercury devices only support locked and fixed regions.

The floorplan excerpt in Figure 10–7 shows the LogicLock region
properties for a design implemented in a Stratix device.

Table 10–1. Types of LogicLock Regions

Properties Values Behavior

State Floating
(default),
Locked

Floating regions allow the Quartus II software to determine the region’s location
on the device. Locked regions represent user-defined locations of a region and
are illustrated with a solid boundary in the graphical floorplans. A locked region
must have a fixed size.

Size Auto
(default),
Fixed

Auto-sized regions allow the Quartus II software to determine the appropriate size
of a region given its contents. Fixed regions have a user-defined shape and size.

Reserved Off (default),
On

The reserved property allows you to define whether you can use the resources
within a region for entities that are not assigned to the region. If the reserved
property is on, only items assigned to the region can be placed within its
boundaries.

Enforcement Hard
(default),
Soft

Soft regions give more deference to timing constraints, and allow some entities to
leave a region if it improves the performance of the overall design. Hard regions
do not allow contents to be placed outside of the boundaries of the region.

Origin Any
Floorplan
Location

The origin defines the top-left corner of the LogicLock region’s placement on the
floorplan. For Stratix, Stratix II, Stratix GX, MAX II, and Cyclone the origin is
located in the lower-left hand corner. The origin is located in the upper-left corner
for other families.

Altera Corporation 10–11
August 2004 Preliminary

Designing with the LogicLock Feature

Figure 10–7. LogicLock Region Properties

Hierarchical (Parent and/or Child) LogicLock Regions

With the LogicLock design flow, you can define a hierarchy for a group of
regions by declaring parent and/or child regions. The Quartus II
software places a child region completely within the boundaries of its
parent region, allowing you to further constrain module locations.
Additionally, Parent and child regions allow you to further improve a
module’s performance by constraining the nodes in the module’s critical
path. Figure 10–8 shows an example child region within a parent region,
including labels for a locked location and floating location in a Stratix
device.

LLR1_CHILD, a child region of
LLR1, is a fixed, locked region

Width of
LLR1_CHILD

LLR3 Origin LLR2 is an auto,
floating region

LLR1 is a fixed, floating region LLR3 is a fixed, locked region

LLR3 Height

10–12 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Figure 10–8. Child Region within a Parent Region

1 The LogicLock region hierarchy does not have to be the same as
the design hierarchy.

A child region’s location can float within its parent or remain locked
relative to its parent’s origin, while a locked parent region’s location is
locked relative to the device. If the child’s location is locked and the
parent’s location is changed, the child’s origin changes but maintains the
same placement relative to the origin of its parent. Either you or the
Quartus II software can determine a child region’s size; however, it must
fit entirely within the parent region.

LLR1_CHILD1 is a fixed,
locked child region

LLR1_CHILD2 is a fixed,
floating child region

Altera Corporation 10–13
August 2004 Preliminary

Designing with the LogicLock Feature

Assigning LogicLock Region Content

Once you have defined a LogicLock region, you must assign resources to
it using the Timing Closure Floorplan, the LogicLock Regions dialog
box, the Assignment Editor, or Tcl scripts with the Quartus II Tcl Console
or the quartus_sh executable.

Using Drag & Drop to Place Logic
You can drag selected logic from the Compilation Hierarchy window,
Node Finder, or a schematic design file and drop it into the Timing
Closure Floorplan or the LogicLock Regions dialog box. Figure 10–9
shows logic that has been dragged from the Compilation Hierarchy
window dropped into a LogicLock region in the Timing Closure
Floorplan.

Figure 10–9. Drag & Drop Logic in the Current Assignments Floorplan

Figure 10–10 shows logic that has been dragged from the Compilation
Hierarchy window and dropped into the LogicLock Regions dialog box.
Logic can also be dropped into the Design Element Assigned dialog box.

Compilation Hierarchy LogicLock Region

10–14 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Figure 10–10. Drag & Drop Logic into the LogicLock Regions Dialog Box

1 You must manually assign pins to a LogicLock region. The
Quartus II software does not include pins automatically when
you assign an entity to a region. The software only obeys pin
assignments to locked regions that border the periphery of the
device. For Stratix, Stratix II, MAX II, and Cyclone devices, the
locked regions must enclose the I/O pins as resources.

Using the Assignment Editor to Place Logic

You can also use the Assignment Editor to assign entities and nodes to a
LogicLock region (see Figure 10–11). To assign content to a LogicLock
region with the Assignment Editor, perform the following steps:

1. Under Assignment Name, select Add to LogicLock Region.

Design Element Assigned dialog boxCompilation Hierarchy

LogicLock Regions

Altera Corporation 10–15
August 2004 Preliminary

Designing with the LogicLock Feature

2. Under Value, specify your LogicLock region name.

3. Under To, specify either nodes or entities that are to reside in the
LogicLock region.

The nodes or entities are then assigned to the selected LogicLock region.

Figure 10–11. Assignment Editor

Tcl Scripts

You can create LogicLock regions and assign nodes to them with Tcl
commands that you can run from the Tcl Console or at the command
prompt. The Tcl command set_logiclock is used to create or change
the attributes of LogicLock regions.

f For more information on creating and using LogicLock regions and
contents, see the Command Line and Tcl API topics in the Quartus II
online Help.

10–16 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Quartus II Block-Based Design Flow

When using the LogicLock design flow, it is recommended that you
divide the design into modules. Then, perform the following steps in the
Quartus II software for each module:

1. Synthesize the module using the Quartus II software or another
synthesis tool.

2. Optimize the module in the Quartus II software.

3. Export the module and the LogicLock constraints.

4. Import all modules and LogicLock constraints into the top-level
project.

5. Compile and verify the top-level design.

Synthesize the Module

You can synthesize the module in the Quartus II software or any
Altera-supported third-party synthesis tool, e.g., the Synplify®,

LeonardoSpectrum™, or FPGA Compiler II software. The software
synthesizes each module into an atom netlist, which represents the logic
in terms of Altera primitives for the target Altera device.

In the atom netlist, the nodes are fixed as Altera primitives; the node
names do not change if the atom netlist does not change. If a node name
does change, any placement information made to that node is invalid and
ignored. Third-party tools generate atom netlists as EDIF Input Files
(.edf) or Verilog Quartus Mapping Files (.vqm).

Optimize the Module

Before optimizing a module in the Quartus II software, create a project
with the module as the top-level entity. You must assign the module to a
single (or multiple) LogicLock region. See the “Constraint Priority” on
page 10–30 for information on the precedence of the LogicLock region
and other constraint settings.

After you have optimized the module so that it meets timing
requirements, lock down the placement of nodes in a LogicLock region by
back-annotating the contents of the region. To make relative location
assignments, you must fix the node names. Fixed node names require an
atom netlist so that the assignments for each node remain valid. The node
placement is fixed relative to the LogicLock region for the module.

Altera Corporation 10–17
August 2004 Preliminary

Designing with the LogicLock Feature

For the Quartus II software to achieve optimal placement, you should
make timing assignments for all clock signals in the design, e.g., tSU, tCO,
and tPD.

To facilitate the LogicLock design flow, the Timing Closure Floorplan
highlights resources that have back-annotated LogicLock regions.
Figure 10–12 shows a back-annotated LogicLock region in the Timing
Closure Floorplan.

Figure 10–12. Back-Annotated LogicLock Region

Export the Module

This section describes how to export a module’s constraints to a format
that can be imported by a top-level design. To be exported, a module
requires design information as an atom netlist (VQM or EDF), placement
information stored in a Quartus Settings File (.qsf), and routing
information stored in a Routing Constraint File (.rcf).

Unused regions are
not highlighted

Used resources in
a LogicLock region
are highlighted

10–18 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Atom Netlist Design Information
The atom netlist contains design information that fully describes the
module’s logic in terms of an Altera device architecture. If the design was
synthesized using a third-party tool and then brought into the Quartus II
software, an atom netlist already exists and the node names are fixed. You
do not need to generate another atom netlist. However, if you use any
Synthesis Netlist Optimizations, or Physical Synthesis Optimizations,
you must generate a Quartus II VQM. because the original atom netlist
may have changed as a result of these optimizations.

1 It is recommended that you turn on the option Prevent further
netlist optimization option when back-annotating a region with
the Synthesis Netlist Optimizations and/or Physical
Synthesis Optimization options turned on. This sets the Netlist
Optimizations to Never Allow option on all nodes in the
region, avoiding the possibility of a node name change when the
region is imported into the top-level design.

If you synthesized the design as a VHDL Design File (.vhd), Verilog
Design File (.v), Text Design File (.tdf), or a Block Design File (.bdf) in the
Quartus II software, you must also create an atom netlist to fix the node
names. During compilation, the Quartus II software creates a VQM File
in the atom_netlists subdirectory in the project directory.

1 If the atom netlist is from a third-party synthesis tools and the
design has a black-boxed library of parameterized modules
(LPM) functions or Altera megafunctions, you must generate a
Quartus II VQM File for the black-boxed modules.

f For instructions on creating an atom netlist in the Quartus II software,
see Saving Synthesis Results for an Entity to a Verilog Quartus Mapping File
in Quartus II Help.

When you export LogicLock regions, the Quartus II software defaults to
exporting your entire design’s LogicLock region assignments. However,
you can export a sub-entity of the compilation hierarchy and all of its
relevant regions. This can be accomplished by right-clicking the entity in
the Compilation Hierarchy and selecting Export Assignments from the
right button pop-up menu.

Placement Information
The QSF contains the module’s LogicLock constraint information,
including clock settings, pin assignments, and relative placement
information for back-annotated regions. To maintain performance, you
must back-annotate the module.

Altera Corporation 10–19
August 2004 Preliminary

Designing with the LogicLock Feature

Routing Information
The RCF contains the module’s LogicLock routing information. To
maintain performance, you must back-annotate the module.

f For instructions on exporting a LogicLock region assignment in the
Quartus II software, see Exporting LogicLock Region Assignments and Other
Entity Assignments in Quartus II Help.

Import the Module

You can specify which QSF is used for a specific instance or entity with
the LogicLock Import File Name option in the Assignment Editor.
Therefore, you can specify different LogicLock region constraints for each
instance of an entity and import them into the top-level design. You can
also specify an RCF file with the LogicLock Routing Constraints File
Name option in the Assignment Editor.

When importing LogicLock regions into the top-level design, you must
specify the QSF and RCF for the modules in the project. If the design
instantiates a module multiple times, the Quartus II software applies the
LogicLock regions multiple times.

1 Before importing LogicLock regions, you must perform
Analysis & Elaboration, or compile the top-level design, so that
the Quartus II software is aware of all instances of the lower-
level modules.

The following sections describe how to specify a QSF for a module and
how to import the LogicLock assignments into the top-level design.

Specify the QSF and Atom Netlist
To specify the QSF and atom netlist to import, perform the following
steps:

1. Specify an atom netlist for the module that you are importing by
either copying the atom netlist to your current working directory or
choosing Add/Remove Project Files (Project menu) and browsing
to the file.

2. Perform Analysis & Elaboration.

3. Expand the design hierarchy on the Compilation Hierarchy tab of
the Project Navigator by clicking the + icon next to the top-level
entity.

4. Right-click on the entity and choose Locate in the Assignment
Editor.

10–20 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

5. Under Assignment Name, choose LogicLock Import File Name.

6. Under Value, type the name and relative path to the QSF, or click
Browse and navigate to the QSF in the Select File dialog box.

Repeat steps 3 through 5 for all entities that require a specific QSF.

You can follow the same procedure for specifying a QSF when specifying
an RCF. Instead of selecting LogicLock Import File Name, select
LogicLock Back Routing Constraints File Name.

Import the Assignments
To import the assignments, choose Import Assignments (Assignments
menu). Figure 10–13 shows the Import Assignment dialog box.

Figure 10–13. Import Assignments Dialog Box

There are a number of options available in the Advanced Import
Assignments dialog box that you can use to control the import of your
LogicLock regions, as shown in Figure 10–14.

Altera Corporation 10–21
August 2004 Preliminary

Designing with the LogicLock Feature

Figure 10–14. Advanced Import Settings Dialog Box

The Quartus II software converts all imported parent or top-level regions
(that do not contain back-annotated routing information) to floating
regions to prevent spurious no-fit errors. This allows the Quartus II
software to move LogicLock regions to areas on the device with free
resources. Child regions are locked or floating relative to their parent
region’s origin as specified in the modules’ original LogicLock
constraints.

1 If you want to lock a LogicLock region to a location, you can
manually lock down the region in the LogicLock Regions dialog
box or the Timing Closure Floorplan.

Each imported LogicLock region has a name that corresponds to the
original LogicLock region name combined with the instance name in the
form of <instance name>|<original LogicLock region name>. For example, if
a LogicLock region for a module is named LLR_0 and the instance name
for the module is Filter:inst1, then he LogicLock region name in the
top-level design is Filter:inst1|LLR_0.

10–22 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Compile & Verify the Top-Level Design

After importing all modules, you can compile and verify the top-level
design. The compilation report shows whether system timing
requirements have been met.

Additional Quartus II LogicLock Design Features

To complement the LogicLock Regions dialog box and Device Floorplan
view, the Quartus II software has additional features to help you design
with the LogicLock feature.

Tooltips

When you move the mouse so that the pointer is over a LogicLock region
name in the Hierarchy window of the Project Navigator or LogicLock
Regions dialog box, or over the top bar of the LogicLock region in the
Timing Closure Floorplan, the Quartus II software displays a tooltip
with information about the properties of the LogicLock region.

1 Placing the mouse over Fitter Placed LogicLock Regions
displays the maximum routing delay within the LogicLock
region. You must first turn on the Show Critical Paths (see
“Show Critical Paths” on page 10–24) command before the
delay information becomes available.

Repair Branch

When you retarget your design to either a larger or smaller device, there
is a chance that your LogicLock regions no longer contain valid values for
location or size in the new device, resulting in an illegal LogicLock region.
The Quartus II software identifies illegal LogicLock regions in the
LogicLock Regions dialog box by coloring the name of the region
containing the error red.

To correct the illegal LogicLock region, use the Repair Branch command.
Right click the desired LogicLock region’s name and select Repair Branch
(Right button pop-up menu).

If more then one illegal LogicLock region exists, you can repair all regions
by right clicking the first line in the LogicLock window that contains the
text LogicLock Regions and selecting Repair Branch.

Altera Corporation 10–23
August 2004 Preliminary

Designing with the LogicLock Feature

Reserve LogicLock Region

The Quartus II software honors all entity and node assignments to
LogicLock regions. Occasionally, entities and nodes do not occupy an
entire region, which leaves some of the region’s resources unoccupied. To
increase the region’s resource utilization and performance, the Quartus II
software’s default behavior fills the unoccupied resources with other
nodes and entities that have not been assigned to any other region. You
can prevent this behavior by turning on Reserve unused logic cells on
the Contents tab of the LogicLock Region Properties dialog box. When
this option is turned on, your LogicLock region only contains the entities
and nodes that you have specifically assigned to your LogicLock region.

In a team-based design environment, this option is extremely helpful in
device floorplanning. When this option is turned on, each team can be
assigned a portion of the device floorplan where placement and
optimization of each submodule occurs. Device resources can be
distributed to every module without affecting the performance of other
modules.

Prevent Assignment to LogicLock Regions Option

Turning on the Prevent Assignment to LogicLock Regions options
exclude any arbitrary entity or node from being a member of any
LogicLock region. However, it does not prevent the entity or node from
entering into LogicLock regions. The fitter places the entity or node
anywhere on the device as if no regions exist. For example, if an entire
module is assigned to a LogicLock region, when this option is turned on,
you can exclude a specific sub-entity or node from the region.

1 The Prevent Assignment to LogicLock Regions option for a
given entity or node is found in the Assignment Editor under
Assignment Name.

LogicLock Regions Connectivity

The Timing Closure Floorplan Editor allows you to see connections
between various LogicLock regions that exist within a design. The
connection between the regions is drawn as a single line between the
LogicLock regions. The thickness of this line is proportional to the
number of connections between the regions.

Rubber Banding

When the Rubber Banding option is turned on, the Quartus II software
shows existing connections between LogicLock regions and nodes during
movement of LogicLock regions within the Floorplan Editor.

10–24 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Show Critical Paths

You can display the critical paths within a LogicLock region by turning
the Show Critical Paths option On. This option is used in conjunction
with the Critical Paths Settings option that allows you to display either
one or more of the following paths: pin-to-pin, pin-to-register, register-to-
pin, or register-to-register, as shown in Figure 10–15.

Figure 10–15. Show Critical Paths & Critical Paths Settings

Show Connection Count

You can determine the number of connections between LogicLock
regions by turning the Show Connection Count option On.

Analysis & Synthesis Resource Utilization by Entity

The Compilation Report contains an Analysis & Synthesis Resource
Utilization by Entity section, which reports accurate resource usage
statistics, including entity-level information. This feature is useful when
manually creating LogicLock regions.

Path-Based Assignments

You can assign paths to LogicLock regions based on source and
destination nodes, allowing; you to easily group critical design nodes into
a LogicLock region. The path’s source and destination nodes must be a
valid register-to-register path, meaning that the source and destination
nodes must be registers. Figure 10–16 shows the Path-Based Assignment
dialog box.

1 Both “*” and “?” wildcard characters are allowed for both the
source and destination nodes. When creating path-based
assignments you can have the option of excluding certain nodes
with the Name exclude field in the Path dialog box.

Show Critical Paths

Critical Paths Settings

Altera Corporation 10–25
August 2004 Preliminary

Designing with the LogicLock Feature

Figure 10–16. Path-Based Assignment Dialog Box

1 The Path-Based Assignment dialog box is launched from the
Contents Tab of the LogicLock Regions dialog box.

You can also use the Quartus II Timing Analysis Report to create path-
based assignments. To create path-based assignments, follow these steps:

1. Expand the Timing Analyzer section in the Compilation Report.

2. Select any of the clocks in the section that is labelled “Clock
Setup:<clock name>”

3. Locate a path that you would like to assign to a LogicLock region.
Drag this path from the Report window and drop it in the <<new>>
section of the LogicLock Region window.

This operation creates a path-based assignment from the source register
to the destination register as shown in the Timing Analysis Report.

10–26 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Quartus II Revisions Feature

When you create, modify, or import LogicLock regions into a top-level
design, you may need to experiment with different configurations to
achieve your desired results. The Quartus II software provides the
Revisions feature that allows for a convenient way to organize the same
project with different settings until an optimum configuration is found.

Use the Revisions dialog box (Project menu) to create and set revisions.
Revision can be based on the current design or any previously created
revisions. A description can also be entered for each revision created. This
is a convenient way to organize the placement constraints created for
your LogicLock regions.

LogicLock Assignment Precedence

Conflicts might arise during the assignment of entities and nodes to
LogicLock regions. For example, an entire top-level entity might be
assigned to one region and a node within this top-level entity assigned to
another region. To resolve conflicting assignments, the Quartus II
software maintains an order of precedence for LogicLock assignments.
The Quartus II software’s order of precedence is as follows from highest
to lowest:

1. Exact node-level assignments

2. Path-based and wildcard assignments

3. Hierarchical assignments

However, conflicts might also occur within path-based and wildcard
assignments. Path-based and wildcard assignment conflicts arise when
one path-based or wildcard assignment contradicts another path-based
or wildcard assignment. For example, a path-based assignment is made
containing a node labeled X and assigned to LogicLock region
PATH_REGION. A second assignment is made using wildcard assignment
X* with node X being placed into region WILDCARD_REGION. As a result
of these two assignments, node X is assigned to two regions:
PATH_REGION and WILDCARD_REGION.

To resolve this type of conflict, the Quartus II software keeps the order in
which the assignments were made and treats the last assignment created
with the highest priority.

Altera Corporation 10–27
August 2004 Preliminary

Designing with the LogicLock Feature

1 Open the Priority dialog box by selecting Priority on the
Contents tab of the LogicLock properties dialog box. You can
change the priority of path-based and wildcard assignments by
using the Up or Down buttons in the Priority dialog box. To
prioritize assignments between regions, you must select
multiple LogicLock regions. Once the regions have been
selected, you can open the Priority dialog box from the
LogicLock Properties window.

LogicLock Regions versus Soft LogicLock Regions

Normally all nodes assigned to a particular LogicLock region always
resides within the boundaries of that region. Soft LogicLock regions can
enhance design performance by removing the fixed rectangular
boundaries of LogicLock regions. When you assign a LogicLock region as
being “Soft,” Quartus II software attempts to place as many nodes
assigned to the region as close together as possible, and has the added
flexibility of moving nodes outside of the soft region to meet your
design’s performance requirement. This allows the Quartus II Fitter
greater flexibility in placing nodes in the device to meet your
performance requirements.

When you assign nodes to a soft LogicLock region, they can be placed
anywhere in the device, but if the soft region is the child of a region, the
nodes will not be assigned outside the boundaries of the parent region. If
a non-soft parent does not exist (in a design targeting a Stratix, Stratix GX,
Stratix II, MAX II, or Cyclone device), the region floats within the
Root_region, i.e., the boundaries of the device. You can turn On the Soft
Region option on the Location tab of the LogicLock Region Properties
dialog box.

1 Soft regions can have an arbitrary hierarchy that allows any
combination of parent and child to be a soft region. The Reserved
option is not compatible with soft regions.

Soft LogicLock regions cannot be back-annotated because the Quartus II
software may have placed nodes outside of the LogicLock region
resulting in undefinable location assignments relative to the region’s
origin and size.

Soft LogicLock regions are available for all device families that support
floating LogicLock regions.

10–28 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Virtual Pins

When you compile a design in the Quartus II software, all I/O ports are
directly mapped to pins on the targeted device. This I/O port mapping
may create problems for a modular/hierarchical design because lower-
level modules may have more I/O ports than pins available on the
targeted device, or the I/O ports may not directly feed a device pin, but
may drive other internal nodes. The Quartus II software supports virtual
pins to accommodate this situation. Virtual pin assignments tell the
Quartus II software which I/O ports of the design module become
internal nodes in the top-level design. These assignments prevent the
number of I/O ports in the lower-level module from exceeding the total
number of available device pins. Every I/O port that is designated as a
virtual pin gets mapped to an LCELL register in the device. Figure 10–17
shows the virtual input and output pins in the Floorplan Editor.

Figure 10–17. Virtual I/O Pins in the Quartus II Floorplan Editor

1 Bidirectional, registered I/O pins, and I/O pins with output
enable signals cannot be virtual pins. All virtual pins must map
to device I/O pins in the top-level design.

In the top-level design, these virtual pins are connected to an internal
node in another module. Making assignments to virtual pins allow you to
place them within the same location or region on the device as the
corresponding internal node would exist in the top-level module. This
feature also has the added benefit of providing accurate timing
information during lower-level module optimization.

Virtual Input

Virtual Output

Altera Corporation 10–29
August 2004 Preliminary

Designing with the LogicLock Feature

To accommodate designs with multiple clock domains, you can specify
individual clock signals by turning to Virtual Pin Clock option on for each
virtual pin.

1 Virtual pin and virtual pin clock assignments are made through
the Assignment Editor. Figure 10–18 shows assigning virtual
pins using the Assignment Editor.

Figure 10–18. Using the Assignment Editor to Assign Virtual Pin

1 Setting Filter Type to Pins: Virtual allows the Node Finder to
display all assigned virtual pins in the design.

10–30 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

LogicLock
Restrictions

This section discusses restrictions that you should consider when using
the LogicLock design flow, including:

■ Constraint priority
■ Placing LogicLock regions
■ Placing memory, pins and other device features into LogicLock

regions

Constraint Priority

During the design process, it is often necessary to place restrictions on
nodes or entities in the design. Often, these restrictions conflict with the
node or entity assignments for a LogicLock region. To avoid conflicts, you
should consider the order of precedence given to constraints by the
Quartus II software during fitting. The following assignments have
priority over LogicLock region assignments:

■ Assignments to device resources and location assignments
■ Fast input register and fast output register assignments
■ Local clock assignments for Stratix devices
■ Custom region assignments
■ I/O standard assignments

The Quartus II software removes nodes and entities from LogicLock
regions if any of these constraints are applied to them.

Placing LogicLock Regions

A fixed region must contain all of the resources required for the module.
Although the Quartus II software can automatically place and size
LogicLock regions to meet resource and timing requirements, you can
manually place and size regions to meet your design needs. To do so,
follow these guidelines:

■ LogicLock regions with pin assignments must be placed on the
periphery of the device, adjacent to the pins. (For Stratix, Stratix GX,
Stratix II, MAX II, and Cyclone devices, you must also include the
I/O block.)

■ Floating LogicLock regions cannot overlap.
■ It is recommended that you not create fixed and locked regions that

overlap.
■ After back-annotating a region, the software can place the region

only in areas on the device with exactly the same resources.

Altera Corporation 10–31
August 2004 Preliminary

LogicLock Restrictions

1 These guideline are particularly important if you want to import
multiple instances of a module into a top-level design, because
you must ensure that the device has two or more locations with
exactly the same device resources. If the device does not have
another area with exactly the same resources, the Quartus II
software generates a fitting error during compilation of the top-
level design.

Figure 10–19 shows a floorplan with two instantiations of the same
module. Both modules have the same LogicLock constraints and require
exactly the same resources. The Quartus II software places the two
LogicLock regions in different areas in the devices that have the same
resources.

Figure 10–19. Floorplan of Two Instances of a LogicLock Region

Notes for Figure 10–19:
(1) The back-annotated regions LLR1_Inst1 and LLR1_Inst2 have the same resources.

LLR1_Inst1

LLR1_Inst2

10–32 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Placing Memory, Pins & Other Device Features into LogicLock
Regions

A LogicLock region includes all device resources within its boundaries.
You can assign pins to LogicLock regions; however, this placement puts
location constraints on the region. When the Quartus II software places a
floating auto-sized region, it places the region in an area that meets the
requirements of the LogicLock region’s contents.

1 Pin assignments to LogicLock regions honor only fixed and
locked regions. Pins assigned to floating regions do not
influence the region’s placement.

Only one LogicLock region can claim a device resource. If the boundary
includes part of a device resource, such as a DSP block, the Quartus II
software allocates the entire resource to the LogicLock region.
Figure 10–20 shows two overlapping regions in the same Stratix DSP
block. The Quartus II software can assign this resource to only one of the
LogicLock regions. The region’s resource requirements determine which
region gets the assignment. If both regions require a DSP block, the
Quartus II software issues a fitting error.

Figure 10–20. Overlapping LogicLock Regions in a Stratix DSP Block

LogicLock Region 1 and LogicLock Region 2 are locked, fixed regions

This entire DSP block is assigned to only one of the LogicLock regions

Altera Corporation 10–33
August 2004 Preliminary

Back-Annotating Routing Information

Back-Annotating
Routing
Information

LogicLock regions not only allow you to preserve the placement of logic,
from one compilation to the next, but also allow you to retain the routing
inside the LogicLock regions. With both placement and routing locked,
you have an extremely portable design module that can be used many
times in a top-level design without requiring further optimization.

1 Back-annotate routing only if necessary because this can prevent
the Quartus II Fitter from finding an optimal fit for your design.

You can back-annotate the routing by selecting Routing in the
Back-Annotate Assignments dialog box (Assignments menu) (see
Figure 10–3 on page 10–5).

1 If you are not using an atom netlist, you must turn On the Save
a node-level netlist into a Verilog Quartus Mapping File
option On in the Back-Annotate Assignments dialog box if
back-annotation of routing is selected. Writing out a VQM file
causes the Quartus II software to enforce persistent naming of
nodes when saving the routing information between source and
destination logic. The VQM is then be used as the design’s
source.

Back-annotated routing information is valid only for regions with fixed
sizes and locked locations. The Quartus II software ignores the routing
information for LogicLock regions you specify as floating and
automatically sized.

The Disable Back-Annotated Node locations option in the LogicLock
Region Properties dialog box is not available if the region contains both
back-annotated routing and back-annotated nodes.

Exporting Back-Annotated Routing in LogicLock Regions

You can export the LogicLock region routing information by turning On
the Export Back-annotated routing option On in the Export Assignments
dialog box (Assignments menu). This generates a QSF and a RCF in the
specified directory. The QSF file contains all LogicLock region properties
as specified in the current design. The RCF contains all the necessary
routing information for the exported LogicLock regions.

This RCF only works with the atom netlist for the entity being exported.

Only regions that have back-annotated routing information have their
routing information exported when you export the LogicLock regions.
All other regions are exported as regular LogicLock regions.

10–34 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

To determine if a LogicLock region contains back-annotated routing, see
the Content Status box shown on the Contents tab of the LogicLock
Region Properties dialog box. If routing has been back-annotated, the
status is “Nodes and Routing Back-Annotated”, shown in Figure 10–21.

Figure 10–21. LogicLock Status

The Quartus II software also reports whether routing information has
been back-annotated in the Timing Closure Floorplan (Assignments
menu). LogicLock regions with back-annotated routing have an “R” in
the top-left hand corner of the region as shown in Figure 10–22).

Altera Corporation 10–35
August 2004 Preliminary

Back-Annotating Routing Information

Figure 10–22. Back-Annotation of Routing

Importing Back-Annotated Routing in LogicLock Regions

To import LogicLock region routing information, turn the
Back-annotated routing option on in the Advanced Import Assignments
dialog box (Assignments menu). Figure 10–23 shows this dialog box. The
Quartus II software imports and applies all LogicLock region
assignments for the appropriate instances automatically.

1 An RCF must be explicitly defined using the LogicLock
Back-annotated Routing Import File Name option for the
Quartus II software to import routing information for your
design.

LogicLock region with back-annotated routing

LogicLock region without back-annotated routing

10–36 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Figure 10–23. Import LogicLock Regions

The Quartus II software imports LogicLock regions with back-annotated
routing as regions locked to a location and of fixed size.

You can import back-annotated routing if only one instance of the
imported region exists in the top level of the design. If more than one
instance of the imported region exists in the top level of the design, the
routing constraint is ignored and the LogicLock region is imported
without back-annotation of routing. This is because routing resources
from one part of the device may not be exactly the same in another area
of the device.

1 When importing the RCF for a lower-level entity you must use
the same atom netlist, i.e., the VQM, that was used to generate
the RCF file. This ensures that the node names annotated in the
RCF match those in the atom netlist.

Scripting
Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some procedures at a command prompt. For
detailed information about scripting command options, refer to the
Quartus II Command-Line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --qhelp r

f For more information about Tcl scripting, see the Tcl Scripting chapter in
Volume 2 of the Quartus II Handbook. For more information about
command-line scripting, see the Command-Line Scripting chapter in
Volume 2 of the Quartus II Handbook.

Altera Corporation 10–37
August 2004 Preliminary

Scripting Support

Initializing and Uninitializing a LogicLock Region

You must initialize the LogicLock data structures before creating or
modifying any LogicLock regions and before executing any of the Tcl
commands listed below.

Use the following Tcl command to initialize the LogicLock data
structures:

initialize_logiclock

Use the following command to uninitialize the LogicLock data structures
before closing your project:

uninitialize_logiclock

Creating or Modifying LogicLock Regions

Use the following Tcl command to create or modify a LogicLock region:

set_logiclock -auto_size true -floating true -region \
<my_region-name>

1 In the above example the region’s size will be set to auto and the
state set to floating.

If you specify a region name that does not exist in the design, the
command creates the region with the specified properties. If you specify
the name of an existing region, the command changes all properties you
specify, and leaves unspecified properties unchanged.

f For more information about creating LogicLock regions, see “Creating
LogicLock Regions” on page 10–2.

Obtaining LogicLock Region Properties

Use the following Tcl command to obtain LogicLock region properties.
This example returns the height of the region named my_region.

get_logiclock -region my_region -height

Assigning LogicLock Region Content

Use the following Tcl commands to assign or change nodes and entities in
a LogicLock region. This example assigns all nodes with names matching
fifo* to the region named my_region.

10–38 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

set_logiclock_contents -region my_region -to fifo*

You can also make path-based assignments with the following Tcl
command:

set_logiclock_contents -region my_region -from \
fifo -to ram*

f For more information about assigning LogicLock Region Content, refer
to “Assigning LogicLock Region Content” on page 10–13.

Prevent Further Netlist Optimization

Use this Tcl code to prevent further netlist optimization for nodes in a
back-annotated LogicLock region. In your code, specify the name of your
LogicLock region.

foreach node [get_logiclock_contents -region \
<region name> -node_locations] {

set node_name [lindex $node 0]

set_instance_assignment -name
ADV_NETLIST_OPT_ALLOWED "NEVER ALLOW" -to $node_name
}

The get_logiclock_contents command is in the logiclock
package.

f For more information about preventing further netlist optimization,
refer to “Prevent Further Netlist Optimization” on page 10–38.

Save a Node-level Netlist into a Persistent Source File (.vqm)

Make the following assignments to cause the Quartus II Fitter to save a
node-level netlist into a VQM file:

set_global_assignment \
-name LOGICLOCK_INCREMENTAL_COMPILE_ASSIGNMENT ON
set_global_assignment \
-name LOGICLOCK_INCREMENTAL_COMPILE_FILE <file name>

Any path specified in the file name must be relative to the project
directory. For example, specifying atom_netlists/top.vqm places
top.vqm in the atom_netlists subdirectory of your project directory.

A VQM file is saved in the directory specified at the completion of a full
compilation.

Altera Corporation 10–39
August 2004 Preliminary

Scripting Support

f For more information about saving a node-level netlist, see“Atom Netlist
Design Information” on page 10–18.

Exporting LogicLock Regions

Use the following Tcl command to export LogicLock region assignments.
This example exports all LogicLock regions in your design to a file called
export.qsf.

logiclock_export -file_name export.qsf

f For more information about exporting LogicLock Regions see “Export
the Module” on page 10–17.

Importing LogicLock Regions

Use the following Tcl commands to import LogicLock region
assignments. This example ignores any pin assignments in the imported
region.

set_instance_assignment -name LL_IMPORT_FILE \
my_region.qsf

logiclock_import -no_pins

Running the import command imports the assignment types for each
entity in the design hierarchy. The assignments are imported from the file
specified in the LL_IMPORT_FILE setting.

f For more information about importing LogicLock Regions, see “Import
the Module” on page 10–19.

Setting LogicLock Assignment Priority

Use the following Tcl code to set the priority for LogicLock region's
members. this example reverses the priorities of the LogicLock region in
your design.

set reverse [list]
foreach member [get_logiclock_member_priority] {

set reverse [insert $reverse 0 $member]
{
set_logiclock_member_priority $reverse

f For more information about Setting the LogicLock Assignment Priority,
see “Constraint Priority” on page 10–30.

10–40 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Assigning Virtual Pins

Use the following Tcl command to turn on the virtual pin setting for a pin
called my_pin:

set_instance_assignment -name VIRTUAL_PIN ON -to my_pin

f For more information about Assigning Virtual Pins, see “Virtual Pins” on
page 10–28.

Back-Annotating LogicLock Regions

Use the following command line option to back-annotate a design called
my_project and demote assignments to LAB-level assignments.

quartus_cdb --back_annotate=lab my_project

f For more information about Tcl scripting, see the Tcl Scripting chapter in
Volume 2 of the Quartus II Handbook. For more information about
command-line scripting, see the Command-Line Scripting chapter in
Volume 2 of the Quartus II Handbook.

Conclusion The LogicLock block-based design flow shortens design cycles because it
allows design and implementation of design modules to occur
independently, and preserves performance of each design module during
system integration. You can export modules, making design reuse easier.

You can include a module in one or more projects while maintaining
performance, and reducing development costs and time-to-market.
LogicLock region assignments give you complete control over logic and
memory placement so that you can use LogicLock region assignments to
improve the performance of non-hierarchical designs.

Altera Corporation 11–1
June 2004

11. Timing Closure in
HardCopy Devices

Introduction Timing analysis is performed on an FPGA design to determine that the
design’s performance meets the required timing goals. This analysis
includes system clock frequency (fMAX), setup and hold timing for the
design’s top-level input ports, as well as clock-to-output timing for all
top-level output ports. Measuring these parameters against performance
goals ensures that the FPGA design functions as planned in the end target
system.

After the FPGA design is stabilized, fully tested in-system, and satisfies
the HardCopy® design rules, the design can be migrated to a HardCopy
device. Altera® performs the same rigorous timing analysis on the
HardCopy device during its implementation, ensuring that it meets the
same timing goals. Because the critical timing paths of the HardCopy
version of a design are different from the corresponding paths in the
FPGA version, meeting the same timing goals is particularly important.

Timing improvements in HardCopy as compared to the equivalent FPGA
devices exist for several reasons. While maintaining the same rich set of
features as the corresponding FPGA, HardCopy devices have a highly
optimized die size to make them as small as possible. Because of the
customized interconnect structure that makes this optimization possible,
the delay through each signal path is less than the original FPGA design.
Quartus® II software versions 4.0 and later determine routing and
associated buffer insertion for the design and provides the Timing
Analyzer with more accurate information on the delays than was possible
in the previous version of the Quartus II software.

The differences in the timing between HardCopy devices and FPGAs is
inconsequential as long as the HardCopy device is checked against a
specification that fully defines the timing of the design. After this timing
goal is fully defined, the HardCopy device is guaranteed to function
correctly.

This chapter describes how to meet the required timing performance of
HardCopy devices and improve it.

Timing Closure Many of today's developers are faced with the difficult task of meeting
the timing goals of systems designed with an ASIC, which can consume
many valuable months of intensive engineering effort. The slower
development process exists because, in today's silicon technology

qii52010-2.0

11–2 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

(0.18 µm and 0.13 µm), the delay associated with interconnect dominates
the delay associated with the transistors used to make the logic gates.
Consequently, ASIC performance is sensitive to the physical
placement-and-routing of the logic blocks that make up the design.

On migration, the HardCopy device is structurally identical to its FPGA
counterpart; there is no re-synthesis or library re-mapping required. Since
the interconnect lengths are much smaller in the HardCopy device than
they are in the FPGA, the place-and-route engine compiling the
HardCopy design has a considerably less difficult task than it does in an
equivalent ASIC development. Coupled with detailed timing constraints,
the place-and-route is timing driven.

Figure 11–1 illustrates the design flow for estimating performance and
optimizing the designs. You can target your designs to
HARDCOPY_FPGA_PROTOTYPE devices, and pass the design
information to the placement and timing analysis engine to estimate the
performance of HardCopy Stratix® devices. In the event that the required
performance is not met, you can modify or add placement and
LogicLock™ constraints. If the performance goals are still not met, then
change your RTL source, optimize the FPGA design, and estimate timing
iteratively.

Figure 11–1. Design Flow for Estimating Performance & Optimizing the Design

Altera Corporation 11–3
June 2004

Location Constraints

Placement Constraints

The Quartus II software version 4.0 and later supports placement
constraints and LogicLock regions for HardCopy Stratix devices.
Figure 11–2 shows an iterative process to modify the placement
constraints until the best placement for the HardCopy Stratix device is
obtained to achieve the best performance.

Figure 11–2. Placement Constraints Flow for HardCopy Stratix Devices

Location
Constraints

Location Array Block (LAB) Assignments

Location constraints for HardCopy Stratix devices are supported. To
achieve better performance, you can make LAB-level assignments after
migrating the HARDCOPY_FPGA_ PROTOTYPE project, and before
compiling the design for a HardCopy Stratix device. One important
consideration for LAB reassignments is that the entire contents of a LAB
is moved to another empty LAB. If you want to move the logic contents
of LAB "A" to LAB "B," the entire contents of LAB A is moved to an empty
LAB B. For example, the logic contents of LAB_X33_Y65 can be moved to
an empty LAB at LAB_X43_Y56.

11–4 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

LogicLock Assignments

LogicLock

Quartus II software enables a block-based design approach using
LogicLock. With LogicLock, designers can create and implement each
logic module independently, and then integrate all of the optimized
modules into the top-level design.

f For more information about the LogicLock design methodology, see the
LogicLock Design Methodology chapter in Volume 2 of the Quartus II
Handbook.

LogicLock constraints are supported when you are migrating the project
from a HARDCOPY_FPGA_PROTOTYPE project to a HardCopy Stratix
project. If the LogicLock region was specified as "Size=Fixed" and
"Location=Locked" in the HARDCOPY_FPGA_PROTOTYPE project, it is
converted to have "Size=Auto" and "Location=Floating", as shown in
“Examples of Supported LogicLock Constraints”. This modification is
necessary because the floorplan of a HardCopy Stratix device is different
from that of an equivalent Stratix device. If this modification did not
occur, LogicLock assignments would lead to no-fits due to bad
placement. Making the regions auto-size and floating maintains your
module or entity LogicLock assignments, allowing you to easily adjust
the LogicLock regions as required to improve the performance.

Examples of Supported LogicLock Constraints
LogicLock Region Definition in the HARDCOPY_FPGA_PROTOTYPE
QSF File:

set_global_assignment -name LL_HEIGHT 15 -entity risc8 -section_id test

set_global_assignment -name LL_WIDTH 15 -entity risc8 -section_id test

set_global_assignment -name LL_STATE LOCKED -entity risc8 -section_id test

set_global_assignment -name LL_AUTO_SIZE OFF -entity risc8 -section_id test

LogicLock Region Definition in the Migrated HardCopy Stratix QSF File:

set_global_assignment -name LL_HEIGHT 15 -entity risc8 -section_id test

set_global_assignment -name LL_WIDTH 15 -entity risc8 -section_id test

set_global_assignment -name LL_STATE FLOATING -entity risc8 -section_id test

set_global_assignment -name LL_AUTO_SIZE ON -entity risc8 -section_id test

Altera Corporation 11–5
June 2004

Minimizing Clock Skew

Tutorial

To learn more about the LAB and LogicLock assignments, perform the
tutorial available on www.altera.com/literature. The tutorial illustrates
the performance improvement by LAB and LogicLock assignments. To
know more about the performance improvements in general for FPGA
designs, refer to the following application notes:

Design Optimization for Altera Devices
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

Timing Closure Floorplan
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

LogicLock Design Methodology
http://www.altera.com/literature/hb/qts/qts_qii52009.pdf

Minimizing
Clock Skew

The clock is an important component that affects design performance in
any digital integrated circuit. The discussion in the remainder of this
section pertains to HardCopy APEX™ 20KE, HardCopy APEX 20KC, and
HardCopy Stratix devices.

The architecture of the HardCopy HC20K device is based on the
APEX 20KE and APEX 20KC FPGA devices and the HardCopy Stratix
devices are based on the Stratix FPGA devices. The same dedicated clock
trees (CLK[3..0]) that exist in APEX 20KE and APEX 20KC devices or
(CLK[15..0]) that exist in Stratix devices also exist in the corresponding
HardCopy device. These clock trees are carefully designed and optimized
to minimize the clock skew over the entire device. The clock trees are
balanced by maintaining the same loading at the end of each point of the
clock trees, regardless of what resources (logic elements [LEs], embedded
system blocks [ESBs], and input/output elements [IOEs]) are used in any
design. The insertion delay of the HardCopy-dedicated clock trees is
marginally faster than in the corresponding APEX 20KE, APEX 20KC, or
Stratix FPGA device because of the smaller footprint of the HardCopy
silicon.

Because there is a large area overhead for these global signals that may
not be used on every design, the FAST bidirectional pins (FAST[3..0])
of the HardCopy APEX 20KE and HardCopy APEX 20KC or the
dedicated fast regional I/O pins of HardCopy Stratix do not have
dedicated pre-built clock or buffer trees in HardCopy devices. If any of
the FAST/dedicated fast regional signals are used as clocks, a clock tree is
synthesized by the place-and-route tool after the placement of the design
has occurred. The skew and insertion delay of these synthesized clock
trees are carefully controlled, ensuring that the timing requirements of the

11–6 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

design are met. You can also use the FAST signals of HardCopy APEX or
the dedicated fast regional I/O pins of HardCopy Stratix as high fan-out
reset or enable signals. For these cases, skew is usually less important
than insertion delay. To reiterate, a buffer tree is synthesized after the
design placement.

The clock or buffer trees that are synthesized for the FAST pins of
HardCopy APEX 20KE and HardCopy APEX 20KC or the dedicated fast
regional I/O pins of HardCopy Stratix are built from special cells in the
HardCopy base design. These cells do not exist in the FPGA. They are
used in the HardCopy design exclusively to meet timing and testing
goals. They are not available to make any logical changes to the design as
implemented in the FPGA. These resources are called the strip of
auxiliary gates (SOAG). There is one of these strips per MegaLAB™
structure in HardCopy devices. Each SOAG consists of a number of
primitive cells, and there are approximately 10 SOAG primitive cells per
logic array block (LAB). Several SOAG primitives can be combined to
form more complex logic, but the majority of SOAG resources are used
for buffer tree, clock tree, and delay cell generation. Figure 11–3 shows the
SOAG architectural feature.

Figure 11–3. SOAG Architectural Feature

f For detailed information on the HardCopy device architecture, including
SOAG resources, see the HardCopy APEX 20K Device Family Data Sheet
chapter in Volume 1 of the HardCopy Device Handbook.

MegaLAB Block

SOAG

ESB

LE LAB

I/O Cells

PLLs

Altera Corporation 11–7
June 2004

Checking the HardCopy Device Timing

Checking the
HardCopy
Device Timing

To ensure that the timing of the HardCopy device meets performance
goals, detailed static timing analysis must be run on the HardCopy
design database. For this timing analysis to be meaningful, all timing
constraints and timing exceptions that were applied to the design for the
FPGA implementation must also be used for the HardCopy
implementation. If no timing constraints, or only partial timing
constraints, were used for the FPGA design, a full set of constraints must
be specified for the HardCopy design by filling in the unspecified
constraints with default values. If this is not done, there is no way of
knowing if the HardCopy device meets the required timing of the end
target system. The timing constraints can be captured through the Timing
Wizard in the Altera Quartus II software. The following constraints must
be included:

■ Clock Definitions
■ Primary Input Pin Timing
■ Primary Output Pin Timing
■ Combinatorial Timing
■ Timing Exceptions

Clock Definitions

These definitions are used to describe the parameters of all different clock
domains in a design. Clock parameters that must be defined are
frequency, time at which the clock edge rises, time at which the clock edge
falls, clock uncertainty (or skew), and clock name. Figures 11–4 and 11–5
show these clock attributes.

Figure 11–4. Clock Attributes

Period = 12.0 ns

0.0 3.0 8.0 15.0

Rising Edge
of Clock (3.0 ns)

Falling Edge
of Clock (3.0 ns)

11–8 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

Figure 11–5. Clock Skew

Primary Input Pin Timing

This constraint must be specified for every primary input pin in the
design (and for the input path of every bidirectional pin). The input pin
timing can be captured in two ways. The first is to describe what
maximum on-chip delay is acceptable (i.e., the setup time of a primary
input to any register in the design relative to a specific clock). Figure 11–6
depicts a generic circuit with an on-chip setup-time constraint, which
may be different for each clock domain.

Figure 11–6. On-Chip Setup-Time Constraint

The minimum on-chip delay from any primary input pin must be
specified to describe input hold-time requirements. Figure 11–7 depicts a
generic circuit with an on-chip hold-time constraint.

Clock Skew

tsu for a Primary Input Pin

Data
Path
Delay

Clock
Delay

data

clk

tsu

Altera Corporation 11–9
June 2004

Checking the HardCopy Device Timing

Figure 11–7. On-Chip Hold-Time Constraint

The second way to capture the input pin timing is to describe the external
timing environment, which is the maximum and minimum arrival times
of the external signals that drive the primary input pins of the HardCopy
device or FPGA. Figure 11–8 shows the external timing constraint that
drives the primary input pin. This external input delay time can be used
by the static timing analysis tool to check that there is enough time for the
data to propagate to the internal nodes of the device. If there is not
enough time, then a timing violation occurs.

Figure 11–8. External Timing Constraint Driving a Primary Input Pin

Primary Output Pin Timing

This constraint must be specified for every primary output pin in the
design (and for the output path of every bidirectional pin). The output pin
timing is captured in two ways. The first is to describe what maximum
(and minimum) on-chip clock-to-output (tCO) delay is acceptable (i.e., the
time it takes from the active edge of the clock to the data arriving at the
primary output pin). Figure 11–9 depicts a generic circuit with an on-chip
tCO time constraint. Also, there can be a minimum tCO requirement.

tH for a Primary Input

Data
Path
Delay

Clock
Delay

data

clk

tH

dff

D Q

dff

D Q

External Input Delay

External Device

Primary Input to
PLD/HardCopy

Device

Data Path
Delay

Data Path
Delay

11–10 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

Figure 11–9. On-Chip Clock-to-Output (TCO) Time Constraint

The second way to capture output pin timing is to describe the external
timing environment, which is the maximum and minimum delay times of
external signals that are driven by the primary output pins of the
HardCopy device or FPGA. Figure 11–10 shows the external timing
constraint driven by the primary output pin. The static timing analysis
tool uses this information to check that the on-chip timing of the output
signals is within the desired specification.

Figure 11–10. External Timing Constraint for a Primary Output Pin

Combinatorial Timing

Combinatorial timing occurs when there is a path from a primary input
pin to a primary output pin. This type of circuit does not contain any
registers. Therefore, it does not require a clock for constraint specification.
The maximum and minimum delay from the primary input pin to the
primary output pin is all that is needed. Figure 11–11 shows a generic
circuit where a combinatorial timing arc constraint must be placed.

tCO for a Primary Output

Clock
Delay

Data Path
Delay

output

clk

tCO

dff

D Q

dff

D Q

External Output Delay

External Device

Data Path
Delay

Primary Output from
FPGA/HardCopy

Device

Data Path
Delay

Altera Corporation 11–11
June 2004

Correcting Timing Violations

Figure 11–11. Combinatorial Timing Constraint

Timing Exceptions

Some circuit structures warrant special consideration. For example, when
a design has more than one clock domain and the clock domains are not
related, all timing paths between the two clock domains can be ignored.
All timing paths using the static timing analysis tool can be ignored by
specifying false paths for all signals that go from one clock domain to the
other clock domain(s). Additionally, there are circuits that are not
intended to operate in a single-clock cycle. These circuits require that you
specify multi-cycle clock exceptions.

After the information is captured, it can be used by Altera to directly
check all timing of the HardCopy device before tape out occurs. If any
timing violations are found in the HardCopy device due to
over-aggressive timing constraints, they must either be fixed by Altera, or
waived by the customer.

f For more information on timing analysis, see the Quartus II Timing
Analysis chapter and the Synopsys PrimeTime Support chapter in Volume 3
of the Quartus II Handbook.

Correcting
Timing
Violations

After the customized metal interconnect is generated for the HardCopy
device, Altera checks the timing of the design with an industry standard
static timing analysis tool, PrimeTime. Timing violations are reported by
this tool, and they are subsequently corrected.

Hold-Time Violations

Because the interconnect in a HardCopy device is customized for a
particular application, it is possible that hold-time (tH) violations exist in
the HardCopy device after place-and-route occurs. A hold violation exists
if the sum of the delay in the clock path between two registers plus the
micro hold time of the destination register is greater than the delay of the
data path from the source register to the destination register. The
following equation describes this relationship.

tH Slack = Data Delay − Clock Delay − Micro tH

input Data Path
Delay

Combinatorial Delay Arc

output

11–12 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

If a negative slack value exists, there is a hold-time violation. Any
hold-time violation present in the HardCopy design database after the
interconnect data is generated is removed by inserting the appropriate
delay in the data path. The inserted delay is large enough to guarantee no
hold violations under fast, low-temperature, high-voltage conditions.

Table 11–1 shows an example report of a Synopsys PrimeTime static
timing analysis of a typical HardCopy design. This report shows that the
circuit has a hold-time violation and a negative slack value. Table 11–2
shows the timing report for the same path after the hold violation has
been fixed. The instance and cell names shown in these reports are
generated as part of the HardCopy implementation process, and are
based on the physical location of those elements in the device.

Table 11–1. Static Timing Analysis Before Hold-Time Violation Fix (Part 1 of 2)

Startpoint:GR23_GC0_L19_LE1/um6
(falling edge-triggered flip-flop clocked by CLK0')
Endpoint: GR23_GC0_L20_LE8/um6
(falling edge-triggered flip-flop clocked by CLK0')
Path Group: CLK0
Path Type:min

Point Incr Path Reference to
Figure 11–12

clock CLK0' (fall edge) 0.00 0.00

clock network delay (propagated) 2.15 2.15 (1)

GR23_GC0_L19_LE1/um6/clk (c1110) 0.00 2.15 f (2)

GR23_GC0_L19_LE1/um6/regout (c1110) 0.36 * 2.52 r (2)

GR23_GC0_L19_LE1/REGOUT (c1000_2d7a8) 0.00 2.52 r (2)

GR23_GC0_L20_LE8/LUTD (c1000_56502) 0.00 2.52 r (3)

GR23_GC0_L20_LE8/um1/datad (indsim) 0.01 * 2.52 r (3)

GR23_GC0_L20_LE8/um1/ndsim (indsim) 0.01 * 2.53 f (3)

GR23_GC0_L20_LE8/um5/ndsim (mxcascout) 0.00 * 2.53 f (3)

GR23_GC0_L20_LE8/um5/cascout (mxcascout) 0.06 * 2.59 f (3)

GR23_GC0_L20_LE8/um6/dcout (c1110) 0.00 * 2.59 f (3)

data arrival time 2.59

clock CLK0' (fall edge) 0.00 0.00

clock network delay (propagated) 2.17 2.17 (4)

clock uncertainty 0.25 2.42 (5)

Altera Corporation 11–13
June 2004

Correcting Timing Violations

Figure 11–12 shows the circuit described by the Table 11–1 static timing
analysis report.

Figure 11–12. Circuit with a Hold-Time Violation

Placing the values from the static timing analysis report into the
hold-time slack equation results in the following:

tH Slack = Data Delay − Clock Delay − Micro tH

tH Slack = (2.15+ 0.36 + 0.08) − (2.17 + 0.25) − 0.37

tH Slack = -0.20 ns

GR23_GC0_L20_LE8/um6/clk (c1110) 2.42 f (6)

library hold time 0.37 * 2.79

data required time 2.79

data required time 2.79

data arrival time -2.59

slack (VIOLATED) -0.20

Table 11–1. Static Timing Analysis Before Hold-Time Violation Fix (Part 2 of 2)

Startpoint:GR23_GC0_L19_LE1/um6
(falling edge-triggered flip-flop clocked by CLK0')
Endpoint: GR23_GC0_L20_LE8/um6
(falling edge-triggered flip-flop clocked by CLK0')
Path Group: CLK0
Path Type:min

Point Incr Path Reference to
Figure 11–12

(2)

Clock
Delay

Clock
Delay

Data Path
Delay

clk

tCO

(3)

0.36

tH

0.37

2.15

0.08

(6)

(1)

(4) (5)2.17 (+0.25)

11–14 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

This result shows that there is negative slack in this path, meaning that
there is a hold-time violation of 0.20 ns.

After fixing the hold violation, the timing report for the same path is
regenerated (see Table 11–2). The netlist changes are in bold italic type.

Table 11–2. Static Timing Analysis After Hold-Time Violation Fix (Part 1 of 2)

Startpoint: GR23_GC0_L19_LE1/um6
(falling edge-triggered flip-flop clocked by CLK0')
Endpoint: GR23_GC0_L20_LE8/um6
(falling edge-triggered flip-flop clocked by CLK0')
Path Group: CLK0
Path Type: min
Static Timing Analysis After Hold-Time Violation Fix

Point Incr Path Reference to
Figure 11–13

clock CLK0' (fall edge) 0.00 0.00 (1)

clock network delay (propagated) 2.15 2.15 (1)

GR23_GC0_L19_LE1/um6/clk (c1110) 0.00 2.15 f (2)

GR23_GC0_L19_LE1/um6/regout (c1110) 0.36 * 2.52 r (2)

GR23_GC0_L19_LE1/REGOUT (c1000_2d7a8) 0.00 2.52 r (2)

thc_916/A (de105) 0.01 * 2.52 r (3)

thc_916/Z (de105) 0.25 * 2.78 r (3)

GR23_GC0_L20_LE8/LUTD (c1000_56502) 0.00 2.78 r (3)

GR23_GC0_L20_LE8/um1/datad (indsim) 0.01 * 2.78 r (3)

GR23_GC0_L20_LE8/um1/ndsim (indsim) 0.01 * 2.79 f (3)

GR23_GC0_L20_LE8/um5/ndsim (mxcascout) 0.00 * 2.79 f (3)

GR23_GC0_L20_LE8/um5/cascout (mxcascout) 0.06 * 2.85 f (3)

GR23_GC0_L20_LE8/um6/dcout (c1110) 0.00 * 2.85 f (3)

data arrival time 2.85

clock CLK0' (fall edge) 0.00 0.00

clock network delay (propagated) 2.17 2.17 (4)

clock uncertainty 0.25 2.42 (5)

GR23_GC0_L20_LE8/um6/clk (c1110) 2.42 f (6)

library hold time 0.37 * 2.79

data required time 2.79

Altera Corporation 11–15
June 2004

Correcting Timing Violations

Figure 11–13 shows the circuit described by the Table 11–2 static timing
analysis report.

Figure 11–13. Circuit Including a Fixed Hold-Time Violation

Placing the values from the static timing analysis report into the
hold-time slack equation results in the following.

tH Slack = Data Delay − Clock Delay − Micro tH

tH Slack = (2.15+ 0.36 + 0.26 + 0.08) − (2.17 + 0.25) - 0.37

tH Slack = +0.06 ns

In this timing report, the slack of this path is reported as 0.06 ns.
Therefore, this path does not have a hold-time violation. The path was
fixed by the insertion of a delay cell (del05) into the data path, which
starts at the REGOUT pin of cell GR23_GC0_L19_LE1 and finishes at the
LUTD input of cell GR23_GC0_L20_LE8. The instance name of the delay
cell in this case is thc_916.

1 A clock_uncertainty of 0.25 ns is specified in this timing report,
and is used to add extra margin during the hold-time
calculation, making the design more robust. This feature is a
part of the static timing analysis tool, not of the HardCopy
design.

data required time 2.79

data arrival time -2.85

slack (MET) +0.06

Table 11–2. Static Timing Analysis After Hold-Time Violation Fix (Part 2 of 2)

(2)

Clock
Delay

Data Path
Delay

clk

tCO

(4)(3)

0.36

tH

0.37

2.15

0.080.26

(7)

(1)
I ODelay

(5) (6)2.17 (+0.25)

Clock
Delay

11–16 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

The delay cell is created out of the SOAG resources that exist in the
HardCopy base design.

Setup-Time Violations

A setup violation exists if the sum of the delay in the data path between
two registers plus the micro setup time (tSU) of the destination register is
greater than the sum of the clock period and the clock delay at the
destination register. The following equation describes this relationship:

tSU Slack = Clock Period + Clock Delay − (Data Delay + Micro tSU)

If there is a negative slack value, it means that there is a setup-time
violation. There are several potential mechanisms that can cause a
setup-time violation. The first is when the synthesis tool is unable to meet
the required timing goals. However, a HardCopy design does not rely on
any resynthesis to a new cell library; the synthesis results that were
generated as part of the original FPGA design are maintained, meaning
that the HardCopy implementation of a design uses exactly the same
structural netlist as its FPGA counterpart. For example, if you used a
particular synthesis option to ensure that a particular path only contained
a certain number of logic levels, the HardCopy design will contain exactly
the same number of logic levels for that path. Consequently, if the FPGA
was free of setup-time violations, no setup-time violations occur in the
HardCopy device as a result of the netlist structure.

The second mechanism that can cause setup-time violations is differing
placement of the resources in the netlist for the HardCopy device
compared to the original FPGA. This scenario is extremely unlikely as the
place-and-route tool used during the HardCopy implementation
performs timing-driven placement. In extreme cases, some manual
placement modification might be necessary. The placement is performed
at the LAB and ESB level, meaning that the placement of logic cells inside
each LAB is fixed, and is identical to the placement of the FPGA. IOEs
have fixed placement to maintain the pin and package compatibility of
the original FPGA.

The third, and most likely, mechanism for setup-time violations occurring
in the HardCopy device is a signal with a high fan-out. In the FPGA, high
fan-out signals are buffered by large drivers that are an integral part of the
programmable interconnect structure. Consequently, a signal that was
fast in the FPGA can be initially slower in the HardCopy version, which
is before any buffering is inserted into the HardCopy design to increase
the speed of the slow signal. The place-and-route tool detects these

Altera Corporation 11–17
June 2004

Correcting Timing Violations

signals and automatically creates buffer trees using SOAG resources,
ensuring that the heavily loaded, high fan-out signal is fast enough to
meet performance requirements.

Table 11–3 shows the timing report for a path that contains a high fan-out
signal before the place-and-route process. Table 11–4 shows the timing
report for a path that contains a high fan-out signal after the
place-and-route process. Before the place-and-route process, there is a
large delay on the high fan-out net that is driven by the pin
GR12_GC0_L2_LE4/REGOUT. This delay is due to the large capacitive
load that the pin has to drive. For more information on this timing report,
see Figure 11–14.

Table 11–3. Timing Report Before the Place-&-Route Process (Part 1 of 2)

Startpoint: GR12_GC0_L2_LE4/um6
(falling edge-triggered flip-flop clocked by clkx')
Endpoint: GR4_GC0_L5_LE2/um6
(falling edge-triggered flip-flop clocked by clkx')
Path Group: clkx
Path Type: max

Point Incr Path Reference to
Figure 11–14

clock clkx' (fall edge) 0.00 0.00 (1)

clock network delay (propagated) 2.18 2.18 (1)

GR12_GC0_L2_LE4/um6/clk (c1110) 0.00 2.18 f (2)

GR12_GC0_L2_LE4/um6/regout (c1110) (2)

GR12_GC0_L2_LE4/REGOUT (c1000_7f802) <- (2)

GR4_GC0_L5_LE0/LUTC (c1000_0029a) (3)

GR4_GC0_L5_LE0/um4/ltb (lt53b) 2.36 9.18 f (3)

GR4_GC0_L5_LE0/um5/cascout (mxcascout) 0.07 9.24 f (3)

GR4_GC0_L5_LE0/um2/COMBOUT (icombout) 0.09 9.34 r (3)

GR4_GC0_L5_LE0/COMBOUT (c1000_0029a) 0.00 9.34 r (3)

GR4_GC0_L5_LE2/LUTC (c1000_0381a) 0.00 9.34 r (3)

GR4_GC0_L5_LE2/um4/ltb (lt03b) 0.40 9.73 r (3)

GR4_GC0_L5_LE2/um5/cascout (mxcascout) 0.05 9.78 r (3)

GR4_GC0_L5_LE2/um6/dcout (c1110) 0.00 9.78 r (3)

data arrival time 9.79 (3)

clock clkx’ (fall edge) 7.41 7.41

11–18 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

Figure 11–14 shows the circuit described by the Table 11–3 static timing
analysis report.

Figure 11–14. Circuit that has a Setup-Time Violation

1 The timing numbers in this report are based on pre-layout
estimated delays.

Placing the values from the static timing analysis report into the
setup-time slack equation results in the following.

tSU Slack = Clock Period + Clock Delay − (Data Delay + Micro tSU)

tSU Slack = 7.41 + (2.18 - 0.25) - (2.18 + 4.64 + 2.97 + 0.18)

tSU Slack = -0.63 ns

This result shows that there is negative slack for this path, meaning that
there is a setup-time violation of 0.63 ns.

clock network delay (propagated) 2.18 9.59 (4)

clock uncertainty -0.25 9.34 (5)

GR4_GC0_L5_LE2/um6/clk (c1110) 9.34 f

Point Incr Path Reference to
Figure 11–14

library setup time -0.18 9.16 (6)

data required time 9.16

data required time 9.16

data arrival time -9.79

slack (VIOLATED) -0.63

Table 11–3. Timing Report Before the Place-&-Route Process (Part 2 of 2)

(2)

Clock
Delay

Clock
Delay

Data Path
Delay

clk

tCO

(3)

4.64

tSU

0.18

2.18

2.97

(6)

(1)

(4) (5)2.18 (-0.25)

Altera Corporation 11–19
June 2004

Correcting Timing Violations

After place-and-route, a buffer tree is constructed on the high fan-out net
and the setup-time violation is fixed. The timing report for the same path
is shown in Table 11–4. The changes to the netlist are in bold italic type.
For more information on this timing report, see Figure 11–15.

Table 11–4. Timing Report After the Place-and-Route Process (Part 1 of 2)

Startpoint: GR12_GC0_L2_LE4/um6
(falling edge-triggered flip-flop clocked by clkx')
Endpoint: GR4_GC0_L5_LE2/um6
(falling edge-triggered flip-flop clocked by clkx')
Path Group: clkx
Path Type: max

Point Incr Path Reference to
Figure 11–15

clock clkx' (fall edge) 0.00 0.00

clock network delay (propagated) 2.73 2.73 (1)

GR12_GC0_L2_LE4/um6/clk (c1110) 0.00 2.73 f (2)

GR12_GC0_L2_LE4/um6/regout (c1110) 0.69 * 3.42 r (2)

GR12_GC0_L2_LE4/REGOUT (c1000_7f802) <- 0.00 3.42 r (2)

N1188_iv06_1_0/Z (iv06) 0.06 * 3.49 f (3)

N1188_iv06_2_0/Z (iv06) 0.19 * 3.68 r (3)

N1188_iv06_3_0/Z (iv06) 0.12 * 3.80 f (3)

N1188_iv06_4_0/Z (iv06) 0.10 * 3.90 r (3)

N1188_iv06_5_0/Z (iv06) 0.08 * 3.97 f (3)

N1188_iv06_6_2/Z (iv06) 1.16 * 5.13 r (3)

GR4_GC0_L5_LE0/LUTC (c1000_0029a) 0.00 5.13 r (4)

GR4_GC0_L5_LE0/um4/ltb (lt53b) 1.55 * 6.68 f (4)

GR4_GC0_L5_LE0/um5/cascout (mxcascout) 0.06 * 6.74 f (4)

GR4_GC0_L5_LE0/um2/COMBOUT (icombout) 0.09 * 6.84 r (4)

GR4_GC0_L5_LE0/COMBOUT (c1000_0029a) 0.00 6.84 r (4)

GR4_GC0_L5_LE2/LUTC (c1000_0381a) 0.00 6.84 r (4)

GR4_GC0_L5_LE2/um4/ltb (lt03b) 0.40 * 7.24 r (4)

GR4_GC0_L5_LE2/um5/cascout (mxcascout) 0.05 * 7.28 r (4)

GR4_GC0_L5_LE2/um6/dcout (c1110) 0.00 * 7.28 r (4)

data arrival time 7.28 (4)

Point Incr Path Reference to
Figure 11–15

11–20 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

The GR12_GC0_L2_LE4/REGOUT pin now has the loading on it reduced
by the introduction of several levels of buffering (in this case, six levels of
inverters). The inverters have instance names similar to
N1188_iv06_1_0, and are of type iv06, as shown in the static timing
analysis report. As a result, the original setup-time violation of -0.63 ns
turned into a slack of +2.42 ns, meaning the setup-time violation is fixed.
The circuit that the static timing analysis report shows is illustrated in
Figure 11–15. The buffer tree (buffer) is shown as a single cell.

Figure 11–15. Circuit Post Place-&-Route

Placing the values from the static timing analysis report into the
setup-time slack equation results in the following:

tSU Slack = Clock Period + Clock Delay − (Data Delay + Micro tSU)

tSU Slack = 7.41 + (2.74 - 0.25) − (2.73 + 0.69 + 1.71 + 2.15 + 0.20)

tSU Slack = +2.42 ns

clock clkx' (fall edge) 7.41 7.41

clock network delay (propagated) 2.74 10.15 (5)

clock uncertainty -0.25 9.90 (6)

GR4_GC0_L5_LE2/um6/clk (c1110) 9.90 f

library setup time -0.20 * 9.70 (7)

data required time 9.70

data required time 9.70

data arrival time -7.28

slack (MET) 2.42

Table 11–4. Timing Report After the Place-and-Route Process (Part 2 of 2)

(2)

(5) (6)

Clock
Delay

Clock
Delay

Data Path
Delay

clk

tCO

(4)(3)

0.69

tSU

0.20

2.73

2.151.71

2.74 (-0.25)

(7)

(1)
Buffer

Altera Corporation 11–21
June 2004

Timing ECOs

This result shows that there is positive slack for this path, meaning that
there is now no setup-time violation.

Timing ECOs In an ASIC, small incremental changes to a design database are termed
engineering change orders (ECOs). In the HardCopy design flow, ECOs
are performed after the initial post-layout timing data is available.

Static timing analysis is run on the design and a list of paths with timing
violations are generated. The netlist is then automatically updated with
changes that correct these timing violations (i.e., the addition of delay
cells to fix hold-time violations). After the netlist update, the
place-and-route database is updated to reflect the netlist changes. The
impact on this database is minimized by maintaining all of the
pre-existing placement-and-routing, and only changing the routing
where new cells are inserted.

The parasitic (undesirable, but unavoidable) resistances and capacitances
of the customized interconnect are extracted and then used in conjunction
with the static timing analysis tool to re-check the timing of the design.
Only a single iteration of this process is typically required to fix all timing
violations. The entire ECO stage takes less than a day to complete.
Figure 11–16 shows this flow in more detail, along with the typical
duration of each stage.

11–22 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

Figure 11–16. ECO Flow Diagram

Conclusion When migrating a design from an FPGA implementation to a HardCopy
implementation, it is critical to maintain performance even though all
timing within the design does not remain exactly the same. These timing
differences are inevitable. However, they are rendered inconsequential to
the device’s behavior in the end-system environment if the HardCopy
device meets the system timing constraints. As a standard and automated
part of the HardCopy design conversion process, this rendering is
achieved through the exhaustive timing analysis that the design
undergoes in conjunction with sophisticated timing-driven
place-and-route. Static timing analysis can reveal timing violations that
are then fixed automatically as part of the HardCopy design process.

Altera Corporation 12–1
February 2004 Preliminary

12. Synplicity Amplify
Physical Synthesis Support

Introduction Synplicity has developed the Amplify Physical Optimizer physical
synthesis software to help designers meet performance and time-to-
market goals. You can use this software to create location assignments
and optimize critical paths outside the Quartus® II software design
environment. The Amplify Physical Optimizer design software, which
runs on the Synplify Pro synthesis engine, creates a Tcl script with hard
location assignments and LogicLock™ regions to control logic placement
in the Quartus II software. Depending on the design, the Amplify
Physical Optimizer software can improve Altera® device performance
over Synplify Pro-compiled designs by reducing the number of logic
levels and the interconnect delays in critical paths. Moreover, the Amplify
Physical Optimizer software allows designers to compile multiple
implementations in parallel to reduce optimization time.

f For more information on the Synplify Pro software, see the Synplicity
Synplify & SynplifyPro Support chapter in Volume 1 of the Quartus II
Handbook.

This chapter explains the physical synthesis concepts, including an
overview of the Amplify Physical Optimizer software and Quartus II
flow.

Software
Requirements

The examples in this document were generated using the following
software versions:

■ Quartus II, version 4.0
■ Amplify Physical Optimizer, version 3.2

Amplify Physical
Synthesis
Concepts

The Amplify Physical Optimizer physical synthesis tool uses information
about the interconnect architectures of Altera devices to reduce
interconnect and logic delays in the critical paths. Timing-driven
synthesis tools cannot accurately predict how place-and-route tools
function; therefore, determining the real critical path with the synthesis
tool is a difficult task.

qii52011-1.0

12–2 Altera Corporation
Preliminary February 2004

Quartus II Handbook, Volume 2

Synthesis tools create technology-level netlist files that work with
floorplans using place-and-route tools. Synthesis tools also define netlist
names that are used in place-and-route, which means hard location
assignments may not apply in the next revision of the resynthesized
netlist as nodes names might have been renamed or removed.

Physical synthesis allows you to create floorplans at the register transfer
level (RTL) of a design, giving you the ability to perform logic tunneling
and replication. Physical synthesis also gives you the flexibility to make
changes at the RTL level, allowing these changes to reflect in previously
planned paths.

Physical synthesis uses knowledge of the FPGA device architecture to
place paths into customized regions. This process will minimize
interconnect delays as interconnect and placement information
influences the synthesis process of the design.

When the Amplify Physical Optimizer software synthesizes a design, it
creates a .vqm atom-netlist and Tcl script files, which are read by the
Quartus II software. You can create a Quartus II project with the VQM
netlist as the top-level module and source the Tcl script generated by the
Amplify Physical Optimizer software. The Tcl script sets the design's
device, timing constraints (Timing Driven Compilation [TDC] value,
multicycle paths, and false paths), and any other constraints specified by
the Amplify Physical Optimizer software. After you source the Tcl script,
you can compile the design in the Quartus II software.

f See “Forward Annotating Amplify Physical Optimizer Constraints into
the Quartus II Software” on page 12–12 for more information on setting
up a Quartus II project with Amplify Physical Optimizer Tcl script files.

After the Quartus II software compiles the design, the software performs
a timing analysis on the design. The timing analysis reports all timing-
related information for the design. If the design does not meet the timing
requirements, you can use the timing analysis numbers as a reference
when running the next iteration of physical synthesis through the
Amplify Physical Optimizer software. This same timing analysis
information is also reported in a file called <project name>.tan.rpt in the
design directory.

Amplify-to-
Quartus II Flow

If timing requirements are not met with the Amplify Physical Optimizer
flow, you should first place and route the design in the Quartus II
software without physical constraints. After compilation, you can
determine which critical paths should be optimized in the Amplify
Physical Optimizer tool in the next iteration. Figure 12–1 shows the
Amplify Physical Optimizer design flow.

Altera Corporation 12–3
February 2004 Preliminary

Amplify-to-Quartus II Flow

Figure 12–1. Software Design Flow

Initial Pass: No Physical Constraints

The initial iteration involves synthesizing the design in the Amplify
Physical Optimizer software without physical constraints.

Before beginning the physical synthesis flow, run an initial pass in the
Amplify Physical Optimizer without physical constraints. At the
completion of every Quartus II compilation, the Quartus II Timing
Analyzer performs a comprehensive static timing analysis on your design
and reports your design’s performance and any timing violations. If the
design does not meet performance requirements after the first pass,
additional passes can be made in the Amplify software.

VHDL

Amplify
Software

Physical
Optimization

Verilog HDL

Quartus II
Software

Timing
Requirements

Satisfied?

Configure
Device

Yes

No

12–4 Altera Corporation
Preliminary February 2004

Quartus II Handbook, Volume 2

Create New Implementations

To set the Amplify Physical Optimizer software options, perform the
following steps:

1. Compile the design with the Resource Sharing and FSM Compiler
options selected and the Frequency setting specified in MHz. For
optimal synthesis, the Amplify software includes the retiming,
pipelining, and FSM Explorer options. For designs with multiple
clocks, set the frequency of individual clocks with Synthesis
Constraints Optimization Environment (SCOPE).

2. Select New Implementation. The Options for Implementation
dialog box appears.

3. Specify the part, package, and speed grade of the targeted device in
the Device tab.

4. Turn on the Map Logic to Atoms option in the Device Mapping
Options dialog box.

5. Turn off the Disable I/O Insertion and Perform Cliquing options.

6. Specify the name and directory in the Implementation Results tab.
The result format should be VQM, and you should select Optional
Output Files as the Write Vendor Constraint File option so that the
software can generate the Tcl script containing the project
constraints.

7. Specify the number of critical paths and the number of start and end
points to report in the Timing Report tab. Figure 12–2 shows the
main Amplify Physical Optimizer project window.

These steps create a directory where the results of this pass are recorded.
Ensure that the Amplify Physical Optimizer software implementation
options are set as described in the initial pass.

Altera Corporation 12–5
February 2004 Preliminary

Using the Amplify Physical Optimizer Floorplans

Figure 12–2. Amplify Physical Optimizer Project Window

Iterative Passes: Optimizing the Critical Paths

In the iterative passes, you optimize the design by placing logic in the
device floorplan within the Amplify software. Amplify's floorplan is a
high-level view of the device architecture. The floorplan view is
dependent upon the target device family. When the Amplify Physical
Optimizer re-optimizes the current critical path, additional critical paths
may be created. Continue to add new constraints to the existing floorplan
until it meets the performance requirements. The design may need
several iterations to meet these performance requirements. Since
optimizing critical paths involves trying different implementations, the
creation of various Amplify project implementations will help in
organizing the placement of logic in the floorplan.

Using the
Amplify Physical
Optimizer
Floorplans

When designs do not meet performance requirements with the initial
pass through the Amplify Physical Optimizer software, you can create
location assignments to reduce interconnect and logic delays to improve
your design's performance.

You must determine which paths to constrain based on the critical paths
from the previous implementation. When Quartus II projects are
launched with the Amplify Tcl script, the Quartus II software generates a
<project name>.tan. rpt file that lists the critical paths for the design. You

12–6 Altera Corporation
Preliminary February 2004

Quartus II Handbook, Volume 2

can then create custom structure regions for critical paths. After critical
paths are implemented in a floorplan with the Amplify Physical
Optimizer software, you must resynthesize the design. The software will
then attempt to optimize the critical paths and reduce the number of logic
levels. After the Amplify Physical Optimizer software resynthesizes the
design, the Quartus II software must compile the new implementation. If
the design does not meet timing requirements, perform another physical
synthesis iteration.

Use the following steps to create a floorplan in the Amplify Physical
Optimizer software:

1. Click the New Physical Constraint File icon at the top of the
Amplify Physical Optimizer window.

2. Click Yes on the Estimation Needed dialog box; the floorplan
window will appear (see Figure 12–3).

Figure 12–3. Stratix 1S20 Floorplan in the Amplify Physical Optimizer Software

Floorplan View

RTL View

Altera Corporation 12–7
February 2004 Preliminary

Using the Amplify Physical Optimizer Floorplans

The floorplan view is located at the top of the screen and the RTL view is
at the bottom of the screen.

You can specify modules or individual paths in the Amplify Physical
Optimizer software. Using modules can quickly resolve timing problems.

Use the following steps in the software to create a floorplan module:

1. Create a region in the Amplify Physical Optimizer device floorplan
window and select the module in the RTL view of the design.

2. Drag the module to the new region. The software will then report
the utilization of the region.

3. Resynthesize the design in the software to reoptimize the critical
path after the modules have location constraints.

4. Write out the placement constraints into the VQM netlist and the Tcl
script.

Repeat the above procedure to create as many regions as required.

Multiplexers

To create a floorplan for critical paths with one or more multiplexers,
create multiple regions and assign the multiplexer to one region and the
logic to another. Figure 12–4 shows placing critical paths with
multiplexers.

Figure 12–4. Placing Critical Paths with Multiplexers

If the critical path contains a multiplexer feeding a register, create a region
and place the multiplexer along with the entire critical path in the region.
See Figure 12–5.

Logic

Region 2

Region 1

Region 3

Device Column

Place multiplexer in
Region 2 or Region 3.

Place logic portion
in Region 1.

FIFO, RAM,
or Black Box

12–8 Altera Corporation
Preliminary February 2004

Quartus II Handbook, Volume 2

Figure 12–5. Critical Paths with Multiplexers Feeding Registers

If the critical path is too large for the region, divide the critical path and
ensure that the multiplexer and register are in the same region.
Figure 12–6 shows large critical paths with multiplexers feeding registers.

Figure 12–6. Large Critical Paths with Multiplexers Feeding Registers

Independent Paths

Designs may have two or more independent critical paths. To create an
independent path in the Amplify Physical Optimizer software, follow the
steps below:

1. Create a region and assign the first critical path to that region.

2. Create another region, leaving one MegaLAB structure between the
first and second regions.

Logic

Critical Path

Include this multiplexer in the same
region as the critical path to
extract the enable flip flop.

Logic

Critical Path Too
Large for One LAB

Include this multiplexer in the same
region as the register to

extract the enable flip flop.

Altera Corporation 12–9
February 2004 Preliminary

Using the Amplify Physical Optimizer Floorplans

3. Assign the second critical path to the second region.

Feedback Paths

If critical paths have the same start and end points, follow the steps below
in the Amplify Physical Optimizer software (see Figure 12–7):

1. Select the register and instance not directly connected to the register.

2. Select Filter Schematic twice (right-click menu).

3. Highlight the line leading out of the register and either press P or
right-click the line. Select Expand Paths. Assign this logic to a
region.

Figure 12–7. Critical Paths with the Same Starting or Ending Points

Starting and Ending Points

Figure 12–8 shows a critical path that has multiple starting and ending
points. Use Find to display all the starting and ending points in the RTL
view in Amplify. Expand the paths between those points. If there is
unrelated logic between the multiple starting points and ending points,
assign the starting points and ending points to the same region. Similarly,
if there is unrelated logic between starting points and multiple ending
points, assign the starting points and ending points to the same region.

C1 C2 C3 C4

If the critical path does not include I/O pins,
create region in columns C2 or C3.

12–10 Altera Corporation
Preliminary February 2004

Quartus II Handbook, Volume 2

Figure 12–8. Critical Paths with Multiple Starting or Ending Points

If the two critical paths share a register at the starting or ending point,
assign one critical path to one region, and assign the other critical path to
an adjacent region. Figure 12–9 shows two critical paths that share a
register.

Figure 12–9. Two Critical Paths Sharing a Register

If the fanout is on the shared region, replicate the register and assign both
registers to two regions (see Figure 12–10). This is done by dragging the
same register to the required regions. Entities and nodes are also
replicated by performing the same procedure.

Combinational
Logic

Combinational
Logic

Combinational
Logic

A B

Combinational
Logic

Combinational
Logic

Combinational
Logic

Logic 1 Register
2

Register
1

Region 1

Critical Path 1 End Point

Region 2

Logic 2
Register

3

Critical Path 2 Start Point

Region 1
Critical
Path 1

Region 2
Critical
Path 2

Altera Corporation 12–11
February 2004 Preliminary

Using the Amplify Physical Optimizer Floorplans

Figure 12–10. Fanout on a Shared Region

Utilization

Designs with device utilizations of 90% or higher may have difficulties
during fitting in the Quartus II software. If the device has several finite
state machines, you should implement the state machines with sequential
encoding, as opposed to one-hot encoding.

To check area utilization, check the Amplify Physical Optimizer log file
and .srr file for region utilization, after the mapping stage is complete.
You can also update the utilization estimates by using the estimate region
feature by selecting Estimate Area (Run menu).

Detailed Floorplans

If the critical path does not meet timing requirements after physical
optimization, you can create new regions to achieve timing closure. It is
recommended that regions do not overlap. Regions should either be
entirely contained in another region or remain entirely outside of it. Select
the logic requiring optimization from the existing region. Deselect the
logic and assign it to the new region. Run the Amplify Physical Optimizer
software on the design with the modified physical constraints. Then place
and route the design.

Logic
reg_2reg_1

Critical Path 1 End Point

Logic

Logic

Logic

reg_3

Critical Path 2 Start Point

Region 1
Critical
Path 1

Region 2
Critical
Path 2

Logic reg_2
reg_1

Critical Path 1 End Point

Logic

Logic

Logic

reg_3

Critical Path 2 Start Point (reg_2 replicate)

reg_2 Replicate

12–12 Altera Corporation
Preliminary February 2004

Quartus II Handbook, Volume 2

Forward Annotating Amplify Physical Optimizer Constraints into
the Quartus II Software

The Amplify Physical Optimizer software simplifies the forward
annotating of both timing and location constraints into the Quartus II
software through the generation of three Tcl scripts. At the completion of
a physical synthesis run, in the Amplify Physical Optimizer software, the
following Tcl scripts are generated:

■ <project name>_cons.tcl
■ <project name>.tcl
■ <project name>_rm.tcl

Table 12–1 provides a description of each script's purpose.

To forward annotate Amplify Physical Optimizer's constraints into the
Quartus II software you must use quartus_cmd. The quartus_cmd
command must be used as Amplify Physical Optimizer's Tcl scripts are
not compatible with quartus_sh. The following command will execute
the <project name>_cons, which will create a Quartus II project with all
Amplify Physical Optimizer constraints forward annotated, and will
perform a compilation.

<commnd prompt>quartus_cmd my_project_cons.tcl r

1 You must execute the <project name>_cons.tcl first.

After compilation, you may customize the project either in the Quartus II
GUI or sourcing a custom Tcl script.

f See the Tcl Scripting chapter in Volume 2 of the Quartus II Handbook for
more information on creating and understanding Tcl scripts in the
Quartus II software.

Table 12–1. Amplify Physical Optimizer Tcl Script Description

Tcl File Description

<project name>_cons This Tcl script will create and compile a Quartus II
project. The <project name>.tcl will automatically
be sourced when this script is sourced.

<project name> This script contains forward annotation of constraint
information including clock frequency, duty cycle,
location, etc.

<project name>_rm This script removes any previous constraints from
the project. The removed constrainst is saved in
<project name>_prev.tcl

Altera Corporation 12–13
February 2004 Preliminary

Using the Amplify Physical Optimizer Floorplans

Altera Megafunctions Using the MegaWizard Plug-In Manager
with the Amplify Software

When you use the Quartus II MegaWizard® Plug-In Manager to set up
and parameterize a megafunction, it creates either a VHDL or Verilog
HDL wrapper file. This file instantiates the megafunction (a black box
methodology) or, for some megafunctions, generates a fully
synthesizeable netlist for improved results with EDA synthesis tools such
as Synplify (a clear box methodology).

Clear Box Methodology

The MegaWizard Plug-In Manager-generated fully synthesizeable netlist
is referred to as a clear box methodology because the Amplify Physical
Optimizer software can "see" into the megafunction file. The clear box
feature enables the synthesis tool to report more accurate timing
estimates and take better advantage of timing driven optimization.

This clear box can be turned on by checking the Generate Clearbox body
(for EDA tools only) option in the MegaWizard Plug-In Manager (Tools
menu) for certain megafunctions. If this option does not appear, then
clear box models are not supported for the selected megafunction.
Turning on this option will cause the MegaWizard Plug-In Manager to
generate a synthesizable clear box netlist instead of the megafunction
wrapper file described in “Black Box Methodology” on page 12–14.

Using MegaWizard Plug-In Manager-generated Verilog HDL Files for
Clear Box Megafunction Instantiation
If you check the <output file>_inst.v option on the last page of the wizard,
the MegaWizard Plug-In Manager generates a Verilog HDL instantiation
template file for use in your Synplify design. This file can help you
instantiate the megafunction clear box netlist file, <output file>.v, in your
top-level design. Include the megafunction clear box netlist file in your
Amplify Physical Optimizer project and the information gets passed to
the Quartus II software in the Amplify Physical Optimizer-generated
VQM output file.

Using MegaWizard Plug-In Manager-generated VHDL Files for Clear
Box Megafunction Instantiation
If you check the <output file>.cmp and <output file>_inst.vhd options on
the last page of the wizard, the MegaWizard Plug-In Manager generates
a VHDL component declaration file and a VHDL instantiation template
file for use in your design. These files help to instantiate the megafunction
clear box netlist file, <output file>.vhd, in your top-level design. Include
the megafunction clear box netlist file in your Amplify Physical
Optimizer project and the information gets passed to the Quartus II
software in the Amplify Physical Optimizer-generated VQM output file.

12–14 Altera Corporation
Preliminary February 2004

Quartus II Handbook, Volume 2

Black Box Methodology

The MegaWizard Plug-In Manager-generated wrapper file is referred to
as a black-box methodology because the megafunction is treated as a
"black box" in the Amplify Physical Optimizer software. The black box
wrapper file is generated by default in the MegaWizard Plug-In
Manager (Tools menu) and is available for all megafunctions.

The black-box methodology does not allow the synthesis tool any
visibility into the function module thus not taking full advantage of the
synthesis tool's timing driven optimization. For better timing
optimization, especially if the black box does not have registered inputs
and outputs, add timing models to black boxes.

f For more information on instantiating MegaWizard Plug-In Manager
modules or black boxes see the Synplicity Synplify & SynplifyPro Support
chapter in Volume 1 of the Quartus II Handbook.

Conclusion Physical synthesis uses improved delay estimation to optimize critical
paths. The Amplify Physical Optimizer software uses the hierarchical
structure of logic and interconnect in Altera devices so that designers can
direct a critical path to be placed into several well-defined blocks. The
Amplify Physical Optimizer-to-Quartus II software flow is one of the
steps to solving the problem of achieving timing closure through physical
synthesis.

Altera Corporation Index–1

Index

A
Amplify

Physical Optimizer Constraints
Forward Annotating 12–12

Physical Synthesis Concepts 12–1
to-Quartus II Flow 12–2
Using Amplify Physical Optimizer

Floorplans 12–5
Using the Amplify Physical Optimizer

Floorplans 12–5
Arithmetic 3–3
Assignment

Back-Annotating 8–18
Location 5–12

Assignment Editor 5–7
Category 1–2
Customizable Columns 1–12
Features 1–3
Settings Made Outside User Interface 1–1
Using 1–1
Using to Place Logic 10–14

Assignments
1–8

Dynamic Syntax Checking 1–9
Exporting 1–8, 1–13, 1–14
Import 1–13, 1–16, 10–20
Importing 1–16
Path-Based 10–24
Revisions 4–1

Atom Netlist
Design Information 10–18
Specify 10–19

B
Back-Annotating 10–40
Back-Annotation 10–33
Bar

Category 1–2
Edit 1–3
Information 1–2, 1–6

Node Filter 1–2, 1–5, 1–10
Black Box Methodology 12–14

C
Clear Box Methodology 12–13
Clock

Definitions 11–7
Minimizing Skew 11–5

Clock Speed
Improving in Design 6–53

Clocks
Using Fast Regional in Stratix Devices 6–26

Clock-to-Output Time
Improving 6–27, 6–51

cmdline Package 3–11
Collection Commands 3–15
Columns

Customizable 1–7
Combinational

Timing 11–10
Combinational Logic

Physical Synthesis 8–10
Command

Line
Accessing Arguments 3–11
Options 2–9, 2–11, 3–9
Scripting Help 2–7

Nested 3–3
Prompt 4–8

Command Prompt 5–12
Compilation

Initial Settings 6–3
Restore Original Results 4–5
Settings

Initial 6–2
Time 6–11
Timing Driven 6–3, 6–21

Compile Archive 9–14
Compiliation

Time

Index–2 Altera Corporation

Quartus II Handbook, Volume 2

Optimization Techniques 6–55
Constraint Priority 10–30
Constraints

Location 11–3
Placement 11–3
Remove Fitter 6–16

Control Structures 3–4
Create New Implementations 12–4
Critical Path

Reducing Delay 6–38
Custom Region 6–36
Custom Space 9–11

Simple 9–19
XML Schema 9–21

D
Databases

Exporting 4–7, 4–10
Importing 4–7, 4–10
Version-Compatible 4–7, 4–10

Delays
Programmable 6–23

Design
Analysis 6–6
Compile 3–13
Compile & Verify 10–22
Creating Different Versions 4–4
File

Check Syntax 2–11
Fit Quickly 2–13
Fit Using Multiple Seeds 2–13
Flow 1–10, 2–3, 5–1

Complete Design Files 5–4
No Design Files 5–2
Partial Design Files 5–4

Improving Performance 6–30
Optimization

for Altera Devices 11–5
Improve Resource Utilization 6–13

Optimization for Altera Devices 6–1
Optimize 6–3
Optimizing Compilation Time 6–55
Using Revisions 4–1

DESIGNSPACE 9–17
Device

Using Larger 6–20

Device Resources
Reserve 6–42

Device Settings 6–2
Drag & Drop

Using to Place Logic 10–13
DSE

Advanced Information 9–15
Advanced Search Options 9–7
Archive Compiles 9–14
Command Line Options 9–2
Computer Load Sharing 9–15
Concepts 9–1
Creating Custom Spaces 9–16
Distributed Using LSF 9–15
Distributed Using Quartus II Master

Process 9–15
Exploration 9–1, 9–2, 9–6
Exploration Settings 9–4
Exploration Space 9–8
Flow 9–4
Flow Options 9–13
General Information 9–2
LogicLock Region Restructuring 9–8
Optimization 9–7
Performance Options 9–7
Performing Advanced Search 9–7
Project Settings 9–6
Seed & Seed Sweeping 9–1
Support for Altera device Families 9–5

DSP Blocks
Retarget 6–19

E
EDA

Tool Assignments 3–1, 3–18
Edit Bars 1–2
Executables

Supporting Tcl 2–11, 3–8, 3–9
Exploration

Base Compile Failure 9–13
Run Quartus Assembler 9–13
Space 9–8
Stop Flow After Gain 9–14
Stop Flow After Time 9–14

Exploration Space
Area Optimization Search 9–10

Altera Corporation Index–3

Custom Space 9–11
Extra Effort Search 9–9
Physical Synthesis Search 9–10
Retiming Search 9–10
Save to File 9–14

F
Fan-In

Estimating 6–44
Fan-Out Control

Duplicate Logic 6–32
Fast Regional Clocks

Using in Stratix Devices 6–26
Feedback Paths 12–9
Floorplan

Timing Closure 7–1
Floorplans

Detailed 12–11
fMAX

Improving 6–40
Timing Analysis Report 7–19
Timing Optimization Techniques 6–27, 6–62

G
Global Control Signals

Dedicated Inputs 6–41

H
Hierarchy

Assignments 5–1, 6–33
Flatten 6–31
Window 10–7

I
I/O

Assignment
Analysis 5–2, 5–13
Anaylsis 5–1
Anaysis

Tcl Command 5–13
Creating 5–1, 5–6
Design Flow 5–1
Inputs Used for Analysis 5–6

Placement 5–10
Planning 5–1
Running Analysis 5–9
Understanding Analysis Report 5–9

Timing 6–5, 6–7
Optimization Techniques 6–21, 6–61
Using a PLL to Improve 6–26

Incremental Fitting 6–57
Independent Paths 12–8
Information 1–2
Initial Pass

No Physical Constraints 12–3
Interactive Shell Mode 2–12
Iterative Passes

Optimizing the Critical Paths 12–5

L
LCELL Buffers

Using to Reduce Required Resources 6–48
Lists 3–4
Location Assignments 5–12
Logic Lock

Region
Properties 10–10

LogicLock 11–4
Additional Quartus II Design

Features 10–22
Assignemnt Precedence 10–26
Assignments 6–32, 11–4

Location & Back Annotation 6–35
Back Annotation 6–36
Constraint Priority 10–30
Design Features 10–2
Design Flow 10–16, 10–40
Design Hierarchy 10–7
Design Methodology 10–1, 11–5
Drag & Drop 10–13
DSE 9–8
Examples of Supported Constraints 11–4
Importing Functions 3–21
Improving Design Performance 10–1
Manual Placement 6–36
Path Assignments 6–34
Region

Assigning Content 10–13, 10–37
Back-Annotating 10–40

Index–4 Altera Corporation

Quartus II Handbook, Volume 2

Exporting 10–33
Importing 10–35

Back-Annotating Routing
Information 10–33

Connectivity 7–12, 10–23
Creating 10–2, 10–37
Exporting 10–39
Hierarchical 10–11
Importing 10–39
Initializing 10–37
Modifying 10–37
Obtaining Properties 10–37
Placing 10–30
Placing Memory 10–32
Placing Other Device Features 10–32
Placing Pins 10–32
Prevent Assignment Option 10–23
Properties 10–2
Reserve 10–23
Specify Size and Location 10–10
Tcl Command 10–8
Tcl Scripts 10–16
Uninitializing 10–37
Viewing Routing Congestion 7–15
Window 10–2

Regions 6–57
Back Annotating 6–35
Back-Annotated 6–59
Custom 6–36
Hierarchical 6–33
Soft LogicLock Regions 10–27

Regions 5–2
Restrictions 10–30
Revisions Feature 10–26
Setting Assignment Priority 10–39
Tooltips 10–22

M
Macrocell Usage

Resolving Issues 6–46
Makefile

Implementation 2–14
Mapped Netlist

Generating 5–8, 5–12
Maximum Frequency

Improving 6–53

Memory Blocks
Retarget 6–18

Messages
Error 5–11
Status 5–11

Modular Executables 2–7
Makefile 2–14
Report Files 2–6

Module
Export 10–17
Import 10–19
Optimize 10–16
Synthesize 10–16

Module Performance
Preserving 10–2

Multiplexers 12–7

N
Netlist

Optimization 8–1, 10–38
Applying Options 8–15

Node Filter 1–2
Node-level Netlist

Save into Persistent Source File 10–38

O
Optimization

Techniques
Resource Utilization 6–13

Techniques, LUT-Based Devices 6–12
Optimization Techniques 8–2
Optimize Source Code 6–19, 6–39
Optimize Synthesis for Speed 6–30, 6–31
Optimizing

Critical Path 6–38
Critical Paths 12–5
Placement

Cyclone Devices 6–39
Mercury, APEX II, APEX 20KE/C

Devices 6–39
Stratix Family Devices & Cyclone II

Devices 6–38
Optimzation Advisor 6–12
Output Pins

Estimate Fan-In When Assigning 6–44

Altera Corporation Index–5

P
Parallel Expanders

Used Within a LAB 6–45
PARAM 9–18
Path

Assignments 6–34
Feedback 12–9
Independent 12–8

Physical Synthesis
Combinational Logic 8–10
Optimization 8–17
Optimzation 6–28
Preserving Results 8–14
Register Retiming 8–13
Report 8–13
Search 9–10

Physical Synthesis Optimization 8–9
Pin

Assiginment
Output Enable 6–43

Assignment
Control Signal 6–43
Guidelines 5–6
Location 5–7
Modify 6–20
Outputs Using Parallel Expander 6–44

Assignment Guidelines & Procedures 6–42
Assignments

Floorplan Editor 5–8
Reserving 5–6, 5–11
Timing

Primary Input 11–8
Primary Output 11–9

Pin Assignment
Minimize Fitting Issues 6–42

Pipling
Complex Register Logic 6–53

Placement 5–10, 10–18
Placement Time

Reduce Using Incremental Fitting 6–57
PLL

Using to Shift Clock Edges 6–26
POINT 9–17
Project Management 4–1
Projects

Archiving 4–5, 4–9
Creating 3–12
Making Assignments 3–12

Restoring Archived 3–12, 4–9
Propagation Delay

Improving 6–52

Q
QFlow Script 2–16
QSF

Specify 10–19
Quartus II

Megafunctions
Using MegaWizard Plug-In Manager with

Amplify 12–13
MegaWizard Plug-In

Manager-generated Verilog HDL Files for
Clear Box Megafunction
Instantiation 12–13

MegaWizard Plug-In
Manager-generated VHDL Files for Clear

Box Megafunction
Instantiation 12–13

Modular Executables 2–1, 2–2, 2–17
quartus_sh --flow

Compilation 2–7

R
Register Packing 6–13
Register Retiming

Gate-Level 8–4
Physical Synthesis for Registers 8–13
Trade-Off tSU/tCO with fMAX 8–8

Registers
Fast Input, Output & Output Enable 6–22

Repair Branch 10–22
Report Data

Extracting 3–14
Reserving Pins 5–11
Resource Utilization 6–6

Analysis & Synthesis by Entity 10–24
Optimization Techniques 6–13, 6–41, 6–60
Resolving Issues 6–20
Resolving Problems 6–45

Resynthesis
Perform WYSIWYG for Area 6–16
WYSIWYG Primitive 8–2

Revision
Comparing 4–3

Index–6 Altera Corporation

Quartus II Handbook, Volume 2

Creating 4–1, 4–2, 4–8, 4–10
Deleting 4–2, 4–9
Getting List 4–9
Managing 4–8
Setting Current 4–8

Routing 10–19
Congestion 6–59, 7–15
Resolving Issues 6–47

Routing Time
Reducing 6–59

Rubber Banding 10–23

S
Scripting Support 3–6, 3–10, 3–13, 4–8, 5–11,

6–59, 8–16, 10–36
Seed 6–30

Sweep 9–9
Extra Effort Search 9–9

Sweeping 9–1
Settings 6–30

Fitter Effort 6–4, 6–56
Initial Compilation 6–60
Physical Synthesis Effort 6–56
Smart Compilation 6–3

Setup Time
Improving 6–50

Show
Connection Count 10–24
Critical Paths 10–24

Signature Mode 9–12
Source Code

Optimize 6–19, 6–39
Optimizing Using Pipelining

Technique 6–53
Spreadsheet 1–2
Starting and Ending Points 12–9
State Machine Encoding

Change 6–17, 6–31
Synthesis

Netlist Optimization 6–28, 8–2, 8–4
Optimize for Area 6–16, 6–17
Optimize for Speed 6–31
Options, Other 6–32
Reduce Netlist Optimization Time 6–55
Reducing 6–55
Set Effort to High 6–31

Specify State Machine Encoding 6–17
Synthesis Netlist

Optimization 8–16
Preserving Optimization Results 8–8

Synthesis Netlist Optimization 6–55

T
TCL

Interface 1–13
Tcl

API Reference 2–9, 3–6
Assignment 6–60
Back-Annotate Command 8–18
Command 3–13, 3–15, 5–12
Console Window 3–10
Defined 3–1
Evaluate 2–12, 3–10
Getting Help 2–17, 3–25
Help 3–2
List 3–4
Loading Packages 3–8
Packages 2–9, 3–6, 3–25
Procedure 3–5
Quartus II Legacy Support 3–10, 3–28
Quartus II Legacy Support 3–2
Script

Run 2–11, 4–8
Scripting Basics 3–2
Scripts 3–11, 3–13, 10–8, 10–15
Shell in Interactive Mode 3–22
Tk

GUI Help Interface 3–2, 3–28
Time Groups

Using 1–11
Timing

Checking the HardCopy Device 11–7
Correcting Violations 11–11
ECOs 11–21
Exceptions 11–11
fMAX Optimization Techniques 6–27
Hold-Time Violations 11–11
Improving Propagation Delay 6–52
Optimization Techniques 6–12, 6–49

Macrocell-Based CPLDs 6–41
Setup-Time Violations 11–16

Timing Closure 11–1

Altera Corporation Index–7

Design Anaysis 7–23
Floorplan 5–8, 7–1, 11–5

Assigning LogicLock Region
Content 10–13

Design Anaysis 7–1
Viewing Assignments 7–3
Viewing Critical Paths 7–5
Views 7–1

Floorplan Editor 10–6
LogicLock Regions Connectivity 10–23
Physical Timing Estimates 7–11
View 10–9

Floorplan Views 7–1
in HardCopy Devices 11–1

Timing Requirements 6–2
Tooltips 10–22

U
Using 1–11
Utilization 6–6, 12–11

Resolving Resource Issues 6–20

V
Variables 3–3
Verilog HDL Files

Clear Box Megafunction Instantiation 12–13
VHDL Files

Clear Box Megafunction Instantiation 12–13
Virtual Pins 10–28

Assigning 10–40

Index–8 Altera Corporation

Quartus II Handbook, Volume 2

Preliminary Information
101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com

Quartus II Handbook, Volume 3
Verification

qii5v3_2.1

http://www.altera.com

Copyright © 2004 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-
plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

Printed on recycled paper

ii Altera Corporation
Preliminary

Altera Corporation iii
Preliminary

Contents

Chapter Revision Dates ... xi

About this Handbook ... xiii
How to Contact Altera .. xiii
Typographic Conventions .. xiii

Section I. Simulation
Revision History ... Section I–1

Chapter 1. Mentor Graphics
ModelSim Support

Introduction .. 1–1
Background ... 1–1
Software Compatibility ... 1–2
Altera Design Flow with ModelSim-Altera Software .. 1–3

Functional RTL Simulation ... 1–3
Gate-Level Timing Simulation ... 1–4

Functional RTL Simulation .. 1–4
Functional RTL Simulation Libraries .. 1–4
Simulating VHDL Designs .. 1–5
Simulating Verilog Designs .. 1–7

Gate-Level Timing Simulation ... 1–11
Quartus II Software Output Files for use in the ModelSim-Altera Software 1–11
Gate Level Simulation Libraries ... 1–12
Simulating VHDL Designs .. 1–15
Simulation Verilog Designs .. 1–17

Using the NativeLink Feature with ModelSim ... 1–19
Software Licensing & Licensing Set-Up ... 1–20

LM_LICENSE_FILE Variable ... 1–20
Conclusion .. 1–20

Chapter 2. Synopsys VCS Support
Introduction .. 2–1
Software Requirements ... 2–1
Using VCS in the Quartus II Design Flow ... 2–1

Functional RTL Simulations ... 2–2
Post-Synthesis Simulation ... 2–4
Gate-Level Timing Simulation ... 2–6

iv Altera Corporation
Preliminary

Quartus II Handbook, Volume 3

Common VCS Compile Switches .. 2–8
Using VirSim: The VCS Graphical Interface .. 2–9
VCS Debugging SupportæVCS Command-Line Interface .. 2–9
Using PLI Routines with the VCS Software .. 2–10

Preparing & Linking C Programs to Verilog Code ... 2–10
Scripting Support ... 2–10

Generating a Post-Synthesis Simulation Netlist for VCS ... 2–11
Generating a Gate-Level Timing Simulation Netlist for VCS .. 2–11

Conclusion .. 2–12

Chapter 3. Cadence NC-Sim Support
Introduction .. 3–1
Software Requirements ... 3–1
Simulation Flow Overview .. 3–1

Functional/RTL Simulation .. 3–2
Gate-Level Timing Simulation ... 3–3
Operation Modes .. 3–3
Quartus II/NC Simulation Flow Overview ... 3–4

Functional/RTL Simulation ... 3–5
Set Up Your Environment ... 3–5
Create Libraries .. 3–6
Simulating a Design with Memory .. 3–10
Compile Source Code & Testbenches .. 3–11
Elaborate Your Design ... 3–13
Add Signals to View .. 3–15
Simulate Your Design .. 3–17

Gate-Level Timing Simulation ... 3–18
Quartus II Simulation Output Files ... 3–18
Quartus II Timing Simulation Libraries .. 3–20
Set Up Your Environment ... 3–20
Create Libraries .. 3–20
Compile the Project Files & Libraries .. 3–21
Elaborate the Design .. 3–21
Add Signals to View .. 3–23
Simulate Your Design .. 3–23

Incorporating PLI Routines .. 3–23
Dynamically Link ... 3–24
Dynamically Load .. 3–25
Statically Link ... 3–28

Scripting Support ... 3–29
Generate NC-Sim Simulation Output Files .. 3–29

Conclusion .. 3–30
References ... 3–30

Altera Corporation v
Preliminary

Contents

Section II. Timing Analysis
Revision History ... Section II–1

Chapter 4. Quartus II Timing Analysis
Introduction .. 4–1
Timing Analysis Basics ... 4–1

Clock Setup Time (tSU) ... 4–1
Clock Hold Time (tH) .. 4–2
Clock-to-Output Delay (tCO) ... 4–3
Pin-to-Pin Delay (tPD) ... 4–3
Maximum Clock Frequency (fMAX) ... 4–3
Slack .. 4–4
Hold Time Slack ... 4–4
Clock Skew .. 4–5

Executing Tcl Script-Based Timing Commands .. 4–6
Setting up the Timing Analyzer .. 4–6

Setting Global Timing Assignments .. 4–7
Specifying Individual Clock Requirements .. 4–7
Setting Other Individual Timing Assignments .. 4–8
Timing Wizard .. 4–12

Timing Analysis Reporting in the Quartus II Software ... 4–12
Advanced Timing Analysis .. 4–13

Clock Skew .. 4–13
Multiple Clock Domains ... 4–15
Multicycle Assignments .. 4–16
Typical Applications of Multicycle Assignments .. 4–19
False Paths ... 4–28
Fixing Hold Time Violations .. 4–31
Timing Analysis Across Asynchronous Domains ... 4–32

Minimum Timing Analysis .. 4–33
Minimum Timing Analysis Settings .. 4–33
Performing Minimum Timing Analysis ... 4–33
Minimum Timing Analysis Reporting .. 4–34

Third-Party Timing Analysis Software .. 4–34
Advanced Timing Analysis & Reports Using Tcl Scripts .. 4–34
Conclusion .. 4–37

Chapter 5. Synopsys PrimeTime Support
Introduction .. 5–1
Quartus II Settings to Generate PrimeTime Files .. 5–1
Files Generated for the
PrimeTime Environment .. 5–2
Sample of Constraints Specified in PrimeTime Format ... 5–4
PrimeTime Timing Reports .. 5–4

Sample PrimeTime Timing Report .. 5–5
Running
PrimeTime .. 5–6

vi Altera Corporation
Preliminary

Quartus II Handbook, Volume 3

Conclusion .. 5–6

Section III. Power Estimation & Analysis
Revision History .. Section III–1

Chapter 6. Early Power Estimation
Introduction .. 6–1
Excel-Based Power Calculator ... 6–1
Estimating Power in the Design Cycle ... 6–3
Quartus II Power Report File ... 6–6
Conclusion .. 6–8
References ... 6–8

Chapter 7. Simulation-Based Power Estimation
Introduction .. 7–1
Power Estimation in the Quartus II Software .. 7–2
Estimating Power with EDA Simulation Tools ... 7–4
Scripting Support ... 7–7

Simulation-Based Power Estimation Settings .. 7–7
Generate a Power Input File ... 7–8

Conclusion .. 7–8
References ... 7–8

Section IV. On-Chip Debugging
Revision History .. Section IV–2

Chapter 8. Quick Design Debugging Using SignalProbe
Introduction .. 8–1
Using SignalProbe ... 8–1

Reserving SignalProbe pins .. 8–2
Adding SignalProbe Sources .. 8–3

Assigning I/O Standards ... 8–4
Adding Registers for Pipelining .. 8–4
Performing a SignalProbe Compilation ... 8–5
Running SignalProbe with Smart Compilation .. 8–7
Understanding SignalProbe Routing Failures ... 8–7
Understanding the Results of a SignalProbe Compilation .. 8–8
Scripting Support ... 8–9

Reserving SignalProbe Pins .. 8–10
Adding SignalProbe Sources .. 8–10
Assigning I/O Standards .. 8–10
Adding Registers for Pipelining ... 8–11
Run SignalProbe Automatically ... 8–11
Run SignalProbe Manually ... 8–11

Altera Corporation vii
Preliminary

Contents

Enable or Disable All SignalProbe Routing .. 8–11
Running SignalProbe with Smart Compilation ... 8–12
Allow SignalProbe to Modify Fitting Results .. 8–12

Conclusion .. 8–12

Chapter 9. Design Debugging Using the SignalTap II Embedded Logic Analyzer
Introduction .. 9–1
Including the SignalTap II Logic Analyzer in Your Design .. 9–2

Using the STP File to Create an Embedded Logic Analyzer ... 9–3
Using the MegaWizard Plug-In Manager to Create your Embedded Logic Analyzer 9–8

Programming the Device for SignalTap II Analysis ... 9–12
View Data Samples .. 9–12
Advanced Features .. 9–12

Preserving FPGA Memory .. 9–13
Creating Complex Triggers .. 9–14
Using External Triggers ... 9–17
Embedding Multiple Analyzers in One FPGA .. 9–20
Faster Compilations ... 9–20
Time Bars and Next Transition .. 9–22
Saving Captured Data ... 9–22
Converting Captured Data to Other File Formats ... 9–22
Creating Mnemonics for Bit Patterns .. 9–23
Buffer Acquisition .. 9–23
Capturing Data to a Specific RAM Type .. 9–24
FPGA Resources Used by SignalTap II ... 9–24
Using SignalTap II in a Lab Environment .. 9–25
Remote Debugging Using SignalTap II .. 9–25
Signal Preservation .. 9–28
Tappable Signals ... 9–29
Timing Preservation with SignalTap II Logic Analyzer ... 9–29
Using SignalTap Il Logic Analyzer to Simultaneously Debug Multiple Designs 9–29
Locating a Node in the Chip Editor ... 9–31

Design Example: Preserving Timing .. 9–32
Design Example: Using SignalTap II Logic Analyzers in SOPC Builder Systems 9–35
Conclusion .. 9–35

Chapter 10. Design Analysis and Engineering Change Management with Chip Editor
Introduction .. 10–1
Background ... 10–1
Using the Chip Editor in Your Design Flow .. 10–2
Chip Editor Overview ... 10–3

Chip Editor Floorplan .. 10–4
Bird’s Eye View .. 10–5
First (Highest) Level View .. 10–6
Second Level View ... 10–7
Third Level View .. 10–8

Resource Property Editor ... 10–9

viii Altera Corporation
Preliminary

Quartus II Handbook, Volume 3

The Logic Element (LE) ... 10–9
The Adaptive Logic Module (ALM) .. 10–10
Supported Changes for an LE/ALM ... 10–11

Properties of the Logic Element ... 10–12
Mode of Operation ... 10–12
LUT Equation .. 10–12
LUT Mask .. 10–13
Synchronous Mode .. 10–14
Register Cascade Mode ... 10–14

Properties of an ALM .. 10–14
LUT Mask .. 10–14
Extended LUT Mode .. 10–15
Shared Arithmetic Mode ... 10–15

FPGA I/O Elements .. 10–15
Stratix, Stratix GX, and Stratix II I/O Elements ... 10–15
Cyclone I/O Elements ... 10–17
MAX II I/Os .. 10–17
Supported Changes for an I/O Element ... 10–18
Editable Properties of I/O Elements ... 10–19

Modifying the PLL Using the Chip Editor ... 10–21
Properties of the PLL ... 10–21
Adjusting the Duty Cycle .. 10–22
Adjusting the Phase Shift .. 10–22
Adjusting the Output Clock Frequency .. 10–22
Adjusting the Spread Spectrum ... 10–23

Change Manager .. 10–23
Common Applications .. 10–24

Gate-Level Register Retiming ... 10–24
Routing an Internal Signal to an Output Pin .. 10–26
Adjust the Phase Shift of a PLL to Meet I/O Timing .. 10–27
Correcting a Design Flaw .. 10–27

Example Design: Meeting I/O Timing ... 10–27
Running the Quartus II Timing Analyzer .. 10–33
Generating a Netlist for Other EDA Tools ... 10–33
Generating a Programming File ... 10–33

Conclusion .. 10–34

Chapter 11. In-System Updating of Memory & Constants
Overview ... 11–1
Device & Megafunction Support ... 11–2
Creating In-System Configurable Memory and Constants ... 11–3
Running the In-System Memory Content Editor .. 11–4

Instance Manager ... 11–5
Making Changes ... 11–6

Altera Corporation ix
Preliminary

Contents

Viewing Memory & Constants in the Hex Editor ... 11–7
Programming the Device Using the In-System Memory Content Editor 11–8

Conclusion .. 11–9

Section V. Formal Verification
Revision History ... Section V–1

Chapter 12. Cadence Incisive Conformal Support
Introduction .. 12–1
Formal Verification .. 12–1

Equivalence Checking ... 12–1
Generating the VO File & Incisive Conformal Script ... 12–2
Comparing Designs Using Incisive Conformal Software .. 12–8

Black Boxes in the Incisive Conformal Flow .. 12–8
Running the Incisive Conformal Software ... 12–9

Known Issues & Limitations .. 12–11
Conclusion .. 12–11

Index

x Altera Corporation
Preliminary

Quartus II Handbook, Volume 3

Altera Corporation xi

Chapter Revision Dates

The chapters in this book, the Quartus II Handbook, Volume 3, were revised on the following dates.
Where chapters or groups of chapters are available separately, part numbers are listed.

Chapter 1. Mentor Graphics
ModelSim Support
Revised: June 2004
Part number: qii53001-2.0

Chapter 2. Synopsys VCS Support
Revised: June 2004
Part number: qii53002-2.0

Chapter 3. Cadence NC-Sim Support
Revised: August 2004
Part number: qii53003-2.0

Chapter 4. Quartus II Timing Analysis
Revised: June 2004
Part number: qii53004-2.0

Chapter 5. Synopsys PrimeTime Support
Revised: June 2004
Part number: qii53005-2.0

Chapter 6. Early Power Estimation
Revised: June 2004
Part number: qii53006-2.0

Chapter 7. Simulation-Based Power Estimation
Revised: June 2004
Part number: qii53007-2.0

Chapter 8. Quick Design Debugging Using SignalProbe
Revised: June 2004
Part number: qii53008-2.0

Chapter 9. Design Debugging Using the SignalTap II Embedded Logic Analyzer
Revised: June 2004
Part number: qii53009-2.0

xii Altera Corporation
Preliminary

Chapter Revision Dates Quartus II Handbook, Volume 3

Chapter 10. Design Analysis and Engineering Change Management with Chip Editor
Revised: June 2004
Part number: qii53010-2.0

Chapter 11. In-System Updating of Memory & Constants
Revised: August 2004
Part number: qii53012-1.0

Chapter 12. Cadence Incisive Conformal Support
Revised: June 2004
Part number: qii53011-2.0

Altera Corporation xiii
Preliminary

About this Handbook

This handbook provides comprehensive information about the Altera®
Quartus® II design software, version 4.0.

How to Contact
Altera

For the most up-to-date information about Altera products, go to the
Altera world-wide web site at www.altera.com. For technical support on
this product, go to www.altera.com/mysupport. For additional
information about Altera products, consult the sources shown below.

Typographic
Conventions

This document uses the typographic conventions shown below.

Information Type USA & Canada All Other Locations

Technical support www.altera.com/mysupport/ altera.com/mysupport/

(800) 800-EPLD (3753)
(7:00 a.m. to 5:00 p.m. Pacific Time)

(408) 544-7000 (1)
(7:00 a.m. to 5:00 p.m. Pacific Time)

Product literature www.altera.com www.altera.com

Altera literature services lit_req@altera.com (1) lit_req@altera.com (1)

Non-technical customer
service

(800) 767-3753 (408) 544-7000
(7:30 a.m. to 5:30 p.m. Pacific Time)

FTP site ftp.altera.com ftp.altera.com

Note to table:
(1) You can also contact your local Altera sales office or sales representative.

Visual Cue Meaning (Part 1 of 2)

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital
Letters

Document titles are shown in italic type with initial capital letters. Example: AN
75: High-Speed Board Design.

http://www.altera.com/mysupport/
http://www.altera.com/mysupport/
http://www.altera.com
http://www.altera.com
mailto:lit_req@altera.com
mailto:lit_req@altera.com
ftp://ftp.altera.com
ftp://ftp.altera.com
http://www.altera.com
http://www.altera.com/mysupport

xiv Altera Corporation
Preliminary

Typographic Conventions Quartus II Handbook, Volume 3

Italic type Internal timing parameters and variables are shown in italic type.
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are
shown in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1,
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files (e.g., the AHDL
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in
Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ ● • Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c
The caution indicates required information that needs special consideration and
understanding and should be read prior to starting or continuing with the
procedure or process.

w The warning indicates information that should be read prior to starting or
continuing the procedure or processes

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.

Visual Cue Meaning (Part 2 of 2)

Altera Corporation Section I–1
Preliminary

Section I. Simulation

As the design complexity of FPGAs continues to rise, verification
engineers are finding it increasingly difficult to simulate their system-on-
a-programmable-chip (SOPC) designs in a timely manner. The
verification process is now the bottleneck in the FPGA design flow. You
can perform functional and timing simulation of your design by using the
Quartus® II Simulator. The Quartus II software also provides a wide
range of features for performing simulation of designs in EDA simulation
tools.

This section includes the following chapters:

■ Chapter 1, Mentor Graphics ModelSim Support

■ Chapter 2, Synopsys VCS Support

■ Chapter 3, Cadence NC-Sim Support

Revision History The table below shows the revision history for Chapters 1 to 3.

Chapter(s) Date / Version Changes Made

1 June 2004 v2.0 ● Updates to tables, figures.
● New functionality for Quartus 4.1.

Feb. 2004 v1.0 Initial release

2 June 2004 v2.0 ● Updates to tables, figures.
● New functionality for Quartus 4.1.

Feb. 2004 v1.0 Initial release

3 Aug. 2004 v2.1 ● New functionality for Quartus 4.1 SP1

June 2004 v2.0 ● Updates to tables, figures.
● New functionality for Quartus 4.1.

Feb. 2004 v1.0 Initial release

Section I–2 Altera Corporation
Preliminary

Simulation Quartus II Handbook, Volume 3

Altera Corporation 1–1
June 2004 Preliminary

1. Mentor Graphics
ModelSim Support

Introduction An Altera® software subscription includes a license for the ModelSim-
Altera software on a PC or UNIX platform. The ModelSim-Altera
software can be used to perform funtional RTL and gate-level timing
simulations for either VHDL or Verilog HDL designs targeting an Altera
FPGA. This chapter provides step-by-step explanations of how to
simulate your design in the ModelSim-Altera version or the ModelSim
full version. This chapter gives you details on the specific libraries that are
needed for a functional simulation or a gate-level timing simulation.

This document describes ModelSim-Altera software version 5.8c and the
ModelSim PE software version.

f This document contains references to features available in the Altera
Quartus® II software version 4.1. Please visit the Altera web site,
available at www.altera.com/quartus for information on this Quartus II
software version.

Background The ModelSim-Altera software version 5.8c is included with your Altera
software subscription, and can be licensed for the PC, Solaris, HP-UX, or
Linux platforms to support either VHDL or Verilog hardware description
language (HDL) simulation. The ModelSim-Altera tool supports VHDL
or Verilog functional simulations and gate-level timing simulations for all
Altera devices.

Table 1–1 describes the differences between the ModelSim-Modeltech
and ModelSim-Altera versions.

Table 1–1. Comparison of ModelSim Versions (Part 1 of 2)

Product Feature ModelSim SE ModelSim PE ModelSim-Altera

100% VHDL, Verilog, mixed-HDL support ooptionionion option Supports only
single-HDL
simulation

Complete HDL debugging environment v v v
Optimized direct compile architecture v v v
Industry-standard scripting v v v
Flexible licensing v option v

qii53001-2.0

http://www.altera.com

1–2 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Software
Compatibility

Table 1–2 shows which specific ModelSim-Altera software version is
compatible with the specific Quartus II software version. ModelSim
versions provided directly from Model Technology do not correspond to
specific Quartus II software versions.

f For help on ModelSim-Altera licensing set-up, see “Software Licensing
& Licensing Set-Up” on page 1–20.

Verilog PLI (1) support. Interfaces Verilog
designs to customer C code and third-party
software

v v v

VHDL FLI (2) support. Interfaces VHDL
designs to customer C code and third-party
software

v

Advanced debugging features and language-
neutral licensing

v

Customizable, user-expandable graphical user
interface (GUI) and integrated simulation
performance analyzer

v

Integrated code coverage analysis and SWIFT
support

v

Accelerated VITAL (3) and Verilog primitives (3
times faster), and register transfer level (RTL)
acceleration (5 times faster)

v

Platform support PC, UNIX, Linux PC only PC, UNIX, Linux

Note to Table 1–1:
(1) See www.altera.com/products/software/pld/products/partners/eda-ms.html

Table 1–1. Comparison of ModelSim Versions (Part 2 of 2)

Table 1–2. Compatibility Between Software Versions

ModelSim-Altera Software Quartus II Software (1)

ModelSim-Altera software version 5.7c Quartus II software version 3.0

ModelSim-Altera software version 5.7e Quartus II software version 4.0

ModelSim-Altera software version 5.8c Quartus II software version 4.1

Note to Table 1–2:
(1) ModelSim-Altera precompiled libraries are updated with Quartus II release and service packs and are generally

available for download on Altera’s web site.

Altera Corporation 1–3
June 2004 Preliminary

Altera Design Flow with ModelSim-Altera Software

Altera Design
Flow with
ModelSim-
Altera Software

Figure 1–1 illustrates an Altera design flow using the ModelSim-Altera
software or ModelSim Full Version:

■ Functional RTL simulations
■ Gate-level timing simulations

Figure 1–1. Altera Design Flow with ModelSim-Altera and Quartus II Software

Functional RTL Simulation

Functional RTL simulations verify the functionality of the design before
synthesis and place-and route. These simulations are independent of any
Altera FPGA architecture implementation. Once the HDL designs are
verified to be functionally correct, the next step is to synthesize the design
and use the Quartus II software for place-and-route.

Design Entry

Synthesis

Place-and-Route

Functional Simulation

Gate-Level Simulation

Altera IP

Functional
Models

Gate-Level
Models

Testbench

Verilog
Output

File (.vo)

Standard Delay
Format Output

 File (.sdo)

1–4 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Gate-Level Timing Simulation

Place-and-route in the Quartus II software produces a design netlist (.vo
or .vho file) and a Standard Delay Format (SDF) output (.sdo) file used for
a gate-level timing simulation in the ModelSim-Altera software. The
design netlist output file is a netlist of the design mapped to
architecture-specific primitives such as logic elements and I/O elements.
The SDF file contains delay information for each architecture primitive
and routing element specific to the design. Together, these files provide an
accurate simulation of the design for the selected Altera FPGA
architecture.

Functional RTL
Simulation

A functional RTL simulation is performed before a gate-level simulation
and verifies the functionality of the design before place-and-route. This
section provides detailed instructions on how to perform a functional
RTL simulation in the ModelSim-Altera software and highlights some of
the differences in performing similar steps in the Model TechnologyTM
ModelSim software versions for VHDL and Verilog HDL designs.

Functional RTL Simulation Libraries

LPM and Altera Megafunction Functional RTL Simulation Models

To simulate designs containing LPM functions or MegaWizard®
Plug-In Manager-generated functions, use the following Altera
functional simulation models:

■ 220model.v (for Verilog HDL)
■ 220pack.vhd and 220model.vhd (for VHDL)

1 When you are simulating a design that uses VHDL-1987, use
220model_87.vhd.

f For more information on LPM functions, see the Quartus II Help.

Altera Megafunction Simulation Models

To simulate a design that contains Altera Megafunctions, use the
following simulation models:

■ altera_mf.v (for Verilog HDL)
■ altera_mf.vhd and altera_mf_components.vhd (for VHDL)

1 When you are simulating a design that uses VHDL-1987, use
altera_mf_87.vhd.

Altera Corporation 1–5
June 2004 Preliminary

Functional RTL Simulation

Table 1–3 shows the location of the simulation model files in the
Quartus II software and the ModelSim-Altera software.

Table 1–4 shows the location of these files in the Quartus II software and
the ModelSim-Altera software.

Simulating VHDL Designs

The following instructions will help you to perform a functional RTL
simulation for VHDL designs in the ModelSim-Altera software.

1 The following steps assume you have already created a
ModelSim project.

Create Simulation Libraries
1 Creating a simulation library is not required if you are using the

ModelSim-Altera software.

Table 1–3. Location of LPM Simulation Models

Software Location

Quartus II <Quartus II installation directory>\eda\sim_lib\ (1)

ModelSim-Altera
(PC)

<ModelSim-Altera installation directory>\altera\<HDL>\220model\(2)

ModelSim-Altera
(UNIX)

<ModelSim-Altera installation directory>/modeltech/altera/<HDL>/220model/(1)

Note to Table 1–3:
(1) For Model Technology’s ModelSim, use the files provided with the Quartus II software.
(2) Compile 220pack.vhd before 220model.vhd.

Table 1–4. Location of Altera Megafunction Simulation Models

Software Location

Quartus II <Quartus II installation directory>\eda\sim_lib \ (1)

ModelSim-Altera
(PC)

<ModelSim-Altera installation directory>\altera\<HDL>\altera_mf\

ModelSim-Altera
(UNIX)

<ModelSim-Altera installation directory>/modeltech/altera/<HDL>/altera_mf/

Note to Table 1–4:
(1) For Model Technology’s ModelSim, use the files provided with the Quartus II software.

1–6 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Simulation libraries are needed to simulate a design that contains an LPM
function or an Altera megafunction. If you are using the Model
TechnologyTM ModelSim software version, you need to create the
simulation libraries and correctly link them to your design.

1. Choose New > Library (File menu).

2. In the Create a New Library dialog box select a new Library and a
logical linking to it.

3. Enter the name of the newly created library in the Library Name
box.

4. Click OK.

vlib altera_mfr
vmap altera_mf altera_mfr

vlib lpmr
vmap lpm lpmr

1 The name of the libraries should be altera_mf (for Altera
megafunctions) and lpm (for LPM and Megawizard-generated
entities).

Compile Simulation Models into Simulation Libraries
1 The following steps are not required for the ModelSim-Altera

software.

1. Choose Add to Project (File menu) and select Existing File.

2. Browse to the <quartus installation folder>/eda/sim_lib> and add the
necessary simulation model files to your project.

3. Select the simulation model file and select Properties (View menu).

4. Set the Compile to Library to the correct library.

1 The altera_mf.vhd should be compiled into the altera_mf
library. The 220model.vhd should be compiled into the lpm
library.

vcom -work altera_mf <quartus installation
directory>/eda/sim_lib/altera_mf_components.vhd> r

vcom -work altera_mf <quartus installation folder/eda/sim_lib
/altera_mf.vhd> r

Altera Corporation 1–7
June 2004 Preliminary

Functional RTL Simulation

vcom -work lpm <quartus installation folder/eda/sim_lib /220pack.vhd> r

vcom -work lpm <quartus installation folder/eda/sim_lib /220model.vhd> r

Compile Testbench and Design Files into Work Library
1. Select Compile All (Compile menu) or click the Compile All

toolbar icon

2. Resolve compile-time errors before proceeding to “Loading the
Design” below.

vcom -work work <my_testbench.vhd> <my_design_files.vhd>r

Loading the Design
1. Select Simulate (Simulate menu).

2. Expand the work library in the Simulate dialog box.

3. Select the top-level design unit (your testbench). Select OK in the
Simulate dialog box.

vsim work.<my_testbench>r

Running the Simulation
1. Choose Signals and Wave (View menu).

view signalsr
view waver

2. Drag signals to monitor from the Signals window and drop them
into the Wave window.

add wave /<signal name>r

3. At the prompt type the following:

run <time period>r

Simulating Verilog Designs

The following instructions provide step-by-step instructions on
performing functional RTL simulation for Verilog designs in the
ModelSim-Altera software.

1 The following steps assume you have already created a
ModelSim project.

1–8 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Create Simulation Libraries
1 Creating a simulation library is not required for the ModelSim-

Altera software.

Simulation libraries are needed to properly simulate a design that
contains an LPM function or an Altera megafunction. If you are using the
Model Technology ModelSim software version, you need to create the
simulation libraries and correctly link them to your design.

1. Choose New > Library (File menu).

2. In the Create a New Library dialog box select a new Library and a
logical linking to it.

3. Enter the name of the newly created library in the Library Name
box.

4. Click OK.

vlib altera_mfr
vmap altera_mf altera_mfr

vlib lpmr
vmap lpm lpmr

1 The name of the libraries should be altera_mf (for Altera
megafunctions) and lpm (for LPM and Megawizard-generated
entities).

1 This process is not required for the ModelSim-Altera version
because a set of pre-compiled libraries are created when you
install the ModelSim-Altera software.

Compile Simulation Models into Simulation Libraries
1 The following steps are not required for the ModelSim-Altera

software.

1. Choose Add to Project (File menu) and select Existing File.

2. Browse to the <quartus installation folder>/eda/sim_lib> and add the
necessary simulation model files to your project.

3. Select the simulation model file and select Properties (View menu).

4. Set the Compile to Library to the correct library.

Altera Corporation 1–9
June 2004 Preliminary

Functional RTL Simulation

1 The altera_mf.v should be compiled into the altera_mf library.
Compile the 220model.v into the lpm library.

vlog -work altera_mf <quartus installation folder/eda/sim_lib
/altera_mf.v> r

vlog -work lpm <quartus installation folder/eda/sim_lib /220model.v>r

Compile Testbench and Design Files into Work Library
1. Select Compile All (Compile menu) or click the Compile All

toolbar icon

2. Resolve compile-time errors before proceeding to “Loading the
Design” below.

vlog -work work <my_testbench.v> <my_design_files.v>r

Loading the Design
1. Select Simulate (Simulate menu).

2. Click the Libraries tab in the Load Design dialog box.

3. In the Search Libraries box, click Add.

4. Specify the location to the lpm or altera_mf simulation libraries.

1 If you are using the ModelSim-Altera version see Table 1–3 and
Table 1–5 for the location of the precompiled simulation
libraries.

1 If you are using the ModelSim-Modeltech version, browse to the
library that was created earlier.

5. In the Load Design dialog box, click the Design tab.

6. Expand the work library in the Simulate dialog box.

7. Select the top-level design unit (your testbench). Select OK in the
Simulate dialog box.

vsim -L <location of the altera_mf library> -L <location of the lpm
library> work.<my_testbench>r

Running the Simulation
1. Choose Signals and Wave (View menu).

1–10 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

view signalsr
view waver

2. Drag signals to monitor from the Signals window and drop them
into the Wave window.

add wave /<signal name>r

3. At the prompt type the following:

run <time period>r

Verilog Functional RTL Simulation with Altera Memory Blocks

You can simulate your design containing complex memory blocks such as
LPM_RAM_DP and ALTSYNCRAM using either ModelSim software
version.

These memory blocks can be configured with power-up data via a
hexidecimal (.hex) or Memory Initialization File (.mif). The LPM_FILE
parameter included in the MegaWizard-generated file points to the path
of the HEX file or MIF that is used to initialize the memory block. You can
create a HEX file or MIF through the Quartus II software.

Neither ModelSim software version can directly read a HEX file or MIF
format. Therefore, to allow functional simulation of Altera memory
blocks in the ModelSim software, you must perform the following steps:

1. Convert a HEX file or MIF to a RAM Initialization File (.rif).

2. Modify of the MegaWizard-generated file.

3. Compile the nopli.v file.

Converting a HEX File or MIF to a RIF

A RIF is an ASCII text file that you use with tools from electronic design
automation (EDA) vendors. Create a RIF by converting an existing MIF
or HEX file using the Export command in the Quartus II software. This
option is available through the File menu.

Modifying the MegaWizard-Generated File

You must modify the MegaWizard-generated file so that it includes the
path to the newly created RIF. You must modify the LPM_FILE
parameter. The following example shows the entry that you must change:

Altera Corporation 1–11
June 2004 Preliminary

Gate-Level Timing Simulation

lpm_ram_dp_component.lpm_outdata = "UNREGISTERED",
lpm_ram_dp_component.lpm_file = "<path to RIF>"
lpm_ram_dp_component.use_eab = "ON",

Compiling nopli.v

The nopli.v file is included in the s<path to Quartus II
installation>\eda\sim_lib directory. This file contains the following
definition:

`define NO_PLI 1

This basic definition instructs the ModelSim compile to read in the RIF.

Gate-Level
Timing
Simulation

Gate-level timing simulation is a post place-and-route simulation to
verify the operation of the design after the worst-case timing delays have
been calculated. This section provides detailed instructions on how to
perform gate-level timing simulation in the ModelSim-Altera software
and highlights differences in performing similar steps in the
Model Technology ModelSim software versions for VHDL and Verilog
HDL designs.

Quartus II Software Output Files for use in the ModelSim-Altera
Software

To perform gate-level timing simulation, the ModelSim-Altera software
requires information on how the design was placed into device-specific
architectural blocks. The Quartus II software provides this information in
the form of .vo for Verilog HDL and .vho for VHDL output files. The
accompanying timing information is stored in the .sdf file, which
annotates the delay for the elements found in the .vo or .vho output file.

To generate the VO or VHO output files, perform the following steps:

1. Choose EDA Tool Settings (Assignments menu).

2. In the Simulation Tool box:

a. If you are using ModelSim-Altera, select ModelSim OEM
(VHDL/Verilog HDL output from Quartus II).

b. If you are using Model Technology's ModelSim, select
ModelSim (VHDL/Verilog HDL output from Quartus II).

3. Click OK.

1–12 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

4. Compile the project.

5. The Quartus II output files are located in the <full path to
project>\simulation\ModelSim\ directory.

Gate Level Simulation Libraries

Table 1–5 provides a description of the various ModelSim-Altera
precompiled device libraries.

Table 1–6 shows the location of the timing simulation libraries in the
ModelSim-Altera software for Verilog HDL for PCs.

Table 1–5. Various ModelSim-Altera Precompiled Device Libraries

Library Description

maxii Precompiled library for MAX® II devices

stratixii Precompiled library for Stratix® II devices

stratix Precompiled library for Stratix device designs

stratixgx Precompiled library for Stratix GX device designs

stratixgx_gxb Precompiled library for Stratix GX device designs using the Gigabit Transceiver Block (altgxb
Megafunction)

cyclone Precompiled library for Cyclone™ device designs

apexii Precompiled library for APEX™ II device designs

apex20k Precompiled library for APEX™ 20K device designs

apex20ke Precompiled library for APEX 20KC, APEX 20KE devices and ARM®-based Excalibur™ designs

mercury Precompiled library for Mercury™ device designs

flex10ke Precompiled library for FLEX® 10KE and ACEX™ 1K device designs

flex6000 Precompiled library for FLEX 6000 device designs

max Precompiled library for MAX 7000 and MAX 3000 device designs

Table 1–6. Location of Timing Simulation Libraries for ModelSim-Altera for Verilog HDL on a PC
(Part 1 of 2)

Library Verilog HDL

maxii <ModelSim-Altera installation directory>\altera\verilog\maxii\

stratixii <ModelSim-Altera installation directory>\altera\verilog\stratixii\

stratix <ModelSim-Altera installation directory>\altera\verilog\stratix\

stratixgx <ModelSim-Altera installation directory>\altera\verilog\stratixgx\

stratixgx_gxb <ModelSim-Altera installation directory>\altera\verilog\stratixgx_gxb\

Altera Corporation 1–13
June 2004 Preliminary

Gate-Level Timing Simulation

Table 1–7 shows the location of the timing simulation libraries in the
ModelSim-Altera software for VHDL for PCs.

cyclone <ModelSim-Altera installation directory>\altera\verilog\cyclone\

apexii <ModelSim-Altera installation directory>\altera\verilog\apexii\

apex20k <ModelSim-Altera installation directory>\altera\verilog\apex20k\

apex20ke <ModelSim-Altera installation directory>\altera\verilog\apex20ke\

mercury <ModelSim-Altera installation directory>\altera\verilog\mercury\

flex10ke <ModelSim-Altera installation directory>\altera\verilog\flex10ke\

flex6000 <ModelSim-Altera installation directory>\altera\verilog\flex6000\

max <ModelSim-Altera installation directory>\altera\verilog\max\

Table 1–6. Location of Timing Simulation Libraries for ModelSim-Altera for Verilog HDL on a PC
(Part 2 of 2)

Library Verilog HDL

Table 1–7. Location of Timing Simulation Library Files for ModelSim-Altera for VHDL on a PC

Library VHDL

maxii <ModelSim-Altera installation directory>\altera\vhdl\maxii\

stratixii <ModelSim-Altera installation directory>\altera\vhdl\stratixii\

stratix <ModelSim-Altera installation directory>\altera\vhdl\stratix\

stratixgx <ModelSim-Altera installation directory>\altera\vhdl\stratixgx\

stratixgx_gxb <ModelSim-Altera installation directory>\altera\vhdl\stratixgx_gxb\

cyclone <ModelSim-Altera installation directory>\altera\vhdl\cyclone\

apexii <ModelSim-Altera installation directory>\altera\vhdl\apexii\

apex20ke <ModelSim-Altera installation directory>\altera\vhdl\apex20ke\

apex20k <ModelSim-Altera installation directory>\altera\vhdl\apex20k\

flex10ke <ModelSim-Altera installation directory>\altera\vhdl\flex10ke\

flex6000 <ModelSim-Altera installation directory>\altera\vhdl\flex6000\

mercury <ModelSim-Altera installation directory>\altera\vhdl\mercury\

max <ModelSim-Altera installation directory>\altera\vhdl\max\

1–14 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Table 1–8 shows the location of the timing simulation libraries in the
ModelSim-Altera software for Verilog HDL for UNIX.

Table 1–9 shows the location of the timing simulation libraries in the
ModelSim-Altera software for VHDL for UNIX.

Table 1–8. Location of Timing Simulation Libraries for ModelSim-Altera for Verilog HDL with UNIX

Library Verilog HDL

maxii <ModelSim-Altera installation directory>/modeltech/altera/verilog/maxii/

stratixii <ModelSim-Altera installation directory>/modeltech/altera/verilog/stratixii/

stratix <ModelSim-Altera installation directory>/modeltech/altera/verilog/stratix/

stratixgx <ModelSim-Altera installation directory>/modeltech/altera/verilog/stratixgx/

stratixgx_gxb <ModelSim-Altera installation directory>/modeltech/altera/verilog/stratixgx_gxb/

cyclone <ModelSim-Altera installation directory>/modeltech/altera/verilog/cyclone/

apexii <ModelSim-Altera installation directory>/modeltech/altera/verilog/apexii/

apex20k <ModelSim-Altera installation directory>/modeltech/altera/verilog/apex20k/

apex20ke <ModelSim-Altera installation directory>/modeltech/altera/verilog/apex20ke/

mercury <ModelSim-Altera installation directory>/modeltech/altera/verilog/mercury/

flex10ke <ModelSim-Altera installation directory>/modeltech/altera/verilog/flex10ke/

flex6000 <ModelSim-Altera installation directory>/modeltech/altera/verilog/flex6000/

max <ModelSim-Altera installation directory>/modeltech/altera/verilog/max/

Table 1–9. Location of Timing Simulation Libraries for ModelSim-Altera for VHDL with UNIX (Part 1 of 2)

Library VHDL

maxii <ModelSim-Altera installation directory>/modeltech/altera/vhdl/maxii/

stratixii <ModelSim-Altera installation directory>/modeltech/altera/vhdl/stratixii/

stratix <ModelSim-Altera installation directory>/modeltech/altera/vhdl/stratix/

stratixgx <ModelSim-Altera installation directory>/modeltech/altera/vhdl/stratixgx/

stratixgx_gxb <ModelSim-Altera installation directory>/modeltech/altera/vhdl/stratixgx_gxb/

cyclone <ModelSim-Altera installation directory>/modeltech/altera/vhdl/cyclone/

apexii <ModelSim-Altera installation directory>/modeltech/altera/vhdl/apexii/

apex20k <ModelSim-Altera installation directory>/modeltech/altera/vhdl/apex20k/

apex20ke <ModelSim-Altera installation directory>/modeltech/altera/vhdl/apex20ke/

mercury <ModelSim-Altera installation directory>/modeltech/altera/vhdl/mercury/

flex10ke <ModelSim-Altera installation directory>/modeltech/altera/vhdl/flex10ke/

Altera Corporation 1–15
June 2004 Preliminary

Gate-Level Timing Simulation

If you are using the ModelSim-Modeltech version for your timing
simulation, libraries are available in the Quartus II software at the
following location: <Quartus II installation directory>\eda\sim_lib\.
Model Technology ModelSim software users must use the files provided
with the Quartus II software.

Simulating VHDL Designs

The following provides step-by-step instructions for performing gate-
level timing simulation for VHDL designs.

1 The following steps assume you have already created a
ModelSim project. For additional information see “Altera
Design Flow with ModelSim-Altera Software” on page 1–3.

Create Simulation Libraries
If you are using the Model Technology ModelSim software version, create
the gate-level simulation libraries and correctly link them to your design.

1 This process is not required for the ModelSim-Altera version
because a set of pre-compiled libraries are created when you
install the software.

1. Select New Library (File menu).

2. In the Create a New Library dialog box, select a new Library and a
logical linking to it.

3. Enter in the name of the newly created library in the Library Name
box.

4. Click OK.

vlib stratixiir
vmap stratixii stratixiir

flex6000 <ModelSim-Altera installation directory>/modeltech/altera/vhdl/flex6000/

max <ModelSim-Altera installation directory>/modeltech/altera/vhdl/max/

Table 1–9. Location of Timing Simulation Libraries for ModelSim-Altera for VHDL with UNIX (Part 2 of 2)

Library VHDL

1–16 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Compile Simulation Models into Simulation Libraries
1 This process is not required for the ModelSim-Altera version

because a set of pre-compiled libraries are created when you
install the software.

1. Select Add to Project (File menu), then select Existing File.

2. Browse to the <quartus installation folder>/eda/sim_lib> and add the
necessary gate level simulation files to your project.

3. Select the simulation model file and select Properties (View menu).

4. Set the Compile to Library to the correct library.

vcom -work altera_mf <quartus installation folder/eda/sim_lib
/stratixii_components.vhd> r

vcom -work altera_mf <quartus installation folder/eda/sim_lib
/stratixii.vhd> r

Compile Testbench and VHO into Work Library
1. Choose Compile All (Compile menu) or click the Compile All

toolbar icon.

2. Resolve any compile time errors before proceeding to Loading the
Design.

vcom -work work <my_testbench.vhd> <my_vhdl_output_file.vho>r

Loading the Design
1. Select Simulate (Simulate menu).

2. Click the SDF tab and click Add.

3. Specify the location of the SDF file and click OK.

4. In the Library list (Design tab), select the work library.

5. Expand the work library in the Simulate dialog box.

6. Select the top-level design unit (your testbench) and select OK in the
Simulate dialog box.

vsim -sdftyp work.<my_testbench>r

Running the Simulation
1. Choose Signals and Wave (View menu).

Altera Corporation 1–17
June 2004 Preliminary

Gate-Level Timing Simulation

view signalsr
view waver

2. Drag signals to monitor from the Signals window and drop them
into the Wave window.

add wave /<signal name>r

3. At the prompt type the following:

run <time period>r

Simulation Verilog Designs

The following provides step-by-step instructions on performing gate-
level timing simulation for Verilog HDL designs in the ModelSim-Altera
software.

1 The following steps assume you have already created a
ModelSim project. For additional information see “Altera
Design Flow with ModelSim-Altera Software” on page 1–3.

Create Simulation Libraries
1 This process is not required for the ModelSim-Altera version

because a set of pre-compiled libraries are created when you
install the software.

If you are using the Model Technology ModelSim software version, you
need to create the simulation libraries and correctly link them to your
design.

1. Choose New Library (File menu).

2. In the Create a New Library dialog box, select a new library and a
logical linking to it.

3. Enter the name of the newly created library in the Library Name.

4. Click OK.

vlib stratixiir
vmap stratixii stratixiir

Compile Simulation Models into Simulation Libraries
1 This process is not required for the ModelSim-Altera version

because a set of pre-compiled libraries are created when you
install the software.

1–18 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

1. Select Add to Project (File menu) and select Existing File.

2. Browse to the <quartus installation folder>/eda/sim_lib> and add the
necessary simulation model files to your project.

3. Select the simulation model file and select Properties (View menu).

4. Set the Compile to Library to the correct library.

vlog -work stratixii <quartus installation folder/eda/sim_lib
/startixii_atoms.v> r

Compile Testbench and VO into Work Library
1. Select Compile All (Compile menu) or click the Compile All

toolbar icon.

2. Resolve any compile time errors before proceeding to Loading the
Design.

vlog -work work <my_testbench.v> <my_verilog_output_file.vo>r

Loading the Design
1. Select Simulate (Simulate menu).

2. In the Load Design dialog box, click the Libraries tab.

3. In the Search Libraries box, click Add.

4. Specify the location to the gate level simulation library.

1 If you are using the ModelSim-Altera version, refer to Tables 1–5
and 1–6 for the location of the precompiled simulation libraries.

1 If you are using the ModelSim-Modeltech version, browse to the
library that was created earlier.

5. In the Load Design dialog box, click the Design tab.

6. Expand the work library in the Simulate dialog box.

7. Select the top-level design unit (your testbench) and select OK in the
Simulate dialog box.

vsim -L <location of the gate level simulation library> -
work.<my_testbench>r

Running the Simulation
1. Choose Signals and Wave (View menu).

Altera Corporation 1–19
June 2004 Preliminary

Using the NativeLink Feature with ModelSim

view signalsr
view waver

2. Drag signals to monitor from the Signals window and drop them
into the Wave window.

add wave /<signal name>r

3. At the prompt type the following:

run <time period>r

Using the
NativeLink
Feature with
ModelSim

The NativeLink feature in the Quartus II software facilitates the seamless
transfer of information between the Quartus II software and EDA tools
and allows you to run ModelSim within the Quartus II software.

To run an EDA simulation or timing analysis tool automatically after a
compilation in the Quartus II software:

1. Select EDA Tool Settings (Assignments menu) and set the
Simulation Tool Name to one of the following:

ModelSim (Verilog Output from Quartus II)
ModelSim (VHDL Output from Quartus II)
ModelSim-Altera (Verilog Output from Quartus II)
ModelSim-Altera (VHDL Output from Quartus II)

1 Make sure you turn on Run this tool automatically after
compilation in the Simulation page under EDA Tool Settings
in the Settings dialog box (Assignments menu).

2. Compile the design.

The Quartus II software creates a simulation work directory, compiles the
appropriate design files and simulation libraries, and launches the EDA
simulation tool.

UNIX workstations only: to run ModelSim automatically from the
Quartus II software using the NativeLink feature, you must add the
following environment variables to your .cshrc:

QUARTUS_INI_PATH <ModelSim installation directory> r

1–20 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Software
Licensing &
Licensing Set-
Up

License the ModelSim-Altera software through a parallel port software
guard (T-guard), FIXEDPC license, or a network FLOATNET or
FLOATPC license. Each Altera software subscription includes a license to
either VHDL or Verilog HDL. Network licenses with multiple users may
have their licenses split between VHDL and Verilog HDL in any ratio.

1 USB is not supported.

Obtain licenses for ModelSim-Altera software from the Altera web site at
www.altera.com. Get licensing information for Model Technology’s
ModelSim directly from Model Technology. See Figure 1–2 for the set-up
process.

1 For ModelSim-Altera versions prior to 5.5b, use the PCLS utility,
included with the software, to set up the license.

Figure 1–2. ModelSim-Altera Licensing Set-up Process

LM_LICENSE_FILE Variable

Altera recommends setting the LM_LICENSE_FILE environment
variable to the location of the license file.

Conclusion Using the ModelSim-Altera simulation software within the Altera FPGA
design flow enables Altera software users to easily and accurately
perform functional and timing simulation on their designs. Proper
verification of designs at the functional and post place-and-route stages
using the ModelSim-Altera software helps ensure design functionality
and success and, ultimately, a quick time-to-market.

 Set the
LM_LICENSE_FILE

variable

Finish

No

Yes

Initial installation

 Is
ModelSim-Altera
properly licensed?

Altera Corporation 1–21
June 2004 Preliminary

Conclusion

1–22 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Altera Corporation 2–1
June 2004 Preliminary

2. Synopsys VCS Support

Introduction This chapter is a getting-started guide to using the Synopsys VCS
software to simulate designs targeting Altera® FPGAs. It provides a step-
by-step explanation of how to perform functional simulations, post-
synthesis simulations, and gate-level timing simulations using the VCS
software.

f This document contains references to features available in the Altera
Quartus® II software version 4.1. For more information on the Quartus II
software version 4.1, go to the Altera web site at www.altera.com.

Software
Requirements

In order to properly simulate your design using VCS, you must first
install the Quartus II software.

Table 2–1 shows the supported Quartus II-VCS version compatibility.

f See the Quartus II Installation & Licensing for PCs or the Quartus II
Installation & Licensing for UNIX and Linux Workstation manuals for more
information on installing the software and the directories created during
the Quartus II software installation.

Using VCS in the
Quartus II
Design Flow

The VCS software supports the following types of simulation:

■ Functional RTL simulations
■ Post-synthesis simulations
■ Gate-level timing simulations

Table 2–1. Supported Quartus II & VCS Software Version Compatibility

Synopsys Altera

VCS software version 7.0 Quartus II software version 3.0

VCS software version 7.0.1 Quartus II software version 4.0

VCS software version 7.1.1 Quartus II software version 4.1

qii53002-2.0

2–2 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Figure 2–1 shows the VCS and Quartus II software design flow.

Figure 2–1. Altera Design Flow with the VCS & Quartus II Software

Functional RTL Simulations

Functional RTL simulations verify the functionality of the design before
synthesis and place-and-route. These simulations are independent of any
Altera FPGA architecture implementation. Once the HDL designs are
verified to be functionally correct, the next step is to synthesize the design
and use the Quartus II software for place-and-route.

To functionally simulate an Altera FPGA design in the VCS software that
uses Altera IP megafunctions, or library of parameterized modules (LPM)
functions, you must include certain libraries during the compilation.

Design Entry

Synthesis

Place-and-Route

Functional RTL Simulation

Gate-Level Timing
Simulation

Altera IP

Functional
Models

Post-
Synthesis

Models

Gate-Level
Models

Testbench

Verilog Output
File (.vo)

Standard Delay
Format Output

 File (.sdo)

Post-Synthesis
Simulation

Altera Corporation 2–3
June 2004 Preliminary

Using VCS in the Quartus II Design Flow

Table 2–2 summarizes the Verilog library files that are required to compile
library of parameterized modules (LPM) functions and Altera
megafunctions.

The files in Table 2–2 are installed with a Quartus II installation. You can
find these files in the <path to Quartus II installation>\eda\sim_lib
directory.

The following VCS command describes the command-line syntax to
perform a functional simulation with a pre-existing library:

vcs -R <test bench>.v <design name>.v
–v <Altera library file>.v

Functional RTL Simulation with Altera Memory Blocks

The VCS software supports functional simulation of complex Altera
memory blocks such as lpm_ram_dp and altsyncram. You can create
these memory blocks with the Quartus II MegaWizard® Plug-In Manager,
which can be initialized with power-up data via a hexidecimal (.hex) or
Memory Initialization File (.mif). The lpm_file parameter included in
the MegaWizard-generated file points to the path of the HEX file or MIF
that is used to initialize the memory block. You can create a HEX file or
MIF through the Quartus II software.

However, the VCS software cannot read a HEX file or MIF format.
Therefore, in order to perform functional simulation of Altera memory
blocks in the VCS software, you must perform the following steps:

1. Convert a HEX file or MIF to a RAM Initialization File (.rif)

Table 2–2. Altera Verilog Functional/Behavioral Simulation Library Files

Library File Description

altera_mf.v Libraries that contain simulation models for Altera
megafunctions.

stratixgx_mf.v (1) Libraries that contain simulation models for Stratix™ GX
devices.

220model.v Libraries that contain simulation models for Altera LPM
functions version 2.2.0.

sgate.v Libraries that contain simulation models for Altera IP

Note to Table 2–2:
(1) When performing a functional RTL simulation of StratixGX design you will need

to compile the stratixgx_mf.v, sgate.v, & 220model.v

2–4 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

2. Modify the MegaWizard-generated file

3. Compile the nopli.v file

f For more information on creating a MIF, see Quartus II Help.

Converting a HEX File or MIF to a RIF

A RIF is an ASCII text file that you can use with tools from electronic
design automation (EDA) vendors. You can create a RIF by converting an
existing MIF or HEX file using the Export Current File As command in
the Quartus II software. This option is available through the File menu
while the Quartus II memory editor is open.

Modifying the MegaWizard-Generated File

You must modify the MegaWizard-generated file so that it includes the
path to the newly created RIF. You must modify the lpm_file
parameter. The following example shows the entry that you must change:

lpm_ram_dp_component.lpm_outdata = "UNREGISTERED",
lpm_ram_dp_component.lpm_file = "<path to RIF>"
lpm_ram_dp_component.use_eab = "ON",

Compiling nopli.v

The nopli.v file is included in the
<path to Quartus II installation>\eda\sim_lib directory. This file
contains the following definition:

`define NO_PLI 1

This basic definition instructs the VCS compile to read in the RIF.

The following VCS command simulates a design that includes Altera
RAM blocks that require memory initialization:

vcs -R <path to Quartus installation>\eda
\sim_lib\nopli.v <test bench>.v
<design name>.v –v <Altera library file>.v

Post-Synthesis Simulation

A post-synthesis simulation verifies the functionality of a design after
synthesis has been performed. You can create a post-synthesis netlist in
the Quartus II software and use this netlist to perform a post-synthesis

Altera Corporation 2–5
June 2004 Preliminary

Using VCS in the Quartus II Design Flow

simulation in VCS. Once the post-synthesis version of the design has been
verified, the next step is to place-and-route the design in the target
architecture using the Quartus II Fitter.

Generating a Post-Synthesis Simulation Netlist

The following steps describe the process of generating a post-synthesis
simulation netlist in the Quartus II software:

1. Perform Analysis & Synthesis:

Choose Start > Start Analysis & Synthesis (Processing menu).

2. Enable the Generate Netlist for Functional Simulation Only:

Choose Settings (Assignments menu). In the Category list, select
EDA Tool Settings (expand if necessary) > Simulation. In the
Simulation section of the window, choose VCS in the Tool name list,
as shown in Figure 2–2.

Figure 2–2. Setting the Tool Name to VCS in the Settings Window

3. Run the EDA Netlist Writer:

2–6 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Choose Start > Start EDA Netlist Writer (Processing menu).

During the EDA Netlist Writer stage, the Quartus II software produces a
Verilog output (.vo) file that can be used for the post-synthesis
simulations in the VCS software. This netlist file is mapped to
architecture-specific primitives. No timing information is included at this
stage.

The resulting netlist is located in the <project folder>/simulation/VCS
directory. This netlist, along with the device family library listed in
Table 2–3 on page 2–7, can be used to perform a post-synthesis simulation
in VCS.

The following VCS commands describes the command-line syntax used
to perform a post-synthesis simulation with the appropriate device
family library listed in Table 2–3 on page 2–7:

vcs -R <testbench.v> <post synthesis netlist.vo> -v <altera device
family library.v>

Gate-Level Timing Simulation

A gate-level timing simulation verifies the functionality of the design
after place-and-route has been performed. You can create a post-place-
and-route netlist in the Quartus II software and use this netlist to perform
a gate-level timing simulation in VCS.

Generating a Gate-Level Timing Simulation Netlist in Quartus II

The following steps describe the process of generating a gate-level timing
simulation netlist in the Quartus II software:

1. Start Compilation:

Choose Start > Start Compilation (Processing menu).

2. When compilation has completed successfully, set the Tool name to
VCS:

Choose Settings (Assignments menu). In the Category list, select
EDA Tool Settings (expand if necessary) > Simulation. In the
Simulation section of the window, choose VCS in the Tool name list,
as shown in Figure 2–2.

3. Run the EDA Netlist Writer:

Choose Start > Start EDA Netlist Writer (Processing menu).

Altera Corporation 2–7
June 2004 Preliminary

Using VCS in the Quartus II Design Flow

During the EDA Netlist Writer stage, the Quartus II software produces a
Verilog output (.vo) netlist file and a Standard Delay Output (.sdo) file
used for a gate-level timing simulation in the VCS software. This netlist
file is mapped to architecture-specific primitives. The SDO file contains
timing delay information for each architecture primitive. Together, these
files provide an accurate simulation of the design in the Altera FPGA
architecture.

The resulting files will be located in the <project folder>/simulation/VCS
directory. These files, along with the device family library listed in
Table 2–3, can be used to perform a gate-level timing simulation in VCS.

The following VCS command describes the command-line syntax to
perform a post-synthesis simulation with the device family library:

vcs -R <testbench.v> <gate-level timing netlist.vo> -v <altera device
family library.v>

Table 2–3. Altera Gate-Level Simulation Libraries

Library Files Description

apex20k_atoms.v Atom libraries for APEXTM 20K designs

apex20ke_atoms.v Atom libraries for APEX 20KE, APEX 20KC, and ExcaliburTM designs

apexii_atoms.v Atom libraries for APEX II designs

cyclone_atoms.v Atom libraries for CycloneTM designs

flex6000_atoms.v Atom libraries for FLEX® 6000 designs

flex10ke_atoms.v Atom libraries for FLEX 10KE and ACEX® 1K designs

max_atoms.v Atom libraries for MAX® 3000 and MAX 7000 designs

mercury_atoms.v Atom libraries for MercuryTM designs

stratix_atoms.v Atom libraries for Stratix designs

stratixgx_atoms.v
stratixgx_hssi_atoms.v

Atom libraries for Stratix GX designs

stratixii_atoms.v Atom libraries for Stratix II designs

maxii_atoms.v Atom libraries for MAX II designs

cycloneii_atoms.v Atom libraries for Cyclone II designs

hc_stratix_atoms.v Atom libraries for HardCopy Stratix designs

2–8 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Transport Delays

VCS filters out all pulses that are shorter than the propagation delay
between elements. Enabling the transport delay switches in VCS prevents
the simulation tool from filtering out these pulses. Use the following
switches to ensure that all signal pulses are seen in the simulation results:

+transport_path_delays

Use this switch when the pulses in your simulation may be shorter than
the delay within a gate-level primitive. For this option to work you must
also include the +pulse_e/number and +pulse_r/number compile-time
options.

+transport_int_delays

Use this switch when the pulses in your simulation may be shorter than
the interconnect delay between gate-level primitive. For this option to
work you must also include the +pulse_int_e/number and
+pulse_int_r/number compile-time options.

1 For more information on either of these switches refer to the
VCS User Guide installed with the tool.

The following VCS command describes the command-line syntax to
perform a post-synthesis simulation with the device family library:

vcs -R <testbench.v> <gate-level netlist.vo> -v <altera device family
library.v> +transport_int_delays +pulse_int_e/0
+pulse_int_r/0 +transport_path_delays +pulse_e/0
+pulse_r/0

Common VCS
Compile
Switches

The VCS software has a set of switches that help you simulate your
design. Table 2–4 lists some of the switches that are available.

Table 2–4. Device Family Library Files

Library Description

-R Runs the executable file immediately.

-RI Once the compile has completed, instructs the VCS software to automatically
launch VirSim.

-v <library filename> Specifies a Verilog library file (i.e., 220model.v or alteramf.v). The VCS
software looks in this file for module definitions that are found in the source code.

Altera Corporation 2–9
June 2004 Preliminary

Using VirSim: The VCS Graphical Interface

f For more information on any VCS switch, refer to the VCS User Guide.

Using VirSim:
The VCS
Graphical
Interface

VirSim is the graphical debugging system for the VCS software. This tool
is included with the VCS software and can be invoked by using the -I
compile-time switch when compiling a design. The following VCS
command describes the command-line syntax for compiling and loading
a timing simulation in VirSim:

vcs -RI <test bench>.v <design name>.vo
-v <path to Quartus II installation>\eda\sim_lib\
<device family>_atoms.v +compsdf

f For more information on using VirSim, see the VirSim User Manual
included in the VCS installation.

VCS Debugging
Support⎯ VCS
Command-Line
Interface

The VCS software has an interactive non-graphical debugging capability
that is very similar to other UNIX debuggers such as GNU debugger
(GDB). The VCS CLI can be used to halt simulations at user-defined break
points, force registers with values, and display values of registers. To
enable the non-graphical capability, you must use the +cli run-time
switch. To use the VCS CLI to debug your Altera FPGA design, use the
following command:

vcs -R <test bench>.v <design name>.vo
-v <path to Quartus II installation>\eda\sim_lib\
<device family>_atoms.v +compsdf +cli

-y <library directory> Specifies a Verilog library directory. The VCS software looks for library files in this
folder that contain module definitions that are instantiated in the source code.

+compsdf Indicates that the VCS compiler includes the back-annotated SDF file in the
compilation.

+cli After successful completion of compilation, Command Line Interface (CLI) Mode
is entered.

+race Specifies that the VCS software generate a report that indicates all of the race
conditions in the design. Default report name is race.out.

-P Compiles user-defined Programming Language Interface (PLI) table files.

-q Indicates the VCS software runs in quiet mode. All messages are suppressed.

Table 2–4. Device Family Library Files

Library Description

2–10 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

The +cli command takes an optional number argument that specifies
the level of debugging capability. As the optional debugging capability is
increased, the overhead incurred by the simulation is increased, resulting
in an increase in simulation times.

f For more information on the +cli switches, see the VCS User Guide
included in the VCS installation.

Using PLI
Routines with
the VCS
Software

The VCS software can interface your custom-defined C code with Verilog
source code. This interface is known as PLI. This interface is extremely
useful because it allows advanced users to define their own system tasks
that currently may not exist in the Verilog language.

Preparing & Linking C Programs to Verilog Code

When compiling the source code, the C code must include a reference to
the vcsuser.h file. This file defines PLI constants, data structures, and
routines that are necessary for the PLI interface. This file is included with
the VCS installation and can be found in the $VCS_HOME\lib directory.

Once the C code is complete, you must create an object file (.o). Create the
object file by using the following command:

gcc -c my_custom_function.c

Next, you must create a PLI table file (.tab). This file maps the C program
task to the matching task $task in the Verilog source code. You can create
the TAB file using a standard text editor. The following is an example of
an entry in the TAB file:

$my_custom_function call=my_custom_function acc+=rw*

The Verilog code can now include a reference to the user-defined task. To
compile an Altera FPGA design that includes a reference to a user-
defined system task, type the following at the command-line prompt:

vcs -R <test bench>.v <design name>.v
-v <Altera library file>.v –P <my_tabfile.tab>
<my_custom_function.o>

Scripting
Support

Run procedures and create settings described in this chapter in a Tcl
script. You can also run some procedures at a command prompt. For more
information about Tcl scripting, see the Tcl Scripting chapter in the
Quartus II Handbook Volume 2. For more information about command-

Altera Corporation 2–11
June 2004 Preliminary

Scripting Support

line scripting, see theCommand-Line Scripting chapter in the Quartus II
Handbook Volume 2. For detailed information about scripting command
options, see the Qhelp utility.

Type this command to start it:

quartus_sh --qhelp

Generating a Post-Synthesis Simulation Netlist for VCS

You can use the Quartus II software to generate a post-synthesis
simulation netlist with Tcl commands or with a command at a command
prompt.

Tcl Commands

Use the following Tcl commands:

set_global_assignment –name EDA_OUTPUT_DATA_FORMAT "VERILOG"
set_global_assignment -name EDA_SIMULATION_TOOL “VCS”
set_global_assignment –name EDA_GENERATE_FUNCTIONAL_NETLIST ON

Command Prompt

Use the following command to generate a simulation output file for the
VCS simulator; specify vhdl or verilog for the format:

quartus_eda <project name> --simulation=on --format=<format> --tool=vcs
--functional

Generating a Gate-Level Timing Simulation Netlist for VCS

You can use the Quartus II software to generate a gate-level timing
simulation netlist with Tcl commands or with a command at a command
prompt.

Tcl Commands

set_global_assignment –name EDA_OUTPUT_DATA_FORMAT "VERILOG"
set_global_assignment -name EDA_SIMULATION_TOOL “VCS”

Command Prompt

Use the following command to generate a simulation output file for the
VCS simulator. Specify vhdl or verilog for the format.

quartus_eda <project name> --simulation=on --format=<format> --tool=vcs

2–12 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Conclusion You can use the VCS software in your Altera FPGA design flow easily and
accurately perform simulations, post-synthesis simlulations, gate-level
functional and timing simulations.

Altera Corporation 3–1
August 2004

3. Cadence NC-Sim Support

Introduction This chapter is a getting started guide to using the Cadence NC family of
simulators in Altera® FPGA design flows. The NC family is comprised of
the NC-Sim, NC-Verilog, NC-VHDL, Verilog, and VHDL Desktop
simulators. This chapter provides step-by-step explanations of the basic
NC-Sim, NC-Verilog, and NC-VHDL functional and gate-level timing
simulations. It also describes the location of the simulation libraries and
how to automate simulations.

f This document contains references to features available in the Altera
Quartus® II version 4.1 software. See the Altera web site at
www.altera.com for information on the Quartus II version 4.1 software.

Software
Requirements

You must first install the Quartus II software before using it with
Cadence NC simulators. The Quartus II/Cadence interface is
automatically installed when the Quartus II software is installed on your
computer.

Table 3–1 shows which Cadence NC simulator version is compatible with
a specific Quartus II software version.

f See the Quartus II Installation & Licensing for PCs or Quartus II Installation
& Licensing for UNIX and Linux Workstations manuals for more
information on installing the software, and the directories that are
created during the Quartus II installation.

Simulation Flow
Overview

The Cadence NC software supports the following simulation flows:

■ Functional/RTL simulation
■ Gate-level timing simulation

Figure 3–1 shows the Quartus II/Cadence design flow.

Table 3–1. Compatibility between Software Versions

Cadence NC Simulators
(UNIX)

Cadence NC Simulators
(PC)

Cadence NC Simulators
(Linux) Quartus II Software

Version 5.0 s005
Version 5.1 s012

Version 5.0 s006
Version 5.1 s010

Version 5.0 p001
Version 5.0 p001

Version 4.0
Version 4.1

qii53003-2.1

3–2 Altera Corporation
August 2004

Quartus II Handbook, Volume 3

Figure 3–1. Altera Design Flow with Cadence NC Simulators

Functional/RTL Simulation

Functional/RTL simulation verifies the functionality of your design.
When you perform a functional simulation with Cadence NC simulators,
you use your design files (Verilog HDL or VHDL) and the models
provided with the Quartus II software. These Quartus II models are
required if your design uses library of parameterized modules (LPM)
functions or Altera-specific megafunctions. See “Functional/RTL
Simulation” on page 3–5 for more information on how to perform this
simulation.

Design Entry

Synthesis

Place-and-Route

Functional Simulation

Gate-Level Simulation

Altera IP

Functional
Models

Gate-Level
Models

Testbench

Standard Delay
Format Output

 File (.sdo)

Verilog Output
File (.vo) or VHDL
Output File (.vho)

Altera Corporation 3–3
August 2004

Simulation Flow Overview

Gate-Level Timing Simulation

After performing place-and-route in the Quartus II software, the software
generates a Verilog Output File (.vo) or VHDL Output File (.vho) and a
Standard Delay Format (SDF) Output File (.sdo) for gate-level timing
simulation. The netlist files map your design to architecture-specific
primitives. The SDO contains the delay information of each architecture
primitive and routing element specific to your design. Together, these
files provide an accurate simulation of your design with the selected
Altera FPGA architecture. See “Gate-Level Timing Simulation” on
page 3–18 for more information on how to perform this simulation.

Operation Modes

You can use either the command-line mode or graphical user interface
(GUI) mode to simulate your design with NC simulators. To simulate in
command-line mode, use the files shown in Table 3–2.

You can launch the NC GUI in UNIX or PC environments by typing
nclaunch r at a command prompt.

1 This chapter describes how to perform simulation using both
the command-line and the GUI.

Table 3–2. Command-Line Programs

Program Function

ncvlog or
ncvhdl

NC-Verilog (ncvlog) compiles your Verilog HDL code into a Verilog
Syntax Tree (.vst) file. ncvlog also performs syntax and static
semantics checks.

NC-VHDL (ncvhdl) compiles your VHDL code into a VHDL Syntax
Tree (.ast) file. ncvhdl also performs syntax and static semantics
checks.

ncelab NC-Elab (ncelab) elaborates the design. ncelab constructs the
design hierarchy and establishes signal connectivity. This program
also generates a Signature File (.sig) and a Simulation SnapShot
File (.sss).

ncsim NC-Sim (ncsim) performs mixed-language simulation. This
program is the simulation kernel that performs event scheduling
and executes the simulation code.

3–4 Altera Corporation
August 2004

Quartus II Handbook, Volume 3

Quartus II/NC Simulation Flow Overview

The Quartus II/Cadence NC simulation flow is described below. A more
detailed set of instructions are given in “Functional/RTL Simulation” on
page 3–5 and “Gate-Level Timing Simulation” on page 3–18.

1. Set up your working environment (UNIX only).

For UNIX workstations, you must set several environment variables
to establish an environment that facilitates entering and processing
designs.

2. Create user libraries.

Create a file that maps logical library names to their physical
locations. These library mappings include your working directory
and any design-specific libraries, e.g., for Altera LPM functions or
megafunctions.

3. Compile source code and testbenches.

You compile your design files at the command-line using ncvlog
(Verilog HDL files) or ncvhdl (VHDL files) or by using the GUI.
During compilation, the NC software performs syntax and static
semantic checks. If no errors are found, compilation produces an
internal representation for each HDL design unit in the source files.
By default, these intermediate objects are stored in a single, packed
library database file in your working directory.

4. Elaborate your design.

Before you can simulate your model, the design hierarchy must be
defined in a process called elaboration. Use ncelab in command-line
mode or choose Elaborator (Tools menu) in GUI mode to elaborate
the design.

5. Add signals to your waveform.

Before simulating, specify which signals to view in your waveform
using a simulation history manager (SHM) database.

6. Simulate your design.

Run the simulator with the ncsim program (command-line mode) or
by clicking Run in the SimVision Console window.

Altera Corporation 3–5
August 2004

Functional/RTL Simulation

Functional/RTL
Simulation

The following sections provide detailed instructions for performing
functional/RTL simulation using the Quartus II software and Cadence
NC tools.

Set Up Your Environment

This section describes how to set up your working environment for the
Quartus II/NC-Verilog or NC-VHDL software interface.

1 (For UNIX workstations only) The information presented here
assumes that you are using the C shell and that your Quartus II
system directory is /usr/quartus. If not, you must use the
appropriate syntax and procedures to set environment variables
for your shell.

1. (For UNIX workstations only) Add the following environment
variables to your .cshrc file:

setenv QUARTUS_ROOTDIR /usr/quartus
setenv CDS_INST_DIR <NC installation directory>

2. Add $CDS_INST_DIR/tools/bin directory to the PATH
environment variable in your .cshrc file. Make sure this path are
placed before the Cadence hierarchy path.

3. Add /usr/dt/lib and /usr/ucb/lib to the LD_LIBRARY_PATH
environment variable in your .cshrc file.

4. Source your .cshrc file by typing source .cshrc r at the
command prompt.

Following is an example setting these environment variables.

Setting Environment Variables
setenv QUARTUS_ROOTDIR /usr/quartus
setenv CDS_INST_DIR <NC installation directory>
setenv PATH ${PATH}:<NC installation directory>/tools.sun4v/bin:/
setenv LD_LIBRARY_PATH /usr/ucb/lib:/usr/lib:/usr/dt/lib:/usr/bin/X11:<NC installation directory>

/tools.sun4v/lib:$LD_LIBRARY_PATH
setenv QUARTUS_INIT_PATH <NC installation directory>/tools.sun4v/bin

3–6 Altera Corporation
August 2004

Quartus II Handbook, Volume 3

Create Libraries

Before simulating with NC simulators, you must set up libraries using a
file named cds.lib. The cds.lib file is an ASCII text file that maps logical
library names—e.g., your working directory or the location of resource
libraries such as models for LPM functions—to their physical directory
paths. When you launch an NC tool, the tool reads cds.lib to determine
which libraries are accessible and where they are located. NC tools
include a default cds.lib file, which you can modify for your project
settings.

You can use more than one cds.lib file. For example, you can have a
project-wide cds.lib file that contains library settings specific to a project
(e.g., technology or cell libraries) and a user cds.lib file. The following
sections describe how to create/edit a cds.lib file, including:

■ Basic Library Setup
■ LPM Function & Altera Megafunction Libraries

Basic Library Setup

You can create cds.lib with any text editor. The following examples show
how you use the DEFINE statement to bind a library name to its physical
location. The logical and physical names can be the same or you can select
different names. The DEFINE statement usage is:

DEFINE <library name> <physical directory path>

For example, a simple cds.lib for Verilog HDL contains the lines:

DEFINE lib_std /usr1/libs/std_lib
DEFINE worklib ../worklib

Using Multiple cds.lib Files
Use the INCLUDE or SOFTINCLUDE statements to reference another cds.lib
file within a cds.lib file. The syntax is:

INCLUDE <path to another cds.lib>

or

SOFTINCLUDE <path to another cds.lib>

1 For the Windows operating system, enclose the path to an
included cds.lib file in quotation marks if there are spaces in any
directory names.

Altera Corporation 3–7
August 2004

Functional/RTL Simulation

For VHDL or mixed-language simulation, you must use an INCLUDE or
SOFTINCLUDE statement in the cds.lib file to include your default cds.lib
in addition to the DEFINE statements. The syntax is:

INCLUDE <path to NC installation>/tools/inca/files/cds.lib

or

INCLUDE $CDS_INST_DIR/tools/inca/files/cds.lib

The default cds.lib file, provided with NC tools, contains a
SOFTINCLUDE statement to include another cds.lib files such as
cdsvhdl.lib and cdsvlog.lib. These files contain library definitions for
IEEE libraries, Synopsys libraries, etc.

Create cds.lib: Command-Line Mode
To edit cds.lib from the command line, perform the following steps:

1. Create a directory for the work library and any other libraries you
need using the command:

mkdir <physical directory> r

For example:

mkdir worklib r

2. Using a text editor, create a cds.lib file and add the following line to
it:

DEFINE <library name> <physical directory path>

For example:

DEFINE worklib ./worklib

Create cds.lib: GUI Mode
To create cds.lib using the GUI, perform the following steps:

1. Type nclaunch at the command line to launch the GUI.

2. If the NCLaunch window is not in multiple step mode, switch to
multistep mode by selecting Switch to Multiple Step (File menu).

3. Change your design directory by selecting Set Design Directory
(File menu).

3–8 Altera Corporation
August 2004

Quartus II Handbook, Volume 3

The Set Design Directory window opens, as shown in Figure 3–2.

4. Click on the Browse button (...) to navigate to your project
directory.

5. Click Create cds.lib File and choose the appropriate libraries to be
included in the New cds.lib File dialog box.

6. Click New under Work Library.

7. Enter your new work library name, e.g., worklib.

8. Click OK. The new library is displayed under Work Library.
Figure 3–2 shows an example using the directory name worklib.

Figure 3–2. Creating a Work Directory in GUI Mode

9. Click OK.

1 You can edit cds.lib by right-clicking the cds.lib filename in
the right pane and choosing Edit from the pop-up menu.

LPM Function & Altera Megafunction Libraries

Altera provides behavioral descriptions for LPM functions and Altera-
specific megafunctions. You can implement the megafunctions in a
design using the Quartus II MegaWizard™ Plug-In Manager or by
instantiating them directly from your design file. If your design uses LPM
functions or Altera megafunctions you must set up resource libraries so
that you can simulate your design in NC tools.

Altera Corporation 3–9
August 2004

Functional/RTL Simulation

1 Many LPM functions and Altera megafunctions use memory
files. You must convert the memory files for use with NC tools
before simulating. To convert these files into a format the NC
tools can read follow the instruction in section “Simulating a
Design with Memory” on page 3–10.

Altera provides megafunction behavioral descriptions in the files shown
in Table 3–1. These library files are located in the
<Quartus II installation>/eda/sim_lib directory.

For more information on LPM functions and Altera megafunctions, see
the Quartus II Help.

To set up a library for LPM functions, create a new directory and add the
following line to your cds.lib file:

DEFINE lpm <path>/<directory name>

To set up a library for Altera Megafunctions, add the following line to
your cds.lib file:

DEFINE altera_mf <path>/<directory name>

Table 3–3. Megafunction Behavioral Description Files

Megafunction Verilog HDL VHDL

LPM 220model.v 220model.vhd (1)
220model_87.vhd (2)
220pack.vhd

Altera
Megafunction

altera_mf.v altera_mf.vhd (1)
altera_mf_87.vhd (2)
altera_components.vhd

ALTGXB (3) stratixgx_mf.v(4) stratixgx_mf.vhd(4)
stratixgx_mf_components.vhd(4)

IP Functional
Simulation Model

sgate.v sgate.vhd
sgate_pack.vhd

Notes to Table 3–3:
(1) Use this model with VHDL 93.
(2) Use this model with VHDL 87.
(3) As an alternative you can map to the precompiled library <Quartus II

installation>/eda/sim_lib/modelsim/<verilog|vhdl>/altgxb
(4) The ATGXB library files require the LPM and SGATE libraries.

3–10 Altera Corporation
August 2004

Quartus II Handbook, Volume 3

Simulating a Design with Memory

Many Altera functional models (220model.v and altera_mf.v) use a
memory file, which is a Hexadecimal (Intel-Format) File (.hex) or a
Memory Initialization File (.mif). However, NC tools cannot read a HEX
or MIF. Perform the following steps to convert these files into a format the
tools can read.

1. Convert your HEX or MIF into a RAM Initialization File (.rif) by
performing the following steps in the Quartus II software:

1 You can also use the hex2rif.exe and mif2rif.exe programs,
located in the <Quartus II installation directory>/bin
directory, to convert the files at the command line. Use the
-? option to view their usage.

a. Open the HEX or MIF file.

b. Choose Export (File menu).

c. If necessary, in the Export dialog box, select a target directory in
the Save in list.

d. Select a file to overwrite in the Files list or type the file name in
the File name box.

e. If necessary, in the Save as type list, select RAM Initialization
File (.rif).

f. Click Export.

2. Using a text editor, modify the lpm_file parameter in the
megafunction’s wizard-generated file to point to the RIF.
Alternatively, you can rerun the wizard and point to the RIF as the
memory initialization file.

The following example shows the entry that you must change:

lpm_ram_dp_component.lpm_outdata = “UNREGISTERED”
lpm_ram_dp_component.lpm_file = “<path to RIF>”
lpm_ram_dp_component.use_eab = “ON”

Altera Corporation 3–11
August 2004

Functional/RTL Simulation

Compile Source Code & Testbenches

When using NC simulators, you compile files with ncvlog (for
Verilog HDL files or ncvhdl (for VHDL files). Both ncvlog and ncvhdl
perform syntax checks and static semantic checks. If no errors are found,
compilation produces an internal representation for each HDL design
unit in the source files. By default, these intermediate objects are stored in
a single, packed, library database file in your working library directory.

Compilation: Command-Line Mode

To compile from the command line, use one of the following commands.

1 You must specify a work directory before compiling.

Verilog HDL
ncvlog <options> -work <library name> <design files> r

VHDL
ncvhdl <options> -work <library name> <design files> r
If your design uses LPM or Altera megafunctions, you also need to
compile the Altera-provided functional models. The following
commands shows examples of each.

Verilog HDL:
ncvlog –WORK lpm 220model.v r
ncvlog –WORK altera_mf altera_mf.v r
If your design also uses a memory initialization file, compile the nopli.v
file, which is located in the <Quartus II installation>/eda/
sim_lib directory, before you compile your model. For example:

ncvlog –WORK lpm nopli.v 220model.v r
ncvlog –WORK altera_mf nopli.v altera_mf.v r
Or use the NO_PLI command during compilation:

ncvlog –DEFINE “NO_PLI=1” –WORK lpm 220model.v r
ncvlog –DEFINE “NO_PLI=1” –WORK altera_mf altera_mf.v r

VHDL:
ncvhdl –V93 –WORK lpm 220pack.vhd r
ncvhdl –V93 –WORK lpm 220model.vhd r
ncvhdl –V93 –WORK altera_mf altera_mf_components.vhd r
ncvhdl –V93 –WORK altera_mf altera_mf.vhd r

3–12 Altera Corporation
August 2004

Quartus II Handbook, Volume 3

Compilation: GUI Mode

To compile using the GUI, perform the following steps.

1. Right-click a library filename in the NCLaunch window.

2. Choose NCVlog (Verilog HDL) or NCVhdl (VHDL).

The Compile Verilog or Compile VHDL dialog boxes open, as
shown in Figure 3–3. Alternatively, you can choose NCVlog or
NCVhdl (Tools menu).

Figure 3–3. Compiling Verilog HDL & VHDL Files

3. Select the files and click OK in the Compile Verilog or Compile
VHDL dialog box to begin compilation. The dialog box closes and
returns you to NCLaunch.

1 The command-line equivalent argument displays at the
bottom of the NCLaunch window.

Altera Corporation 3–13
August 2004

Functional/RTL Simulation

Elaborate Your Design

Before you can simulate your design, you must define the design
hierarchy in a process called elaboration. With NC simulators, you use the
language-independent ncelab program to elaborate your design. The
ncelab program constructs a design hierarchy based on the design’s
instantiation and configuration information, establishes signal
connectivity, and computes initial values for all objects in the design. The
elaborated design hierarchy is stored in a simulation snapshot, which is
the representation of your design that the simulator uses to run the
simulation. The snapshot is stored in the library database file along with
the other intermediate objects generated by the compiler and elaborator.

1 If you are running the NC-Verilog simulator with the single-step
invocation method (ncverilog), and want to compile your
source files and elaborate the design with one command, use the
+elaborate option to stop the simulator after elaboration. For
example: ncverilog +elaborate test.v r.

Elaboration: Command-Line Mode

To elaborate your Verilog HDL or VHDL design from the command line,
use the following command:

ncelab [options][<library>.]<cell>[:<view>] r

For example:

ncelab worklib.lpm_ram_dp_test:entity r
1 In verilog, if a timescale has been specified, the TIMESCALE

option is not necessary.

You can set your simulation timescale using the –TIMESCALE <arguments>
option. For example:

ncelab –TIMESCALE 1ps/1ps r
worklib.lpm_ram_dp_test:entity r
1 To view the elements in your library and which views are

available, use the ncls program. For example the command
ncls –library worklib r displays all of the cells and their
views in your current worklib directory.

f For more information on the ncls program, see the Cadence
NC-Verilog Simulator Help or Cadence NC-VHDL Simulator Help.

3–14 Altera Corporation
August 2004

Quartus II Handbook, Volume 3

1 If you are running the NC-Verilog simulator using multistep
invocation, run ncelab with command-line options as shown
above. You can specify the arguments in any order, but
parameters to options must immediately follow the options they
modify.

Elaboration: GUI Mode

To elaborate using the GUI, perform the following steps.

1. Expand your current working library in the right panel.

2. Select and open the entity/module name you want to elaborate.

3. Right-click the view you want to display.

4. Choose NCElab. The Elaborate dialog box opens. Or you can
choose Elaborator from the Tools menu.

5. Set the simulation timescale using the command –TIMESCALE
<arguments> under Other Options. See Figure 3–4.

Figure 3–4. Elaborating the Design

6. Click OK in the Elaborate dialog box to begin elaboration. The
dialog box closes and returns you to NCLaunch.

Altera Corporation 3–15
August 2004

Functional/RTL Simulation

Add Signals to View

You use a SHM database, which is a Cadence proprietary waveform
database, to store the selected signals you want to view. Before you can
specify which signals to view, you must create this database by adding
commands to your code. Alternately, you can create a Value Change
Dump File (.vcd) to store the simulation history.

f For more information on using a VCD, see the NC-Sim user manual.

Adding Signals: Command-Line Mode

To create an SHM database you specify the system tasks described in
Table 3–4 in your Verilog HDL code.

1 For VHDL, you can use the Tcl command interface or C function
calls to add signals to a database. See Cadence documentation for
details.

Following shows a simple example.

Example SHM Verilog HDL Code
initial

begin
$shm_open (“waves.shm”);
$shm_probe (“AS”);

end

For more information on these system tasks, see the NC-Sim user manual.

Table 3–4. SHM Database System Tasks

System Task Description

$shm_open(“<filename>.shm”); Open database. You can provide a filename; if you do not specify one, the
default is waves.shm. You must create a database before you can open
it; if one does not exist, the tools create it for you.

$shm_probe(“[A|S|C]”); Probe signals. You can specify the signals to probe; if you do not specify
signals, the default is all ports in the current scope.

A probes all nodes in the current scope.
S probes all nodes below the current scope.
C probes all nodes below the current scope and in libraries.

$shm_save; Save the database.

$shm_close; Close the database.

3–16 Altera Corporation
August 2004

Quartus II Handbook, Volume 3

Adding Signals: GUI Mode

To add signals in GUI mode, perform the following steps.

1. Load the design.

a. Click the + icon next to the Snapshots directory to expand it.

b. Right-click the lib.cell:view you want to simulate, and choose
NC-Sim (right button pop-up menu).

c. Click OK in the Simulate dialog box.

After you load the design, the SimVision Console and SimVision
Design Browser windows appear as shown in Figure 3–5 and Figure 3–6.

Figure 3–5. SimVision Console

Figure 3–6. SimVision Design Browser

Altera Corporation 3–17
August 2004

Functional/RTL Simulation

2. In the Design Browser window, select a module in the left panel
and select the signals you want to view in the waveform by
selecting the signal names in the Signals/Variable list.

3. To send the selected signals to the Waveform Viewer:

Select the Send to Waveform Viewer icon in the Send To area (the
upper-right area of the Design Browser window),

or

Choose the Send to Waveform Window item in the right mouse click
menu, as shown in Figure 3–7.

A waveform window appears with all of your signals and you are now
ready to simulate your testbench/design.

Figure 3–7. Selecting Signals in the Design Browser Window

Simulate Your Design

After you have compiled and elaborated your design, you can simulate
using ncsim. The ncsim program loads the ncelab-generated snapshot as
its primary input. It then loads other intermediate objects referenced by
the snapshot. If you enable interactive debugging, it may also load HDL

3–18 Altera Corporation
August 2004

Quartus II Handbook, Volume 3

source files and script files. The simulation output is controlled by the
model or debugger. The output can include result files generated by the
model, SHM database, or VCD.

Functional/RTL Simulation: Command-Line Mode

To perform functional/RTL simulation of your Verilog HDL or VHDL
design from the command line, use the following command:

ncsim [options][<library>.]<cell>[:<view>] r

For example:

ncsim worklib.lpm_ram_dp:syn r
Table 3–5 shows some of the options you can use with ncsim.

Functional/RTL Simulation: GUI Mode

You can run and step through simulation of your Verilog HDL or VHDL
design in the GUI. Select Run from the Simulation menu to begin
simulation.

1 If you skipped “Add Signals to View” on page 3–15, you must
load the design before simulating. See step 1 “Load the design.”
on page 3–16 for instructions.

Gate-Level
Timing
Simulation

The following sections provide detailed instructions for performing
timing simulation using Quartus II output files and simulation libraries
and Cadence NC tools.

Quartus II Simulation Output Files

When you compile your Quartus II design, the software generates VO or
VHO files and a SDO file that are compatible with Cadence NC
simulators. To generate these files, perform the following steps in the
Quartus II software.

Table 3–5. ncsim Options

Options Description

-gui Launch GUI mode.

-batch Used for non-interactive mode.

-tcl Used for interactive mode (not required when –gui is used).

Altera Corporation 3–19
August 2004

Gate-Level Timing Simulation

1. Choose EDA Tool Settings (Assignments menu).

2. Click on the “plus” (+) to the left of EDA Tool Settings in the
Category list. This will expand the EDA Tool Settings branch to
show the settings.

3. Choose the Simulation setting. The Simulation page appears as
shown in Figure 3–8.

4. In the Simulation page, select NC-Verilog (Verilog HDL output
from Quartus II) or NC-VHDL (VHDL output from Quartus II) in
the Tool name list. See Figure 3–8.

5. Click OK.

6. Choose Start Compilation (Processing menu).

During compilation, the Quartus II software automatically creates the
directory simulation/ncsim, which contains the VO/VHO, and SDO files
for timing simulation.

Figure 3–8. Quartus II EDA Tool Settings

3–20 Altera Corporation
August 2004

Quartus II Handbook, Volume 3

Quartus II Timing Simulation Libraries

Altera device simulation library files are provided in the <Quartus II
installation>/eda/sim_lib directory. The VO or VHO file requires the
library for the device your design targets. For example, the Stratix™
family has the following libraries:

■ stratix_atoms.v
■ stratix_atoms.vhd
■ stratix_components.vhd

If your design targets a Stratix device, you must set up the appropriate
mappings in your cds.lib. See “Create Libraries” on page 3–20 for more
information.

Set Up Your Environment

Set up your working environment for the Quartus II/NC-Verilog or
NC-VHDL software interface. See the instructions in “Set Up Your
Environment” on page 3–5 for details.

Create Libraries

Create the following libraries for your simulation:

■ A working library
■ The library for the device family your design targets using the

following files in the <Quartus II installation>/eda
/sim_lib directory:

<device_family>_atoms.v
<device_family>_atoms.vhd
<device_family>_components.vhd

■ If your design contains the altgxb megafunction, map to the
precompiled Stratix GX timing simulation model libraries using the
mapping <Quartus II installation>/eda/sim_lib
/ncsim/<verilog|vhdl>/stratixgx_gxb or create a new library
altgxb using the following files in the
<Quartus II installation>/eda/sim_lib directory:

stratixgx_hssi_atoms.v
stratixgx_hssi_atoms.vhd
stratixgx_hssi_components.vhd

Altera Corporation 3–21
August 2004

Gate-Level Timing Simulation

The altgxb library uses the LPM and SGATE libraries. You can use the
following files in the <Quartus II installation>/eda/sim_lib directory to
create the LPM and SGATE libraries:

220model.v
220model.vhd
220pack.vhd
sgate.v
sgate.vhd
sgate_pack.vhd

f See “Basic Library Setup” on page 3–6 and “LPM Function & Altera
Megafunction Libraries” on page 3–8 for step-by-step instructions on
creating libraries.

Compile the Project Files & Libraries

Compile the project files and libraries into your work directory using the
ncvlog or ncvhdl programs or the GUI including the following files:

■ Testbench file
■ Your Quartus II output netlist file (VO or VHO)
■ Atom library file for the device family <device family>_atoms.<v|vhd>
■ For VHDL, <device family>_components.vhd

f See “Compile Source Code & Testbenches” on page 3–11 for instructions
on compiling.

Elaborate the Design

When you elaborate your design, you must include the SDO file. For
Verilog HDL, this process happens automatically. The Quartus II
generated Verilog HDL netlist file reads the SDF file using the system task
call $sdf_annotate. When NC-Verilog elaborates the netlist, ncelab
recognizes the system task and automatically calls nsdfc. However, the
$sdf_annotate system task call does not specify the path. Therefore, you
must copy the SDO file from the Quartus II-created simulation directory
to the NC working directory in which you run the ncelab program. After
you update the path, you can elaborate the design. See “Elaborate Your
Design” on page 3–13 for step-by-step instructions on elaboration.

For VHDL, the Quartus II-generated VHDL netlist file has no system task
calls to locate your SDF file. Therefore, you must compile the SDO file
manually. See “Compiling the Standard Delay Output File (VHDL Only):
Command Line” and “Compiling the Standard Delay Output File (VHDL
Only): GUI” on page 3–22 for information on compiling the SDO file.

3–22 Altera Corporation
August 2004

Quartus II Handbook, Volume 3

Compiling the Standard Delay Output File (VHDL Only): Command Line

To annotate the SDO timing data from the command line, perform the
following steps:

1. Compile the SDO file using the ncsdfc program by typing the
following command at the command prompt:

ncsdfc <project name>_vhd.sdo –output <output name> r

The ncsdfc program generates a <output name>.sdf.X compiled SDF
Output File.

1 If you do not specify an output name ncsdfc uses <project
name>.sdo.X.

2. Specify the compiled SDO file for the project by adding the
following lines to an ASCII SDF command file for the project:

COMPILED_SDF_FILE = "<project name>.sdf.X" SCOPE =
<instance path>

Example SDF Command File
// SDF command file sdf_file
COMPILED_SDF_FILE = "lpm_ram_dp_test_vhd.sdo.X",
SCOPE = :tb,
MTM_CONTROL = "TYPICAL",
SCALE_FACTORS = "1.0:1.0:1.0",
SCALE_TYPE = "FROM_MTM";

After you compile the SDO file, execute the following command to
elaborate the design:

ncelab worklib.<project name>:entity –SDF_CMD_FILE <SDF Command File> r

Compiling the Standard Delay Output File (VHDL Only): GUI

To annotate the SDO timing data in the GUI, perform the following steps:

1. Choose SDF Compiler (Tools menu).

2. In the SDF File box, specify the name of the SDO file for the project.

3. Click OK.

Altera Corporation 3–23
August 2004

Incorporating PLI Routines

When you have finished compiling the SDO file, you can elaborate the
design. See “Elaboration: GUI Mode” on page 3–14 for step-by-step
instructions; however, before clicking OK to begin elaboration, perform
the following additional steps to create the SDF command file:

1. Click Advanced Options in the Elaborate dialog box.

2. Click Annotation in the left pane.

3. Turn on the Use SDF File option in the right pane.

4. Click Edit.

5. Browse to the location of the SDF Command File Name.

6. Browse to the location of the SDO file in the Compiled SDF File Box
and click OK.

7. Click OK to save and exit the SDF Command File dialog box.

Add Signals to View

If you want to add signals to view, see the steps in “Add Signals to View”
on page 3–15.

Simulate Your Design

Simulate your design using the ncsim program as described in “Simulate
Your Design” on page 3–17.

Incorporating
PLI Routines

Designers frequently use programming language interface (PLI) routines
in Verilog HDL testbenches, to perform user- or design-specific functions
that are beyond the scope of the Verilog HDL language. Cadence NC
simulators include the PLI wizard, which helps you incorporate your PLI
routines.

For example, if you are using a HEX file for memory, you can convert it
for use with NC tools using the Altera-provided convert_hex2ver
function. However, before you can use this function, you must build it
and place it in your project directory using the PLI wizard.

3–24 Altera Corporation
August 2004

Quartus II Handbook, Volume 3

This section describes how to dynamically link, dynamically load, and
statically link a PLI library using the convert_hex2ver function as an
example. The following convert_hex2ver source files are located in the
<Quartus II installation>/eda/cadence/verilog-xl directory:

■ convert_hex2ver.c
■ veriuser.c
■ convert_hex2ver.obj

Dynamically Link

To create a PLI dynamic library (.so/.sl), perform the following steps:

1. Run the PLI wizard by typing pliwiz at the command prompt.

2. In the Config Session Name and Directory page, type the name of
the session in the Config Session Name box and type the directory
in which the file should be built in the Config Session Directory
box.

3. Click Next.

4. In the Select Simulator/Dynamic Libraries page, select the
Dynamic Libraries Only option.

5. Click Next.

6. In the Select Components page, turn on the PLI 1.0 Applications
option, select libpli.

7. Click Next.

8. In the Select PLI 1.0 Application Input page, select Existing
VERIUSER (source/object file).

9. Select Source File and click Browse to locate the veriuser.c file that
is provided with the Quartus II software.

The veriuser.c file is located in the following location:

<Quartus II installation>/eda/cadence/verilog-xl

10. Click Next.

11. In the PLI 1.0 Application page, click browse under PLI Source
Files to locate the convert_hex2ver.c file.

Altera Corporation 3–25
August 2004

Incorporating PLI Routines

12. Click Next.

13. In the Select Compiler page, choose your C compiler from the
Select Compiler list box.

An example of a C compiler would be gcc. To allow the PLIWIZ to
find your C compiler, ensure your path variable is set correctly.

14. Click Next.

15. Click Finish.

16. When you are asked if you want to build your targets now, click Yes.

17. Compilation creates the file libpli.so (libpli.dll for PCs), which is
your PLI dynamic library, in your session directory. When you
elaborate your design, the elaborator looks through the path
specified in the LD_LIBRARY_PATH (UNIX) or PATH (PCs)
environment variable, searches for the .so/.dll file, and loads them
when needed.

1 You must modify LD_LIBRARY_PATH or PATH to include the
directory location of your .so/.dll file.

Dynamically Load

To create a PLI library to be loaded with NC-Sim, perform the following
steps:

1. Modify the veriuser.c file located in the following directory:

<Quartus II installation>/eda/cadence/verilog-xl

The following two examples are sections of the original and modified
veriuser.c file.

Original veriuser.c packaged with the Quartus II software

s_tfcell veriusertfs[] =
{
 /*** Template for an entry:
 { usertask|userfunction, data,
 checktf(), sizetf(), calltf(), misctf(),
 "$tfname", forwref?, Vtool?, ErrMsg? },
 Example:
 {usertask, 0, my_check, 0, my_func, my_misctf, "$my_task" },
 ***/
/*** add user entries here ***/
 /* This Handles Binary bit patterns */

3–26 Altera Corporation
August 2004

Quartus II Handbook, Volume 3

 {usertask, 0, 0, 0, convert_hex2ver, 0, "$convert_hex2ver", 1},

 {0} /*** final entry must be 0 ***/
};

Modified veriuser.c for dynamic loading

p_tfcell my_bootstrap ()
 {

static s_tfcell my_tfs[] =
/*s_tfcell veriusertfs[] = */
{
 /*** Template for an entry:
 { usertask|userfunction, data,
 checktf(), sizetf(), calltf(), misctf(),
 "$tfname", forwref?, Vtool?, ErrMsg? },
 Example:
 { usertask, 0, my_check, 0, my_func, my_misctf, "$my_task" },
 ***/
/*** add user entries here ***/
 /* This Handles Binary bit patterns */
 {usertask, 0, 0, 0, convert_hex2ver, 0, "$convert_hex2ver", 1},

 {0} /*** final entry must be 0 ***/
};
return(my_tfs);
 }

1. Run the PLI wizard by typing pliwiz at the command prompt, or by
selecting PLI Wizard (Utilities menu) in the NC Launch window.

2. In the Config Session Name and Directory page, type the name of
the session in the Config Session Name box and type the directory in
which the file should be built in the Config Session Directory box.

3. Click Next.

4. In the Select Simulator/Dynamic Libraries page, select the Dynamic
Libraries Only option.

5. Click Next.

6. In the Select Components page, turn on the PLI 1.0 Applications
option, select loadpli1.

7. Click Next.

8. Type in a name into the Bootstrap Function(s) box.

For example, type in my_bootstrap into the Bootstrap Function(s)
box.

Altera Corporation 3–27
August 2004

Incorporating PLI Routines

9. Type in a name into the Dynamic Library box.

The name entered will be the name of your generated dynamic
library.

For example, type in convert_dyn_lib into the Dynamic Library
box to generate a dynamic library named convert_dyn_lib.so.

10. In the PLI 1.0 Application page, click browse under PLI Source.
Files to locate the convert_hex2ver.c file and the modified veriuser.c
file.

11. Click Next.

12. In the Select Compiler page, choose your C compiler from the
Select Compiler list box.

An example of a C compiler would be gcc. To allow the PLIWIZ to
find your C compiler, ensure your Path variable is set correctly.

13. Click Next.

14. Click Finish.

15. When asked if you want to build your targets now, click Yes.

Compilation generates your dynamic library, cmd_file.nc and
cmd_file.xl into your local directory.

The cmd_file.nc and cmd_file.xl files contain command line options that
should be used with your newly generated dynamic library file.

Use the cmd_file.nc command file with ncelab to perform your
simulations.

ncelab worklib.mylpmrom -FILE cmd_file.nc r

Use the cmd_file.xl command file with verilog-xl or ncverilog to perform
you simulations.

ncverilog -f cmd_file.xl
verilog -f cmd_file.xl

3–28 Altera Corporation
August 2004

Quartus II Handbook, Volume 3

Statically Link

To statically link the PLI library with NC-Sim, perform the following
steps:

1. Run the PLI wizard by typing pliwiz at the command prompt, or
by selecting PLI Wizard (Utilities menu) in the NC Launch window.

2. In the Config Session Name and Directory page, type the name of
the session in the Config Session Name box and type the directory
in which the file should be built in the Config Session Directory box.

3. Click Next.

4. Select NC Simulators and select NC-verilog.

5. Click Next.

6. In the Select Components page, turn on the PLI 1.0 Applications
option, select static.

7. In the Select PLI 1.0 Application Input page, select Existing
VERIUSER (source/object file).

8. Select Source File and click the browse button to locate the
veriuser.c file that is provided with the Quartus II software.

The veriuser.c can be found in the following location:

<Quartus II installation>/eda/cadence/verilog-xl

9. Click Next.

10. In the PLI 1.0 Application page, click Browse under PLI Source.

Files to locate the convert_hex2ver.c file.

11. Click Next.

12. In the Select Compiler page, choose your C compiler from the
Select Compiler list box.

An example of a C compiler would be gcc. To allow the PLIWIZ to
find your C compiler, ensure your Path variable is set correctly.

13. Click Next.

14. Click Finish.

15. To build your targets now, click Yes.

Altera Corporation 3–29
August 2004

Scripting Support

Compilation generates ncelab and ncsim executables into your local
directory. These executables replace the original ncelab and ncsim
executables.

For ncverilog users, you can use the following command to perform your
simulation with the newly generated ncelab and ncsim executables.

ncverilog +ncelabexe+<path to ncelab> +ncsimexe+<path to ncelab> <design files>r

Example:

ncverilog +ncelabexe+./ncelab +ncsimexe+./ncsim my_ram.vt my_ram.v -v altera_mf.v r

Scripting
Support

You can run procedures and make settings described in this chapter in a Tcl
script. You can also run some of these procedures at a command prompt.

For detailed information about specific scripting command options and Tcl
API packages, type quartus_sh --qhelp at a system command prompt
to run the Quartus II Command-Line and Tcl API Help utility.

f For more information on Quartus II scripting support, including
examples, refer to the Tcl Scripting and Command-Line Scripting chapters of
the Quartus II Handbook.

Generate NC-Sim Simulation Output Files

You can generate VO and SDO simulation output files with Tcl commands
or at a command prompt.

f For more information about generating VO and SDO simulation output
files, refer to “Quartus II Simulation Output Files” on page 3–18.

Tcl commands:

The following three assignments cause a Verilog HDL netlist to be written
out when you run the Quartus II netlist writer. The netlist has a 1ps timing
resolution for the NC-Sim Simulation software.

set_global_assignment -name EDA_OUTPUT_DATA_FORMAT VERILOG -section_id\
eda_simulation
set_global_assignment -name EDA_TIME_SCALE "1 ps" -section_id eda_simulation
set_global_assignment -name EDA_SIMULATION_TOOL\
"NC-Verilog (Verilog HDL output from Quartus II)"

Use the following Tcl command to run the Quartus II netlist writer.

execute_module -tool eda

3–30 Altera Corporation
August 2004

Quartus II Handbook, Volume 3

Command prompt:

Use the following command to generate a simulation output file for the
Cadence NC-Sim simulator. Specify Vhdl or Verilog HDL for the format.

quartus_eda <project name> --simulation --format=<verilog|vhdl> --tool=ncsim r

Conclusion The Cadence NC family of simulators work within an Altera FPGA
design flow to perform functional/RTL and gate-level timing simulation
easily and accurately.

Altera provides functional models of LPM and Altera-specific
megafunctions that you can compile with your testbench or design. For
timing simulation, you use the atom netlist file generated by Quartus II
compilation.

The seamless integration of the Quartus II software and Cadence NC
tools make this simulation flow an ideal method for fully verifying an
FPGA design.

References ■ Cadence NC-Verilog Simulator Help
■ Cadence NC VHDL Simulator Help
■ Cadence NC Launch User Guide

Altera Corporation Section II–1
Preliminary

Section II. Timing
Analysis

As designs become more complex, the need for advanced timing analysis
capability grows. Static timing analysis is a method of analyzing,
debugging, and validating the timing performance of a design. The
Quartus® II software provides the features necessary to perform
advanced timing analysis for today’s system-on-a-programmable-chip
(SOPC) designs.

Synopsys Prime Time is an industry standard sign-off tool, used to
perform static timing analysis on most ASIC designs. The Quartus II
software provides a path to enable you to run Prime Time on your
Quartus designs, and export a netlist, timing constraints, and libraries to
the Prime Time environment.

This section explains the basic principles of static timing analysis, the
advanced features supported by the Quartus II Timing Analyzer, and
how you can run Prime Time on your Quartus designs.

This section includes the following chapters:

■ Chapter 4, Quartus II Timing Analysis

■ Chapter 5, Synopsys PrimeTime Support

Revision History The table below shows the revision history for Chapters 4 and 5.

Chapter(s) Date / Version Changes Made

4 June 2004 v2.0 ● Updates to tables, figures.
● New functionality for Quartus 4.1.

Feb. 2004 v1.0 Initial release

5 June 2004 v2.0 No changes to document.

Feb 2004 v1.0 Initial release

Section II–2 Altera Corporation
Preliminary

Timing Analysis Quartus II Handbook, Volume 3

Altera Corporation 4–1
June 2004 Preliminary

4. Quartus II Timing Analysis

Introduction As designs become more complex, the need for advanced timing analysis
capability grows. Static timing analysis is a method of analyzing,
debugging, and validating the timing performance of a design. Timing
analysis measures the delay of every design path and reports the
performance of the design in terms of the maximum clock speed.
However, it does not check design functionality and should be used
together with simulation to verify the overall design operation.

The Quartus® II software provides the features necessary to perform
advanced timing analysis for today’s system-on-a-programmable-chip
(SOPC) designs. During compilation the Quartus II software
automatically performs timing analysis so that you don’t have to launch
a separate timing analysis tool after each successful compilation. The
Quartus II Timing Analyzer reports timing analysis results in the
compilation reports, giving you immediate access to this data.

This chapter explains the basic principles of static timing analysis, and the
advanced features supported by the Quartus II Timing Analyzer using
TCL scripts and the Quartus II graphical user interface (GUI).

Timing Analysis
Basics

A comprehensive timing analysis involves observing the setup times,
hold times, clock-to-output delays, maximum clock frequencies, and
slack times for the design. With this information you can validate circuit
performance and detect possible timing violations. Undetected timing
violations could result in incorrect circuit operation. This section
describes the basic timing analysis measurements used by the Quartus II
Timing Analyzer.

Clock Setup Time (tSU)

Data that feeds a register’s data or enable inputs must arrive at the input
pin before the register’s clock signal is asserted at the clock pin. Clock
setup time is the minimum length of time that data must be stable before
the active clock edge. Figure 4–1 shows a diagram of clock setup time.

qii53004-2.0

4–2 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

Figure 4–1. Clock Setup Time (tSU)

Micro tSU is the internal setup time of the register (i.e., it is a characteristic
of the register and is unaffected by the signals feeding the register). The
following equation calculates the tSU of the circuit shown in Figure 4–1.

tSU = Data Delay – Clock Delay + Micro tSU

Clock Hold Time (tH)

Data that feeds a register via its data or enable inputs must be held at an
input pin after the register’s clock signal is asserted at the clock pin. Clock
hold time is the minimum length of time that this data must be stable after
the active clock edge. Figure 4–2 shows a diagram of clock hold time.

Figure 4–2. Clock Hold Time (tH)

Micro tH is the internal hold time of the register. The following equation
calculates the tH of the circuit shown in Figure 4–2.

tH = Clock Delay – Data Delay + Micro tH

tSU

Data Delay

Micro tSU

Clock Delay

data

clk

tH

Data Delay

Micro tH

Clock Delay

data

clk

Altera Corporation 4–3
June 2004

Quartus II Timing Analysis

Clock-to-Output Delay (tCO)

Clock-to-output delay is the maximum time required to obtain a valid
output at an output pin fed by a register, after a clock transition on the
input pin that clocks the register. Micro tCO is the internal clock-to-output
delay of the register. Figure 4–3 shows a diagram of clock-to-output delay.

Figure 4–3. Clock-to-Output Delay (tCO)

The following equation calculates the tCO of the circuit shown in
Figure 4–3.

tCO = Clock Delay + Micro tCO + Data Delay

Pin-to-Pin Delay (tPD)

Pin-to-pin delay (tPD) is the time required for a signal from an input pin
to propagate through combinational logic and appear at an external
output pin.

In the Quartus II software, you can also make tPD assignments between an
input pin and a register, a register and a register, and a register and an
output pin.

Maximum Clock Frequency (fMAX)

Maximum clock frequency is the fastest speed at which the design clock
can run without violating internal setup and hold time requirements. The
Quartus II software performs timing analysis on both single and multiple
clock designs.

tCO

Micro tCO

Clock Delay

Data Delay

clk

4–4 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

Slack

Slack is the margin by which a timing requirement (e.g., fMAX) is met or
not met. Positive slack indicates the margin by which a requirement is
met. Negative slack indicates the margin by which a requirement was not
met. The Quartus II software determines slack with the following
equations.

Slack = Required clock period – Actual clock period

Slack = Slack clock period – (Micro tCO + Data Delay + Micro tSU)

Figure 4–4 shows a slack calculation diagram.

Figure 4–4. Slack Calculation Diagram

Hold Time Slack

Hold time slack is the margin by which the minimum hold time
requirement is met or not met for a register-to-register path (Figure 4–5).
Data is required to remain stable after the rising edge of a destination
register’s clock for at least the time equal to the micro hold time of the
destination register. The primary cause of a hold time violation is
excessive clock skew (B - A). As long as the data delay is greater than
clock skew (B - A), no hold time violation occurs. Since the Quartus II
software only reports hold time slack for paths that have hold time
violations, only negative slacks are reported.

t SUt CO

Register 1 Register 2

Data

clk1 clk2

Combinatorial
 Logic

clk1

clk2

 Slack
Clock Period

Capturing Edge

Launching Edge

Data Delay

Altera Corporation 4–5
June 2004

Quartus II Timing Analysis

Figure 4–5. Hold Time Slack

Clock Skew

Clock skew is the difference in arrival time of a clock signal at two
different registers (Figure 4–6). Clock skew occurs when two clock signal
paths have different lengths. Clock skew is common in designs that
contain clock signals that are not routed globally. The Quartus II Timing
Analyzer reports clock skew for all clocks within the design.

Figure 4–6. Clock Skew

A B

data delay

Reg 1

Clock signal

tCO thold

Reg 2

Clk at reg1

data

Clk at reg2

tCO +
data
delay

B - A
thold

Clock skew is B - A

PRN

CLRN

D Q

DFF

inst inst1

PRN

CLRN

D Q

DFF

1.2 ns 5.6 ns

4–6 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

Executing Tcl
Script-Based
Timing
Commands

You can make timing assignments, perform timing analysis, and analyze
results in the Quartus II software GUI or with Tcl commands. You can use
simple Tcl commands to perform customized timing reporting, and you
can write scripts with advanced timing analysis commands to perform
complex timing analysis and reporting.

You can use the command-based timing analyzer in an interactive shell
mode where you can run timing analysis Tcl scripts.

To run the timing analyzer in interactive shell mode, type the following
command:

quartus_tan -s

To run a Tcl script, type the following command:

quartus_tan -t <tcl file>

The following commands are frequently needed for executing timing-
related scripts:

■ Package require ::quartus::<advanced_timing> (Different
packages are required for a different set of commands.)

■ project_open <project_name> (Open the project in the project
directory.)

■ create_timing_netlist (Timing information is created in the
memory for analysis.)

■ project_close (This command should be executed at the end of
every script.)

The remainder of this chapter includes Tcl command examples for
making timing assignments and performing timing analysis. Refer to the
Quartus II Command-Line and Tcl API Help for complete information
about the above commands, other Tcl commands related to timing
analysis and reporting, and the complete Tcl command reference.

To run the Tcl API Help, type the following command:

quartus_sh --qhelp

Setting up the
Timing Analyzer

You can make certain timing assignments globally for a project, and you
can make timing assignments to individual entities in a project. If a
project has global and individual timing assignments, the individual
timing assignments take precedence over the global timing assignments.

Altera Corporation 4–7
June 2004

Quartus II Timing Analysis

Setting Global Timing Assignments

You can make global timing assignments in the Timing Requirements &
Options page of the Timing Settings dialog box (Assignments menu),
shown in Figure 4–7.

Figure 4–7. Timing Settings Dialog Box

You can set global tSU, tCO, and tPD requirements, as well as minimum tH,
tCO, and tPD requirements. You can set a global fMAX requirement, or assign
timing requirements and relationships for individual clocks.

f For more information about path cutting options in the Timing
Requirements & Options page, see “False Paths” on page 4–28.

Specifying Individual Clock Requirements

Apply clock requirements to each clock in your design. You can define
clocks as absolute clocks (independent of other clocks) or derived clocks
(dependent on other clocks). To define an absolute clock, you must
specify the required fMAX and the duty cycle. A derived clock is based on
a previously defined clock. For a derived clock, you can specify the phase
shift, offset, and multiplication and division factors relative to the
absolute clock. You must define clock requirements and relationships
with the Timing Wizard or by clicking Clocks in the Timing

4–8 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

Requirements & Options page of the Settings dialog box (Assignments
menu). Altera® recommends that you define all clock requirements and
relationships in your design to ensure accurate timing analysis results.

Clocks can also be specified by executing tcl scripts.

■ Usage for absolute clocks: create_base_clock -fmax <fmax>
[-duty_cycle <duty cycle>] [-target <name>] [-
no_target] [-entity <entity>] [-disable]
<clock_name>

■ Example for absolute clock: create_base_clock -fmax 50ns -
duty_cycle 50 clk50

■ Usage for relative clocks: create_relative_clock -
base_clock <Base clock> [-duty_cycle <duty cycle>]
[-multiply <number>] [-divide <number>] [-offset
<offset>] [-invert] [-target <name>] [-no_target]
[-entity <entity>] [-disable] <clock_name>

■ Example for relative clock: Clk2_3 is created based on predefined
clock clk10

create_relative_clock -base_clock -multiply 2 -divide
3 clk10 clk2_3

Setting Other Individual Timing Assignments

You can use the Assignment Editor to make other individual timing
assignments to pins and nodes in your design.

f For detailed information about how to use the Assignment Editor, see
the Assignment Editor chapter in Volume 2 of the Quartus II Handbook.

f For more detailed information about individual timing assignments, or
for information about timing assignments not listed below, see
Quartus II Help.

Clock Settings

Use this timing assignment to assign a previously-created individual
clock requirement to a pin or node in the design. The Timing Wizard
makes this assignment automatically.

Altera Corporation 4–9
June 2004

Quartus II Timing Analysis

Input Maximum Delay

Use this timing assignment to specify the maximum allowable delay of a
signal from an external register outside the device to a specified input or
bidirectional pin. The value of this assignment usually represents the tCO
of the external register feeding the input pin of the Altera device, plus the
actual board delay. Conversely, you can set the minimum allowable delay
with the Input Minimum Delay assignment. Figure 4–8 shows a block
diagram of the input delay.

For example, input maximum delay of 2ns can be set on a predefined
group called "input_pins" by using -max option. Timegroup command is
used to gather signal names by using wild card into a group for timing
assignment purpose as shown in the example.

timegroup "input_pins" -add_member "i*" -add_exception "ibus*"

set_input_delay -clk_ref clk -to "input_pins" -max 2ns

The assignments created or modified during an open project are not
committed to .qsf file unless the export_assignments command is
explicitly executed. If a close_project command is executed, the
assignments are committed into the .qsf also.

Figure 4–8. External Input Delay

Output Maximum Delay

Use this timing assignment to specify the maximum allowable delay of a
signal from the specified output pin to an external register outside the
device. The value of this assignment usually represents the tSU of the
external register fed by the output pin of the Altera device, plus the actual
board delay. Conversely, you can set the minimum allowable delay with
the Output Minimum Delay assignment. Figure 4–9 shows a block
diagram of the external output delay.

PRN

CLRN

D Q

DFF

inst

PRN

CLRN

D Q

DFF

inst2

INPUTina1
VCC

External Input Delay

External Device Altera Device

4–10 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

Script usage of output minimum delay:

set_output_delay [-clk_ref <clock>] -to <output_pin>
[-min] [<value>]

Figure 4–9. Output Delay

Inverted Clock

The Quartus II Timing Analyzer automatically detects registers with
inverted clocks and uses the inversion in the timing analysis report. This
functionality applies to both clocks that use globals and clocks that do not
use globals. However, the Timing Analyzer can fail to automatically
detect inverted clocks when the inversion is part of a complex logic
structure. An example of a complex logic structure is shown in
Figure 4–10.

Figure 4–10. Complex Logic Structure

PRN

CLRN

D Q

DFF

inst1

PRN

CLRN

D Q

DFF

inst

pin_nameOUTPUT

Altera Device External Device

External Output Delay

PRN

CLRN

D Q

DFF

inst

OUTPUT outa
PRN

CLRN

D Q

DFF

NAND2 NOT

inst5 inst2

INPUT

INPUT
VCC

din

VCCclk

inst1

INPUT
VCC

ena

Altera Corporation 4–11
June 2004

Quartus II Timing Analysis

In the example shown in Figure 4–10, when the enable is active, the clock
is inverted. Under these circumstances, you should make an inverted
clock assignment to the register, inst1, to ensure that the Timing
Analyzer recognizes the inverted clock.

Not a Clock

The Timing Analyzer automatically identifies any pin that feeds through
to the clock input of a register as a clock. An example is shown in
Figure 4–11.

Figure 4–11. Not a Clock Diagram

In Figure 4–11, the Timing Analyzer identifies three clock pins for the
design: clock, gatea and gateb. The pins gatea and gateb are
identified as clock pins because they feed through an OR gate and an AND
gate to the clock inputs of registers inst1 and inst3. If you do not want
to view these pins as clocks, you can remove them from timing analysis
with the Not a Clock assignment. For example, you can use the following
Tcl command to explicitly remove a clock from timing analysis:

set_instance_assignment -name NOT_A_CLOCK -to clk

tCO Requirement

Individual tCO assignments have priority over global assignments. You
can make tCO assignments to either the pin, the output register, or from
the output register to the pin.

PRN

CLRN

D Q

DFF

inst

OUTPUT outa
PRN

CLRN

D Q

DFF

AND2

inst2

inst7

INPUT

INPUT
VCC

ina

VCCclk

inst4

INPUT

INPUT
VCC

gatea

VCCgateb

OR2

PRN

CLRN

D Q

DFF

inst1

PRN

CLRN

D Q

DFF

inst3

4–12 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

tH Requirement

Individual tH assignments have priority over global assignments. You can
make tH assignments to either the pin, the input register, from the pin to
the input register, or from the clock pin to the input register.

tPD Requirement

Individual tPD assignments have priority over global assignments. You
can make tPD assignments from input pins to output pins, from input pins
to registers, from registers to registers, from registers to output pins, and
as a single point assignment to an input pin.

tSU Requirement

Individual tSU assignments have priority over global assignments. You
can make tSU assignments to either the input pin, the input register, from
the input pin to the input register, or from the clock pin to the input
register.

Timing Wizard

The Timing Wizard helps you make global timing assignments. Choose
Wizards > Timing Wizard (Assignments menu) to start it. You can use
either the Timing Wizard or the Timing Requirements & Options page
of the Settings dialog box to specify global timing requirements.

Timing Analysis
Reporting in the
Quartus II
Software

The Quartus II timing analysis report is displayed as sections in the
Compilation report. The timing report includes an fMAX and slack for all
clock pins.

1 If there are no timing assignments for the design, the Timing
Analyzer does not generate slack reports for the clock pins.

The report shows tCO for all output pins, tSU and tH for all input pins, and
tPD for any pin-to-pin combinational paths in the design.

A positive slack indicates the margin by which the path surpasses the
clock timing requirements. A negative slack indicates the margin by
which the path fails the clock timing requirements.

If a design contains individual tSU, tH or tCO assignments and does not
contain global tSU, tH or tCO assignments, only the individual assignments
are reported in the timing analysis reports. If a design contains individual
tSU, tH, or tCO assignments and you need a timing report for tSU, tH, or tCO

Altera Corporation 4–13
June 2004

Quartus II Timing Analysis

on all I/O pins, you must set global tSU, tH, or tCO assignments to generate
a timing report on the pins not specified by the individual timing
assignments.

Advanced
Timing Analysis

The Quartus II software performs timing analysis of designs containing
paths that cross clock domains and designs that contain multicycle paths.
This section describes these advanced features.

f For detailed instructions on how to use these or any of the Quartus II
Timing Analyzer features, see the Quartus II Help.

Clock Skew

This section describes some common cases in which clock skew may
result in incorrect circuit operation.

Derived Clocks

Clock skew error reporting may occur in designs containing derived
clocks and very short register-to-register data paths. An example of this
is shown in Figure 4–12.

Figure 4–12. Derived Clocks Example

OUTPUT outa

PRN

CLRN

D Q

DFF

inst

OUTPUT outa
PRN

CLRN

D Q

DFF

INPUT
VCC

ina

inst5

PRN

CLRN

D Q

DFF

inst4

PRN

CLRN

D Q

DFF

inst2

PRN

CLRN

D Q

DFF

inst3

PRN

CLRN

D Q

DFF

inst6

INPUT
VCC

ina

INPUT
VCC

ina

GLOBAL

inst1

NOT

inst8

2.411 ns

A
B

7.141 ns

4–14 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

In Figure 4–12, the longest clock path is 7.141 ns from clock_a to
destination register inst4. The shortest clock path is 1.847 ns from
clock_a to the source register inst5. This creates a clock skew of
5.294 ns.

The shortest register-to-register data path between the source and
destination register is 2.411 ns. The micro hold delay of the destination
register is 0.710 ns. Thus, the clock skew is longer than the data path
(5.294 ns > 2.411 ns). This results in incorrect circuit functionality. To
remove the clock skew error, path B must be lengthened so that it is longer
than the clock skew. This is achieved by adding cells to the path or
through the placement of the source and destination registers.

Asynchronous Memory

With asynchronous memory, the memory element acts as a latch and you
must check the setup and hold time on the latch. An example is shown in
Figure 4–13. The longest clock path from clk6 to destination memory is
9.251 ns. The shortest clock path from clk6 to source register is 2.302 ns.
Thus the largest clock skew is 6.949 ns. The shortest register to memory
delay is 3.503 ns and the micro hold delay of the destination register is
0.106 ns. As a result, the clock skew is longer than the data path and the
circuit does not operate normally.

Altera Corporation 4–15
June 2004

Quartus II Timing Analysis

Figure 4–13. Clock Skew

Multiple Clock Domains

Multiclock circuits are designs that have more than one clock. After you
specify clock settings, the Quartus II software analyzes timing for
register-to-register paths controlled by different clocks, and reports the
slack results. The Timing Analyzer disregards any paths between
unrelated clock domains by default. See “Cut Paths Between Unrelated
Clock Domains” on page 4–30 for more information.

To correctly perform multiclock timing analysis, you must define the
absolute clock, specify a desired fMAX or clock period, and define other
clocks and their relationships, if any, to the absolute clock. Then, assign
these settings to the clock pins that supply the design’s clock signals.
Upon successful compilation, the Quartus II Timing Analyzer
automatically verifies circuit operability.

PRN

CLRN

D Q

DFF

inst

PRN

CLRN

D Q

DFF

inst5

PRN

CLRN

D Q

DFF

inst6

INPUT
VCC

CLK6

Clock 2

PRN

CLRN

D Q

DFF

inst6

A

B

D

9.251 ns

2.302 ns

3.503 ns

9
bi

ts
 X

40
96

 w
or

ds

data[8..0]

wraddress[11..0]

rdaddress[11..0]

wren

clock_a

Name Value at
15.0 ns

clock_b
A

B

B 0
B 0

B 0

B 1

1.847 4.258 7.141

Inst4 clock in
incorrect data
(data value)

4–16 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

Multicycle Assignments

Multicycle paths are paths between registers that intentionally require
more than one clock cycle to become stable. For example, a register may
need to trigger a signal on every second or third rising clock edge.
Figure 4–14 shows an example of a design with a multicycle path between
the multiplier’s input registers and output register.

Figure 4–14. Example Diagram of a Multicycle Path

Multicycle Assignment

A Multicycle assignment specifies the number of clock cycles required
before a register should latch a value. Multicycle assignments delay the
latch edge, relaxing the required setup relationship.

Figure 4–15 shows a timing diagram for a multicycle path that exists in a
design with related clocks, with a small offset between the clocks.

D Q

ENA

D Q

ENA

D Q

D Q

ENA

2 cycles

Altera Corporation 4–17
June 2004

Quartus II Timing Analysis

Figure 4–15. Multicycle Paths with Offset Between Clocks

You can assign multicycle paths in your designs to instruct the Quartus II
Timing Analyzer to relax its measurements, thus avoiding incorrect
setup or hold time violation reports. These assignments are made in the
Assignment Editor (Assignments menu).

Multicycle Hold Assignment

A Multicycle Hold assignment, shown in Figure 4–16, specifies the
minimum number of clock cycles required before a register should latch
a value. If no Multicycle Hold value is specified, the Multicycle Hold
value defaults to the value of the Multicycle assignment.

Due to the offset, the Timing Analyzer uses these two edges for setup checks by default.

You can set the Quartus II Timing Analyzer
to use these two edges for setup checks.

clk 1

clk 2

clk 1

clk 2

4–18 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

Figure 4–16. Multicycle Hold Assignment

Source Multicycle Assignment

The Source Multicycle assignment, shown in Figure 4–17, is useful when
the source and destination registers are clocked by related clocks at
different frequencies. It is used to extend the required delay by adding
periods of the source clock rather than the destination clock.

Hold

Setup

Multicycle = 2
Multicycle Hold = 2 (default)
Offset = 0

Altera Corporation 4–19
June 2004

Quartus II Timing Analysis

Figure 4–17. Source Multicycle Assignment

Source Multicycle Hold Assignment

The Source Multicycle Hold assignment is useful when the source and
destination registers are clocked by related clocks at different frequencies.
This assignment allows you to increase the required hold delay by adding
source clock cycles.

Typical Applications of Multicycle Assignments

The following examples describe how to use multicycle assignments in
your designs.

Simple Multicycle Paths

Figure 4–18 shows the measurement of tSU and tH for a standard path with
a multicycle of 1.

CLK1

CLK2

CLK1

CLK2

Setup

Source Multicycle = 2
Offset = 0

4–20 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

Figure 4–18. tSU and tH Standard Measurement Paths

In the example shown in Figure 4–18, both clk1 and clk2 have the same
period and zero offset. In this figure, where the clocks have a period of
12 ns, the data delay between the source and destination registers must be
between 0 ns and 12 ns in order for the circuit to operate. If the data delay
is longer than one clock period and the circuit is intended to operate as a
multicycle circuit, you must add a Multicycle assignment of 2. When you
make Multicycle or Source Multicycle assignments, the Timing
Analyzer sets the Default Multicycle Hold setting to the value of the
Multicycle setting.

Setup

Hold

CLK1

CLK2

CLK1

CLK2

Clock Period = 12 ns
Multicycle = 1

0 12 24

Altera Corporation 4–21
June 2004

Quartus II Timing Analysis

Figure 4–19. Timing Analysis

In Figure 4–19, the data delay between the two registers is longer than one
clock cycle, but is less than two clock cycles. This circuit requires two
clock cycles for a change at the input of the source register to appear at the
destination register. The tSU check on clk2 is performed at the second
clock period (at 24 ns) and the tH check is performed at the next period
(at 12 ns). This analysis ensures that the data delay is between 12 ns and
24 ns. The minimum data delay is 12 ns and the maximum delay is 24 ns.

Figure 4–20 illustrates a design that has two data paths between the
registers. One data delay is shorter than one clock period and the other
data delay is longer than one clock period but shorter than two clock
periods. The circuit is intended to operate as a multicycle path.

Setup

Hold

CLK1

CLK2

CLK1

CLK2
0 12 24

Clock Period = 12 ns
Multicycle = 2
Multicycle Hold = 1

4–22 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

Figure 4–20. Data Path Delay Example

In Figure 4–20, the circuit is intended to operate with a multicycle path of
two, however one of the data paths between the registers is less than one
clock cycle.

tSU is measured at the second clock edge and tH is measured on the launch
edge. The data delay must be between 0 ns and 24 ns for circuit operation.

Setup

Hold

0 12 24

CLK1

CLK2

CLK2

CLK1

Clock Period = 12 ns
Multicycle = 2
Multicycle Hold = 2

Altera Corporation 4–23
June 2004

Quartus II Timing Analysis

Multicycle Paths with Offsets

In the example shown in Figure 4–21, clk2 is offset from clk1 by
2 ns.

Figure 4–21. Multicycle Paths with Offsets

The setup time for clk2 is 2 ns and the hold time is –10 ns. Therefore the
data delay must be between –10 ns and 2 ns. It is unlikely that the design
is intended to latch the data within 2 ns, but it is probably intended to
latch the data on the second clk2 edge, i.e., operate as a multicycle path
of two. If you set a Multicycle of 2 and Multicycle Hold assignment of 1,
the setup requirement is 14 ns and the hold requirement is 2 ns, as shown
in Figure 4–22. The circuit operates as a multicycle path of two, assuming
the data delay between the registers is between 2 ns and 14 ns.

The following Tcl commands can be used to specify the multi-cycle
assignments shown in Figure 4–22:

set_multicycle_assignment -setup -from clk1 -to clk2 -end 2

set_multicycle_assignment -hold -from clk1 -to clk2 -end 1

Setup
Hold

CLK1

CLK2

CLK1

CLK2
0 12 24

Clock Period = 12 ns
Multicycle = 1
Offset = 2 ns

4–24 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

Figure 4–22. Hold Requirements

Multicycle Paths Across Multi-Frequency Domains

Figure 4–23 is a timing diagram representing data traveling from a fast
clock domain to a slow clock domain with an offset between the clock
edges. Since data is transferring from a fast clock domain to a slow clock
domain, it has to stay stable for at least two source clock cycles otherwise
the data is lost. Without a Multicycle assignment, the Timing Analyzer
calculates a data setup requirement of 2 ns, the value of the offset between
the two clocks. The Multicycle assignment of 2 relaxes the setup
requirement by extending it to the next destination clock edge.

Figure 4–23. Multicycle Hold Checks

There are two hold relationships that the Timing Analyzer checks for
multicycle paths in multi-frequency clock domain analysis. One check
ensures that data clocked out of the source register after the launch edge
is not latched by the destination register. This is illustrated by the dashed

CLK1

CLK2
0 12 24

Setup
Hold

Multicycle = 2
Multicycle Hold = 1

CLK1

CLK2

Setup
Hold Check 1
Hold Check 2

Clock 1 Period = 6 ns
Clock 2 Period = 12 ns
Offset = 2 ns
Multicycle = 2

Altera Corporation 4–25
June 2004

Quartus II Timing Analysis

line in Figure 4–23. The other check ensures that data is not captured at
the destination by the clock edge before the latch edge. This is illustrated
by the dotted line in Figure 4–23.

Figure 4–24 illustrates hold time checks for a Multicycle Hold
assignment
of 1.

Figure 4–24. Multicycle Hold of 1

The first check, illustrated with the dashed line, requires a minimum data
delay of 8 ns (14 ns - 6 ns).The second check, illustrated with the dotted
line, requires a minimum data delay of 2 ns (2 ns - 0 ns). Data must have
a maximum delay of 14 ns and a minimum delay of 8 ns to meet the
Multicycle and Multicycle Hold requirements.

Figure 4–25 illustrates hold time checks for the Default Multicycle Hold
value of 2.

Setup
Hold Check 1
Hold Check 2

0 2 86 1412

CLK1

CLK2

Clock 1 Period = 6 ns
Clock 2 Period = 12 ns
Offset = 2 ns
Multicycle = 2
Multicycle Hold = 1

4–26 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

Figure 4–25. Multicycle Hold of 2

The Multicycle Hold Value of 2 relaxes the hold time requirement by
moving the reference edge one destination clock cycle earlier for the hold
time calculation. The first check, illustrated with the dashed line, requires
a minimum data delay of -4 ns (2 ns – 6 ns). The second check, illustrated
with the dotted line, requires a minimum data delay of -10 ns (0 – 10 ns).
Data must have a maximum delay of 14 ns and a minimum delay of -4 ns
to meet the Multicycle and Multicycle Hold requirements.

Figure 4–26 is a timing diagram representing data going from a slow
clock domain to a fast clock domain with an offset between the clock
edges. The Multicycle assignment of 4 relaxes the setup requirement by
extending it to the fourth destination clock edge, but the hold
requirement is unchanged.

Setup
Hold Check 1
Hold Check 2

-12 -10 -4-6 2 60

CLK1

CLK2

Clock 1 Period = 6 ns
Clock 2 Period = 12 ns
Offset = 2 ns
Multicycle = 2
Multicycle Hold = 2

Altera Corporation 4–27
June 2004

Quartus II Timing Analysis

Figure 4–26. Multicycle Hold Checks

Figure 4–27 illustrates hold time checks for a Multicycle Hold
assignment of 1.

Figure 4–27. Multicycle Hold of 1

The first check, illustrated with the dashed line, requires a minimum data
delay of 10 ns (24 ns – 14 ns). The second check, illustrated with the
dotted line, requires a minimum data delay of 16 ns (18 ns – 2 ns). Data
must have a maximum delay of 22 ns and a minimum delay of 16 ns to
meet the Multicycle and Multicycle Hold requirements.

Setup
Hold Check 1
Hold Check 2

CLK1

CLK2

Clock 1 Period = 12 ns
Clock 2 Period = 6 ns
Offset = 2 ns
Multicycle = 4

Setup
Hold Check 1
Hold Check 2

0 2 8 14 18 24

CLK1

CLK2

Clock 1 Period = 12 ns
Clock 2 Period = 6 ns
Offset = 2 ns
Multicycle = 4
Multicycle Hold = 1

4–28 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

False Paths

A false path is any path that is not relevant to a circuit’s operation. You
can make a variety of assignments to exclude false paths from timing
analysis. Global assignments excluding common false paths are turned
on in the Timing Requirements & Options page of the Settings dialog
box by default. You can make separate Cut Timing Path assignments to
cut individual false paths.

Cut Off Feedback from I/O Pins

This option, which is on by default, cuts off feedback paths from I/O pins
as shown in Figure 4–28.

Figure 4–28. Cut Off Feedback from I/O Pins

The paths marked with arrows are not measured by timing analysis when
this option is turned on. Turn off Cut off feedback from I/O pins to
measure these paths during timing analysis.

Cut Off Clear and Preset Signal Paths

This option is turned on by default and cuts the register's clear and preset
paths during timing analysis, as shown in Figure 4–29.

INPUT
VCC

rd/~wr

INPUT
VCC

clock

INPUT
VCC

wr_enable

PRN

CLRN

DQ

DFFE

inst

ENA

PRN

CLRN

D Q

DFFE

inst1

ENA

NOT

inst4

TRI

inst3

BIDIR
VCC

data_bus

Altera Corporation 4–29
June 2004

Quartus II Timing Analysis

Figure 4–29. Cut Off Clear and Preset Signal Paths

The paths marked with arrows are cut from timing analysis when this
setting is turned on. Turn off Cut off clear and preset signal paths to
include these paths in the timing analysis report.

Cut Off Read During Write Signal Paths

This option is turned on by default and cuts the path from the write
enable register through the embedded system block (ESB) to a destination
register, as shown in Figure 4–30.

Figure 4–30. Cut Off Read During Write Signal Paths

PRN

CLRN

D Q

DFF

inst inst1

PRN

CLRN

D Q

DFF

INPUT

INPUT
VCC

in1

VCC
clk

AND2

inst4

OUTPUT out1

PRN

CLRN

D Q

DFF

inst2

OUTPUT out2

INPUT

INPUT
VCC

clra

VCCclrb

AND2

inst3

PRN

CLRN

D Q

DFFE

ENA

pram

inst

data[7..0] q[7..0]

WE

address[7..0]

inclock
inst4

4–30 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

The path marked with an arrow between the we input to the memory
block pram and the register inst4 is not reported by the Timing
Analyzer. This path is reported if Cut off read during write signal paths
is turned off.

Cut Paths Between Unrelated Clock Domains

By default, the Quartus II software cuts paths between unrelated clock
domains when there are no timing requirements set or only the default
required fMAX is specified. This option cuts paths between unrelated clock
domains if individual clock assignments are set but there is no defined
relationship between the clock assignments. See Figure 4–31.

Figure 4–31. Cut Paths Between Unrelated Clock Domains

For the circuit shown in Figure 4–31, the path between inst1 and inst4
is not measured or reported by the Timing Analyzer. If you turn off Cut
timing paths between unrelated clock domains, the Timing Analyzer
includes these paths as part of timing analysis.

Cut Timing Path

You can make Cut Timing Path assignments to paths that are not used
under normal operation, such as paths through test logic. Figure 4–32
shows an example of a false path.

PRN

CLRN

D Q

DFF

inst inst1

PRN

CLRN

D Q

DFF

INPUT

INPUT
VCC

ina

VCC
clka

LCELL

inst5

PRN

CLRN

D Q

DFF

inst2 inst3

PRN

CLRN

D Q

DFF

INPUT

INPUT
VCC

inb

VCC
clkb

LCELL

inst6

AND2

inst10

LCELL

inst11

PRN

CLRN

D Q

DFF

OUTPUT

OUTPUT outa

outb

Altera Corporation 4–31
June 2004

Quartus II Timing Analysis

Figure 4–32. False Path Signal

In Figure 4–32, the path from inst1 through the multiplexer to inst2 is
used only for design testing. This false path is not used under normal
operation and should not be considered during timing analysis. You can
remove a false path from timing analysis with a Cut Timing Path
assignment from register inst1 to register inst2.

Fixing Hold Time Violations

Hold time violations usually occur when clock skew is greater than data
delay between two registers. Clock skew between registers can occur if
you use gated clocks in your design. It can also occur if some clocks are
inferred from flip-flops or other logic. You can use any of the following
guidelines to address reported hold time violations.

Make Multicycle Hold Assignments

Depending on your design functionality, you can relax the hold
relationship with Multicycle Hold or Source Multicycle Hold
assignments.

Reduce Clock Skew

Using global buffers for clock distribution minimizes clock skew, but
these buffers do not necessarily provide the shortest delay path. You can
route gated clocks using non-global buffers to access faster clock trees,
because the skew is already caused by the clock-gating logic. You can also
use a PLL to divide a clock signal instead of using other logic which may
cause clock skew. Because gated clocks are common causes of clock skew,
Altera recommends using clock enables instead of gated clocks in your
design, although this may not always be possible.

PRN

CLRN

D Q

DFF

PRN

CLRN

D Q

DFF

inst

inst1

BUSMX

inst3 sel

result[]
dataa[]

datab[]
0

1

PRN

CLRN

D Q

DFF

inst2

Test Enable

Clock

4–32 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

Increase Data Delay

You can increase data delay until it is greater than clock skew to resolve
hold time violations. One way to do this is with the Logic Cell Insertion
assignment. You can specify a number of LCELL primitives to
automatically insert in the failing path. These primitives do not change
the functionality of your design. Another way to increase data delay is to
assign nodes to LogicLock regions in separate areas of the device. This
increases the routing delay along the path.

The Quartus II software attempts to meet the following timing
requirements on I/O paths by default:

■ Hold time (tH) from I/O pins to registers
■ Minimum tCO from registers to I/O pins
■ Minimum tPD from I/O pins or registers to I/O pins or registers

You can change the setting to direct the Quartus II software to also
attempt to meet register-to-register hold time requirements.

Timing Analysis Across Asynchronous Domains

In cases in which source and destination clocks are unrelated, timing
analysis across unrelated clock domains is not very useful because cross-
domain paths are asynchronous. You can make Cut Timing Path
assignments to cross-domain paths and use special design techniques to
make sure that asynchronous signals do not cause meta-stability. One of
the most common techniques used is to enforce a full handshake protocol
between the asynchronous boundaries. Block A asserts the REQ signal
when data is ready. Block B synchronizes the REQ signal through two
flip-flops and then asserts the ACK signal when it has latched the data.
Block A synchronizes the ACK signal through two flip-flops and then de-
asserts the REQ signal. This technique guarantees that the data is
transferred correctly and there is no meta-stability due to asynchronous
signals.

Figure 4–33 shows the interaction across asynchronous boundaries.

Altera Corporation 4–33
June 2004

Quartus II Timing Analysis

Figure 4–33. Interaction Across Asynchronous Boundaries

Minimum
Timing Analysis

Minimum timing analysis measures and reports minimum tCO,
minimum tPD, tH, and clock hold. Minimum Timing analysis is performed
by checking for minimum delay requirements with best-case timing
models (delay models). Best-case timing models characterize device
operation at the highest voltage, fastest process and lowest temperature
conditions. Worst-case timing models (delay models) characterize device
operation based on the slowest process, lowest voltage, and highest
temperature conditions. Minimum delay checks, like tH, are also reported
during regular timing analysis using worst-case delay models.

Minimum Timing Analysis Settings

You can make global minimum tH, minimum tCO, and minimum tPD
assignments in the Minimum Delay Requirements section of the Timing
Requirements & Options page of the Settings dialog box (Assignments
menu). You can also make individual minimum timing settings to pins
and registers in your design.

Performing Minimum Timing Analysis

To perform minimum timing analysis with the best-case timing models
(delay models), choose Start > Start Minimum Timing Analysis
(Processing menu). If you use the quartus_tan command-line
executable, specify the --min option. The following tcl example will
read the project netlist and generate a Minimum timing report.

Quartus_tan --min <project_name>

33Mhz

Block B

21Mhz

Block A

REQ

Data Bus

ACK

4–34 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

Minimum Timing Analysis Reporting

You can examine the results of minimum timing analysis in the Timing
section of the compilation report in the Quartus II GUI. The text-based
report generated during timing analysis is called <project name>.tan.rpt.
The same name is used is used for the report file generated during regular
timing analysis, so that previous timing analysis results is overwritten.

Even when you perform regular, worst-case timing analysis, there can be
reports in the Timing Analysis section of the compilation report listing
minimum delay checks. These results are generated by reporting the
minimum delay checks using the worst-case timing models (delay
models).

Third-Party
Timing Analysis
Software

You can also use the PrimeTime software to perform timing analysis.
Select PrimeTime as the Timing Analysis tool in the Timing Analysis
page of the Settings dialog box (Assignment menu). The Quartus II
Timing Analyzer generates a Verilog or VHDL netlist, a .sdo file, and a Tcl
script that you can specify in the PrimeTime software to perform timing
analysis.

Advanced
Timing Analysis
& Reports Using
Tcl Scripts

Two frequently-used commands are:

■ project_open <project_name> (To open the project in the project
directory)

■ create_timing_netlist (To generate timing information from
a compiled design in the project directory)

report_timing command gives you more control over how you want
to report your timing analysis results.

Usage: report_timing [-reuse_delays] [-npaths <number>]
[-tsu] [-th] [-tco] [-tpd] [-min_tco] [-min_tpd]
[-clock_setup] [-clock_hold] [-clock_setup_io]
[-clock_hold_io] [-clock_setup_core]
[-clock_hold_core] [-dqs_read_capture] [-stdout]
[-file <name>] [-append] [-from <names>] [-to <names>]
[-clock_filter <names>] [-longest_paths]
[-shortest_paths] [-all_failures]

Examples:

report_timing -file <file_name>

Altera Corporation 4–35
June 2004

Quartus II Timing Analysis

This command writes out worst timing path, one for each of the tsu,th, tco,
minimum tco, clock setup and clock hold timing reports based on
worst-case delay models into a text file called file_name.

report_timing -npaths 2 -file file_name

This command writes out 2 timing paths for each of the constraints in
file_name.

report_timing -tsu -npaths 3

This command reports 3 worst paths of the tsu constraint only.

report_timing -clock_filter *_clk0

This command will report one timing path per constraint related to clock
domains whose names end with _clk0 only. The filtering can be further
restricted by using more descriptive string matching like *pll0*_clk0.
These clock names are not limited to absolute of relative clocks defined by
the user but also include outputs of the PLLs.

report_timing -from in1 -to *utopia*

This command will list all timing paths starting from input, in1, to any
registers or outputs that have utopia as part of their name.

report_timing -to {out\[4\]}

This command will list all timing paths that end at bit 4 of the output bus
out[4:0]. Back slash has to preceed every bracket character and the
string has to be enclosed in braces for proper interpretation.

Advanced scripting example1:

package require ::quartus::advanced_timing
project_open <project_name>
create_timing_netlist
create_p2p_delays
foreach_in_collection node [get_timing_nodes -type reg] {

set reg_name [get_timing_node_info -info name $node]
 set location [get_timing_node_info -info location $node]

puts "register: $reg_name location: $location "
}
project_close

This script reports all the registers in a design along with their respective
locations on the chip.

4–36 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

Advanced scripting example2:

package require ::quartus::advanced_timing

proc split_time { a } {
set pieces [split $a]
 if {[string equal ps [lindex $pieces 1]]} {

set time [expr 1000 * [lindex $pieces 0]]
} else {

set time [lindex $pieces 0]
}
return $time

}

project_open <project_name>
create_timing_netlist
create_p2p_delays
foreach_in_collection node [get_timing_nodes -type reg] {

set reg_name [get_timing_node_info -info name $node]
set delays_from_clock_list [get_delays_from_clocks

$node]
 set delays_from_clock [lindex $delays_from_clock_list 0]

set clock_node_id [lindex $delays_from_clock 0]
set fanin [get_timing_node_fanin -type clock

$clock_node_id]
 set pll_delay_list [lindex $fanin 0]

set pin_to_pll_list [lindex [get_timing_node_fanin -type
clock [lindex $pll_delay_list 0]] 0]

set sum_of_delays [expr [split_time [lindex
$pll_delay_list 1]] + [split_time [lindex $pll_delay_list 2]] +
[split_time [lindex $pin_to_pll_list 2]]]

set clock_name [get_timing_node_info -info name
[lindex $delays_from_clock 0]]

set longest [lindex $delays_from_clock 1]
set shortest [lindex $delays_from_clock 2]

puts "-> clock is $clock_name"
puts "-> register name $reg_name"

puts "-> total clock pin to reg delay [expr {$sum_of_delays +
[split_time $longest]}] ns"
}
project_close

This script starts with traversing through a list of all the registers in a
design by using get_timing_nodes -type reg command. The script
then uses a for each loop to trace the clock path back to the input clock
pin. Using this technique, the total clock insertion delay for each register
is computed from the input reference clock pin, including the PLL offset.
At the end, each register name, its associated clock name, and the the total
clock network delay w.r.t the input clock pin for each register is printed

Altera Corporation 4–37
June 2004

Quartus II Timing Analysis

out. Being able to print out clock insertion delays for each register in the
design helps figure out minimum and maximum clock skews between
different clock domains even when more than one PLLs are involved.

Conclusion Evolving design and aggressive process technologies require larger and
higher-performance FPGA designs. Increasing design complexity
demands enhanced timing analysis tools that aid designers in verifying
design timing requirements. Without advanced timing analysis tools, you
risk circuit failure in complex designs. The Quartus II Timing Analyzer
incorporates a set of powerful timing analysis features that are critical in
enabling system-on-a-programmable-chip designs.

4–38 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

Altera Corporation 5–1
June 2004 Preliminary

5. Synopsys PrimeTime
Support

Introduction PrimeTime is an industry standard sign-off tool, used to perform static
timing analysis on most ASIC designs. The Quartus® II software provides
a path to enable users to run PrimeTime on their Quartus designs,
exporting netlist, constraints specified in Quartus format, and libraries to
the PrimeTime environment. Figure 5–1 shows the PrimeTime flow
diagram.

Figure 5–1. PrimeTime Flow Diagram

Quartus II
Settings to
Generate
PrimeTime Files

To set the Quartus II software to generate PrimeTime files, choose
Settings (Assignments menu). Choose EDA Tool Settings >Timing
Analysis in the Category dialog box to display the Timing Analysis
window. In the Timing Analysis window, click on the Tool name pull
down menu and select PrimeTime (Verilog HDL output from
Quartus II) or PrimeTime (VHDL output from Quartus II), as shown in
Figure 5–2. This setting enables the Quartus II software to produce three
files for the PrimeTime tool, which are then written into the
timing/primetime directory of the current project.

DB lib
HDL lib

Design Netlist
(Verilog or

VHDL Format)

Constraints in
PrimeTime

Format

Timing Reports
Generated

SDO File
(Timing

Information)

PrimeTime

qii53005-2.0

5–2 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Figure 5–2. Setting the Quartus II Software to Generate PrimeTime Files

Files Generated
for the
PrimeTime
Environment

This section describes the three files that the Quartus II software creates
for the PrimeTime tool.

■ <project_name>.vo or <project_name>.vho files

This is the netlist file written in either Verilog (.vo) or VHDL (.vho)
format, depending on the format selected in the EDA settings. This
file contains the flat netlist representing the entire design.

■ <project_name>_v.sdo or <project_name>_vhd.sdo files

These files contain the timing information for each timing arc in the
design. Like the netlist files, these files are written in either Verilog
(_v) or VHDL (_vhd) format, depending on the selection made in the
EDA settings. This file corresponds to the worst-case delay values of
the timing arcs if regular timing analysis is performed in the
Quartus II software.

If you want to use the best-case delay values for PrimeTime analysis,
you must perform a Minimum Timing Analysis in the Quartus II
software. This is a two-step process, as follows.

1. Select Start > Start Minimum Timing Analysis (Processing menu).

Altera Corporation 5–3
June 2004 Preliminary

Files Generated for the PrimeTime Environment

2. Select Start > Start EDA Netlist Writer (Processing menu).

This will create a <project_name>_v_min.sdo or
<project_name>_vhd_min.sdo file, which contains the best-case
delay values for each timing arch.

1 It is up to you to point to either best-case or worst-case delay
values during the PrimeTime processing by specifying the
appropriate file name in the Tool Command Language (Tcl)
script file described below.

■ <project_name>_pt_v.tcl or <project_name>_pt_vhd.tcl files

These files contain the search path to, and the names of, the
PrimeTime database library files provided by Altera. A file referred
to in this Tcl file (device_all_pt.v or device_all_pt.vhd) contains the
Verilog/VHDL description of each library cell. The search path and
link path are defined at the beginning of the Tcl file. The search path
must be modified, depending on where these libraries are stored.
The link path contains the names of all database files, and it does not
need to be modified.

Here is an example of the search path and link path defined in the Tcl file:

set quartus_root ". /apps1/altera/quartus/II-3.0"

set search_path [list . $quartus_root
/apps1/altera/quartus/II3.0/eda/synopsys/primetime/lib]

set link_path [list * stratix_asynch_io_lib.db
stratix_io_register_lib.db stratix_lvds_receiver_lib.db
stratix_asynch_lcell_lib.db stratix_lvds_transmitter_lib.db
stratix_core_mem_lib.db stratix_lcell_register_lib.db
stratix_mac_out_internal_lib.db stratix_mac_mult_internal_lib.db
stratix_mac_register_lib.db stratix_memory_register_lib.db
stratix_pll_lib.db alt_vtl.db]

read_verilog stratix_all_pt.v

This Tcl file also contains equivalent constraints in PrimeTime format,
converted automatically by the Quartus II software from constraints in
Quartus II format. Additional PrimeTime commands can be placed in the
Tcl file to report on, or analyze, timing paths. This Tcl file also has a
command to read the SDO file generated by the Quartus II software.
Depending on which SDO file is desired, either with best-case or worst-
case delays, the appropriate SDO file name should be specified.

5–4 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Sample of
Constraints
Specified in
PrimeTime
Format

The PrimeTime constraints shown in Table 5–1 are automatically
generated by the Quartus II software. The set_input_delay -max
command is equivalent to the tSU constraint in the Quartus II software.
Since input_delay in PrimeTime is defined as the data delay from clock
edge to the input pin, and tSU in the Quartus II software is the data delay
from the input pin to clock edge, tSU is subtracted from the clock period
to calculate the set_input_delay. Table 5–1 shows the automatically-
generated PrimeTime contraints and their Quartus II software
equivalents.

PrimeTime
Timing Reports

This section describes the timing reports that the PrimeTime tool
generates, and the Tcl script commands that control each report’s
contents.

■ report_timing -nworst 100 > file.timing

This command, which can be inserted at the end of the Tcl file to
report timing paths in PrimeTime, will generate a list of the 100 worst
paths, and place this data into a file called file.timing.

Timing paths in PrimeTime are listed in the order of most-negative-
slack to most-positive-slack. Failing paths are not reported under
each constraint's category, as they are in the Quartus II software.
Timing setup (tSU) and timing hold (tH) times are not listed
separately. In PrimeTime, there is a start and end point given with
each path to identify, for example, if it is a register-to-register or
input-to-register type of path. If you only use the report_timing
part of the command without adding a -delay option, only the
setup-time-related timing paths are reported.

Table 5–1. Equivalent Quartus II & PrimeTime Constraints

PrimeTime Constraint Quartus II Equivalent

create_clock -period 10.000 -waveform
{0 5.000} [get_ports clk] \-name clk

Clock defined on input pin, clock of
10 ns period 50% duty cycle

set_input_delay -max -add_delay
9.000 -clock [get_clocks clk] \
[get_ports din]

tSU of 1 ns on input pin, din

set_input_delay -min -add_delay 1.000
-clock [get_clocks clk] \ [get_ports din]

tH of 1 ns on input pin, din

set_output_delay -max -add_delay
7.000 -clock [get_clocks clk] \
[get_ports out]

tCO of 3 ns on output pin, out

Altera Corporation 5–5
June 2004 Preliminary

PrimeTime Timing Reports

■ report_timing -delay min

This command can be used to create a minimum timing report or a list
of hold-time-related violations. It is up to you to define what type of
SDO file is being used. Both minimum delay and maximum delay
SDO files can be generated from the Quartus II software.

Sample PrimeTime Timing Report

This section presents a sample timing report.

Table 5–2. Sample PrimeTime Timing Report

Startpoint: ~I.out_reg
(rising edge-triggered flip-flop clocked by
clk)
Endpoint: out (output port clocked by clk)
Path Group: clk
Path Type: max

Point Incr Path

clock clk (rise edge) 0.00 0.00

clock network delay (propagated) 2.362 2.362

out~I.out_reg.clk
(stratix_io_register)

0.00 2.362 r

out~I.out_reg.regout
(stratix_io_register)

0.162* 2.524 r

out~I.out_mux3.MO (mux21) 0.000 2.524 r

out~I.and2_22.Y (AND2) 0.000 2.524 r

out~I.out_mux1.MO (mux21) 0.000 2.524 r

out~I.inst1.padio
(stratix_asynch_io)

2.715H 5.239 r

out~I.padio (stratix_io) 0.000 5.239 r

out (out) 0.00 5.239 r

data arrival time 5.239 r

clock clk (rise edge) 10.000 10.000

clock network delay (propagated) 0.000 10.000

output external delay -7.000 3.000

data required time 3.000

data required time 3.000

data arrival time -5.239

slack (VIOLATED) -2.239

5–6 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

The start point in this report is a register clocked by clock, clk. Endpoint
is an output pin, out. This is equivalent to either a tCO or a Minimum tCO
path in the Quartus II software, depending on the -delay option. At the
end of the report, "Violated" is listed, which means that the constraint was
not met. A negative slack is also given, as it is in the Quartus II software.

Running
PrimeTime

PrimeTime is only available to run on Unix systems. The three files
created by the Quartus II software must be transferred to a Unix machine.
PrimeTime runs in shell mode by accepting scripts in Tcl format. The
<project_name>_pt_v.tcl script file, for example, is executed in the
following way:

Type the following command at the UNIX command line prompt, and
press the Return key:

pt_shell -f project_name_pt_v.tcl

After all commands in the Tcl script file are executed, "pt_shell>" prompt
appears. More pt_shell commands can be executed at that prompt,
including the following:

■ man report_timing

This command will list details of how to use the report_timing
command and all related options.

■ help

Entering this command at the pt_shell prompt lists all the
commands available in the pt_shell.

■ quit

Entering this command at the pt_shell prompt closes the pt_shell.

You can also activate pt_shell without a script file by entering pt_shell
at the UNIX command line prompt.

Conclusion The Quartus II-generated netlist, constraints, and timing information can
be exported into the PrimeTime environment seamlessly. PrimeTime can
be used to do worst-case and best-case timing analysis just as in the
Quartus II software. PrimeTime timing reports show any violations and
slacks.

Altera Corporation Section III–1
Preliminary

Section III. Power
Estimation & Analysis

As FPGA designs grow larger and processes continue to shrink, power
becomes an ever-increasing concern. When designing a printed circuit
board, the power consumed by a device needs to be accurately estimated
to develop an appropriate power budget, and to design the power
supplies, voltage regulators, heat sink, and cooling system.

The Quartus® II software allows you to estimate the power consumed by
your current design during timing simulation. The power consumption
of your design can be calculated using the Microsoft Excel-based power
calculator, or the Simulation-Based Power Estimation features in the
Quartus II software. This section explains how to use both.

This section includes the following chapters:

■ Chapter 6, Early Power Estimation

■ Chapter 7, Simulation-Based Power Estimation

Revision History The table below shows the revision history for Chapters 6 and 7.

Chapter(s) Date / Version Changes Made

6 June 2004 v2.0 ● Updates to tables, figures.
● New functionality for Quartus 4.1.

Feb. 2004 v1.0 Initial release

7 June 2004 v2.0 ● Updates to tables, figures.
● New functionality for Quartus 4.1.

Feb. 2004 v1.0 Initial release

Section III–2 Altera Corporation
Preliminary

Power Estimation & Analysis Quartus II Handbook, Volume 3

Altera Corporation 6–1
June 2004

6. Early Power Estimation

Introduction As designs grow larger and processes continue to shrink, power becomes
an ever-increasing concern. When designing a printed circuit board
(PCB), the power consumed by a device needs to be accurately estimated
to develop an appropriate power budget and to design the power
supplies, voltage regulators, heat sink and cooling system. Stratix™,
Stratix GX, and Cyclone™ device power consumption can be calculated
using the Microsoft Excel (Excel)-based power calculator or the
Simulation-Based Power Estimation feature in the the Quartus® II
software, which is described in the Simulation-Based Power Estimation
chapter in Volume 3 of the Quartus II Handbook.

You can use the Excel-based power calculator during the board design
and layout phase to estimate power and design for proper power
management. The simulation-based power estimation feature in the
Quartus II software (when simulation vectors are available) can verify
that your design is within your power budget.

Excel-Based
Power
Calculator

An Excel-based power calculator, which provides a current (ICC) and
power (P) estimation based on typical conditions (room temperature and
nominal VCC), is available on the Altera websites for the Stratix,
Stratix GX and Cyclone devices, under Design Utilities. The power
calculator is divided into sections, with each section representing an
architectural feature of the device, including the clock network, RAM
blocks, and digital signal processing (DSP) blocks. You must enter the
device resources, operating frequency, toggle rates, and other parameters
in the power calculator to estimate the device power consumption. The
sub-total of the ICC and power consumed by each architectural feature is
reported in each section in milliamps (mA) and milliwatts (mW),
respectively.

Before reading this chapter, you should be familiar with the Excel-based
Stratix, Stratix GX, or Cyclone power calculators available on the Altera
website.

f For more information about how to use the Excel-based power
calculator, see the Estimating Power in Stratix, Stratix GX, and Cyclone
Devices User Guide.

Figures 6–1 through 6–5 show sections of the Stratix power calculator.

qii53006-2.0

6–2 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Figure 6–1. Device and ICC Standby Sections in the Stratix Power Calculator

Figure 6–2. Clock Network Section in the Stratix Power Calculator

Altera Corporation 6–3
June 2004 Preliminary

Estimating Power in the Design Cycle

Figure 6–3. Logic Elements Section in the Stratix Power Calculator

Figure 6–4. RAM Blocks Section in the Stratix Power Calculator

Figure 6–5. General I/O Power Section in the Stratix Power Calculator

Estimating
Power in the
Design Cycle

You can estimate power at different stages of your design cycle.
Depending where you are in your design cycle, you can either use the
Excel-based power calculator or the simulation-based power estimation
feature in Quartus II.

Since FPGAs provide the convenience of a shorter design cycle and faster
time-to-market, the board design often takes place during the FPGA
design cycle, which means the power planning for the device can happen
before the FPGA design is complete. If the FPGA design has not yet

6–4 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

begun, or is not complete, an estimate of the power consumption for the
design can be made using the Excel-based power calculator. Table 6–1
shows the power estimation flow when using the Excel-based power
calculator when the FPGA design has not begun.

When the FPGA design is partially complete, the power estimation file
generated by the Quartus II software can help to fill in the Excel-based
power calculator. After using the Import Data macro to import the power
estimation file information into the Excel-based power calculator, you can
edit the power calculator to reflect the device resource estimates for the
final design.

f For more information about how to generate the power estimation file in
the Quartus II software, see “Quartus II Power Report File” on page 6–6.
For more information about how use the Import Data macro to import
the power estimation file information into the Excel-based power
calculator, see the Estimating Power in Stratix, Stratix GX, and Cyclone
Devices User Guide.

Table 6–1. Power Estimation Before FPGA Design Has Begun

Steps to Follow Advantages Disadvantages

1. Download the Excel-based power
calculator from the Altera website

Power Estimation can be done
before any FPGA design is
complete

Accuracy is dependent on user
input and estimate of the device
resources

Can be time consuming

2. Manually fill in the power
calculator

Altera Corporation 6–5
June 2004 Preliminary

Estimating Power in the Design Cycle

Table 6–2 shows the power estimation flow for the Excel-based power
calculator when the FPGA design is partially complete.

When the FPGA design is complete, the device power consumption can
be estimated with the simulation-based power estimation feature in
Quartus II. The Quartus II Simulator provides simulation-based power
estimation for Stratix, Stratix GX, Cyclone, HardCopy™ Stratix,
MAX® 7000AE, MAX 7000B, and MAX 3000A devices. To use the power
estimation feature, you must provide a Vector Waveform File (.vwf) or
Power Input File (.pwf) to the Quartus II Simulator and perform a timing
simulation.

f For more information about how to use the simulation-based power
estimation feature in the Quartus II software, see the Simulation-Based
Power Estimation chapter in Volume 3 of the Quartus II Handbook.

Table 6–2. Power Estimation When FPGA Design Is Partially Complete

Steps to Follow Advantages Disadvantages

1. Compile the partial FPGA design
in the Quartus II software

Power Estimation can be done early
in the FPGA design cycle

Provides the flexibility to
automatically fill the power-
calculator based on results of
compilation in the Quartus II
software

Accuracy is dependent on user
input and estimate of the final
design device resources2. Generate the Power Estimation

File in the Quartus II software

3. Download the Excel-based power
calculator from the Altera website

4. Run the import data macro to
automatically populate the Excel-
based power calculator

5. Optionally, edits to the power
calculator can be made to reflect the
device resources used in the final
design

6–6 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Table 6–3 shows the power estimation flow for the simulation-based
power estimation feature in the Quartus II software when the FPGA
design is complete.

Quartus II Power
Report File

When filling out the Excel-based power calculator, you enter the device
resources, operating frequency, toggle rates and other parameters in the
power calculator. This requires familiarity with the design. If you do not
have an existing design, then you must estimate the number of device
resources used in your design.

If you already have an existing design or a partially completed design, the
power estimation report file that is generated by the Quartus II software
version 4.1 can aid in filling out the power calculator.

To generate the power estimation file, you must first compile your design
in the Quartus II software version 4.1. After compilation is complete,
choose Generate Power Estimation File (Project menu), which instructs
the Quartus II software to write out a power estimation report text file.
See Figure 6–6.

Table 6–3. Power Estimation When FPGA Design Is Complete

Steps to follow Advantages Disadvantages

1. Compile the FPGA design in
Quartus II

Provides the most accurate power
estimation since the simulation
stimuli reflect actual device behavior

Power Estimation done later in the
FPGA design cycle

2. Create the stimulus for simulation

3. Simulate the design using
Quartus II vector files or a Power
Input File (.pwf) from a third party
simulation tool

4. Quartus II Simulator reports the
power estimation results

Altera Corporation 6–7
June 2004 Preliminary

Quartus II Power Report File

Figure 6–6. Generate Power Estimation File Option

After the Quartus II software successfully generates the power estimation
report file, a message will be displayed. See Figure 6–7.

Figure 6–7. Generate Power Estimation File Message

The power estimation report file is named <name of Quartus II
project>_pwr_cal.txt. Figure 6–8 is an example of the contents of a power
estimation file generated by the Quartus II software version 4.1.

6–8 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Figure 6–8. Example of Power Estimation File

The Stratix Power Calculator v3.0, Stratix GX Power Calculator v1.3, and
Cyclone Power Calculator v1.2 power calculation spreadsheets include
the Import Data macro that parses the information in the power
estimation file and transfers it into the Excel-based power calculator. If
you do not want to use the macro, you can also transfer the data into the
Excel-based power calculator manually.

If your existing Quartus II project represents only a portion of your full
design, you should manually enter in the additional resources that are
used in the final design. Therefore, after importing the power estimation
file information into the Excel-based power calculator, you can edit it to
add in additional device resources.

f For completed designs, see the Simulation-Based Power Estimation chapter
in Volume 3 of the Quartus II Handbook.

Conclusion The power calculator is an easy and useful tool to estimate the power
consumption for your designs based on typical conditions. The power
estimation file generated by the Quartus II software helps to fill in the
Excel-based power calculator available on the Altera website. Board-level
and FPGA designers can benefit from the power estimation report file
generated by the Quartus II software to more accurately estimate power.

References Estimating Power in Stratix, Stratix GX, and Cyclone Devices User Guide

Power Estimation File for dff_top - Do not edit this
line

<name=DEVICE value=EP1S25F780C5>

<name=fmax_RC1 value=100>
<name=ff_RC1 value=984>
<name=fmax_LE1 value=100>
<name=tot_LE1 value=1700>
<name=totwcc_LE1 value=1400>
<name=fmax_GIO1 value=50>
<name=NumbOB_GIO1 value=80>
<name=avgCLoad_GIO1 value=20>
<name=iostd_GIO1 value=3.3_LVTTL/LVCMOS_24>
<name=iodatarate_GIO1 value=SDR>

Altera Corporation 7–1
June 2004

7. Simulation-Based Power
Estimation

Introduction After completing the design, synthesis, and place-and-route steps in the
design cycle, you should use the Simulator in the Quartus® II software to
perform a simulation to verify design functionality. The simulation
should include a Simulation-based power estimation. The power
estimation provides an accurate way to estimate the power consumed by
your design because it is based on the simulation stimuli that reflects the
actual design behavior. In addition to providing design verification, the
Simulator supports simulation-based power estimation for Stratix™,
Stratix GX, Cyclone™, HardCopy Stratix™, MAX® 7000AE, MAX 7000B,
and MAX 3000A devices.

Since simulation typically happens later in the design cycle, simulation-
based power estimation is generally used to verify the power
consumption of a device already on board. However, simulation-based
power estimation is also a useful tool to estimate power in portions of a
larger design when integrating smaller designs into larger FPGAs.

The device power consumption can be estimated before the simulation
stage. To use the power estimation feature, you must provide a Vector
Waveform File (.vwf) or Power Input File (.pwf) to the Quartus II
Simulator and perform a timing simulation.

f For more information about how to perform an early power estimation
of your design, see the Early Power Estimation chapter in Volume 3 of the
Quartus II Handbook.

This chapter explains how to use the simulation-based power estimation
feature in the Quartus II software to estimate device power consumption.

1 It is important to remember that these results should only be
used as an estimation of power, not as a specification. The total
device current should be verified during device operation as this
measurement is sensitive to the actual implementation in the
device and to the environmental operating conditions.

qii53007-2.0

7–2 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Power
Estimation in the
Quartus II
Software

The Quartus II Simulator has a power estimation feature that uses your
design simulation vector files to estimate the device power consumption
based on typical device-operating conditions. This feature enables you to
identify and optimize system-level power consumption in the design
cycle.

f For more information about how to perform simulations in the
Quartus II software, see Quartus II Help.

The power estimation is based on simulation vectors entered in the VWF
or VEC and is estimated when performing a timing simulation. To turn
on the power estimation feature, follow the steps below:

1. Choose Settings (Assignment menu).
2. In the Settings dialog box, under the Category list, select Simulator

(see Figure 7–1).

Figure 7–1. Simulator Settings

3. In the Simulator Settings window, select Timing in the Simulation
mode list.

Altera Corporation 7–3
June 2004 Preliminary

Power Estimation in the Quartus II Software

4. Click Power Estimation to open the Power Estimation window.

5. In the Power Estimation dialog box, turn on the Estimate power
consumption (see Figure 7–2). The Simulator calculates and reports
the internal power, I/O power, and total power (in mW) consumed
by the design during the simulation period.

6. Power estimation can be performed for the entire simulation time,
or for a portion of the entire simulation time. This allows you to look
at the power consumption at different points in your overall
simulation without having to rework your test benches. You can
specify the start time and end time in the Power Estimation dialog
box under Power estimation period. If no power estimation end
time is specified, power estimation ends at the simulation end time.

Figure 7–2. Power Estimation Window

7. After the timing simulation is performed, the estimated power
consumption for your design is reported in the Summary section of
the Simulation Report. The Simulator Reports the Total Power
which is the sum total of Total Internal Power and the Total I/O
power. The internal power includes the internal standby power and
dynamic power. In the example shown in Figure 7–3 the M4K RAM
and the clocktree components contribute to the dynamic power
consumed by the design.

7–4 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Figure 7–3. Simulator Summary

Simulation-based power estimation reports a more accurate toggle
percentage of your design since it calculates the toggle rate based on the
simulation waveforms you provide. Hence, the power estimated by the
Quartus II Simulator is more accurate than the Microsoft excel-based
power calculator. The power calculator is explained in the Early Power
Estimation chapter in Volume 3 of the Quartus II Handbook. It is important
to remember that Simulator power results can be only as accurate as the
simulation waveforms you provide. To achieve the most accurate results,
your simulation waveforms should mimic the behavior of your design.

Estimating
Power with EDA
Simulation Tools

You can use other EDA simulation tools, such as Model Technology™
ModelSim® software to perform a simulation that includes power
estimation data. To do this, you must instruct the Quartus II software to
include power estimation data in the Verilog Output File (.vo) or VHDL
Output File (.vho). When you are performing a simulation in another
EDA simulation tool, the tool uses the power estimation data to generate
a Power Input File (.pwf). The PWF file is used in the Quartus II software
to estimate the power consumption of your design.

f For more information about how to perform simulations in other EDA
simulation tools, see the relevant documentation for that tool.

To perform power estimation using the Quartus II software and other
EDA simulation tools, follow the steps below:

1. Choose EDA tool settings (Assignments menu).

2. In the EDA tools Settings dialog box, under the Category list, open
EDA Tool Settings and select Simulation.

Altera Corporation 7–5
June 2004 Preliminary

Estimating Power with EDA Simulation Tools

3. In the Simulation dialog box, choose the appropriate EDA
simulation tool from the Tool name list.

4. Turn on Generate Power Input File (see Figure 7–4).

Figure 7–4. EDA Tool Settings Window

5. Compile the design in the Quartus II software.

6. Perform a timing simulation with the other EDA simulation tool.

The simulation tool generates the PWF file and places it in the project
directory.

7. In the Quartus II software, choose Settings (Assignment menu).

8. In the Settings dialog box, under the Category list, open Fitter
Settings and select Simulator.

9. In the Simulator window, select Timing in the Simulation mode
list.

7–6 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

10. Specify the PWF file in the Simulation input box (see Figure 7–5).

You can browse to the appropriate PWF file by clicking the Browse
(...) button.

Figure 7–5. Simulator Settings Dialog Box

11. In the Quartus II software, perform a timing simulation of your
design.

12. View the estimated power consumption in the Simulator Summary
section of the Simulation Report (see Figure 7–6).

Altera Corporation 7–7
June 2004 Preliminary

Scripting Support

Figure 7–6. Simulator Summary

Scripting
Support

You can run the procedures and make the settings described in this
chapter in a Tcl script.

For detailed information about specific scripting command options and
Tcl API packages, type quartus_sh --qhelp at a system command
prompt to run the Quartus II Command-Line and Tcl API Help utility.

f For more information and examples on Quartus II scripting support,
refer to the Tcl Scripting and Command-Line Scripting chapters in
Volume 2 of the Quartus II Handbook.

Simulation-Based Power Estimation Settings

Use the following Tcl command to turn on the power estimation feature:

set_global_assignment -name ESTIMATE_POWER_CONSUMPTION ON

For more information on power estimation settings, refer to “Power
Estimation in the Quartus II Software” on page 7–2.

Use the following Tcl commands to set the power estimation start and end
times. Specify the start and end times with quotes, such as “100 ns” for
start_time and end_time:

set_global_assignment -name POWER_ESTIMATION_START_TIME “<start_time>”

set_global_assignment -name POWER_ESTIMATION_END_TIME “<end_time>”

7–8 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Generate a Power Input File

Use the following Tcl command to cause the Quartus II software to
generate a PWF for use with third-party EDA simulation software. For
more information on estimating power with EDA simulation tools, refer
to “Estimating Power with EDA Simulation Tools” on page 7–4.

set_global_assignment -name EDA_GENERATE_POWER_INPUT_FILE ON -section_id
eda_simulation

Use the following Tcl command to specify the PWF to be used as an input
by the Quartus II software to estimate the power consumption of the
design.

set_global_assignment -name VECTOR_INPUT_SOURCE <file name>.pwf

Conclusion The simulation-based power estimation feature in the Quartus II
software is an easy and useful tool to estimate the power consumption for
your designs, based on typical conditions. You can use this feature in the
Quartus II software and other EDA simulation tools to estimate power
and verify that their design is within their power budget.

References ■ Estimating Power in Stratix, Stratix GX, and Cyclone Devices User Guide

Altera Corporation Section IV–1
Preliminary

Section IV. On-Chip
Debugging

Debugging today's FPGA designs can be a daunting task. As your
product requirements continue to increase in complexity, the time you
spend on design verification continues to rise. To get your product to
market as quickly as possible, you must minimize design verification
time. To help alleviate the time-to-market pressure, you need a set of
verification tools that are powerful, yet easy to use.

The Quartus® II software SignalTap® II Logic Analyzer and the
SignalProbe™ features analyze internal device nodes and I/O pins while
operating in-system and at system speeds. The SignalTap II Logic
Analyzer uses an embedded logic analyzer to route the signal data
through the JTAG port to either the SignalTap II Logic Analyzer or an
external logic analyzer or oscilloscope. The SignalProbe feature uses
incremental routing on unused device routing resources to route selected
signals to an external logic analyzer or oscilloscope. A third Quartus II
software feature, the Chip Editor, can be used in conjunction with the
SignalTap II and SignalProbe debugging tools to speed up design
verification and incrementally fix bugs uncovered during design
verification. This section explains how to use each of these features.

This section includes the following chapters:

■ Chapter 8, Quick Design Debugging Using SignalProbe

■ Chapter 9, Design Debugging Using the SignalTap II Embedded
Logic Analyzer

■ Chapter 10, Design Analysis and Engineering Change Management
with Chip Editor

■ Chapter 11, In-System Updating of Memory & Constants

Section IV–2 Altera Corporation
Preliminary

On-Chip Debugging Quartus II Handbook, Volume 3

Revision History The table below shows the revision history for Chapters 8 to 11.

Chapter(s) Date / Version Changes Made

8 June 2004 v2.0 ● Updates to tables, figures.
● New functionality for Quartus 4.1.

Feb. 2004 v1.0 Initial release.

9 June 2004 v2.0 ● Updates to tables, figures.
● New functionality for Quartus 4.1.

Feb. 2004 v1.0 Initial release.

10 June 2004 v2.0 ● Updates to tables, figures.
● New functionality for Quartus 4.1.

Feb. 2004 v1.0 Initial release.

11 Aug. 2004 v1.1 Minor typographical corrections.

June 2004 v1.0 Initial release.

Altera Corporation 8–1
June 2004 Preliminary

8. Quick Design Debugging
Using SignalProbe

Introduction Hardware verification can be a lengthy and expensive process. The
SignalProbe™ incremental routing feature can help reduce the hardware
verification process and time-to-market for
System-On-a-Programmable-Chip (SOPC) designs.

Easy access to internal device signals is important in the debugging of a
design. The SignalProbe feature enables efficient design verification by
allowing you to quickly route internal signals to I/O pins without
affecting the design. Starting with a fully routed design, you can select
and route signals for debugging to either previously reserved or currently
unused I/O pins.

The SignalProbe feature supports the MAX® II, Stratix®, Stratix GX,
Cyclone™, APEX™ II, APEX 20KE, APEX 20KC, APEX 20K, and
Excalibur™ devices.

f You can accomplish the same functionality with the Chip Editor as with
SignalProbe. For more information about using the Chip Editor to
perform SignalProbe functionality, see the Design Analysis and
Engineering Change Management with Chip Editor chapter in Volume 3 of
the Quartus® II Handbook.

Using
SignalProbe

You can use the SignalProbe compilation to incrementally route internal
signals to reserved output pins. This process completes in a fraction of the
time required by a full design recompilation. The incremental routing
does not affect source behavior or design operation.

Follow the steps below to use the SignalProbe incremental routing
feature:

1. Reserve SignalProbe pins prior to initial compilation.

2. After initial compilation, determine which nodes you want to route
to the reserved SignalProbe pins.

3. Assign an I/O standard to the SignalProbe pins.

4. Add registers for pipelining of signals, if necessary.

5. Perform a SignalProbe compilation.

qii53008-2.0

8–2 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

6. Understand the results of the SignalProbe compilation.

Reserving SignalProbe pins

You can reserve an unused pin as a SignalProbe pin before you route an
internal signal out of your device. You can reserve your SignalProbe pins
before or after a compilation. To ensure that a pin is available for your
SignalProbe pin and not to another unassigned user I/O pin, reserve the
SignalProbe pin before a compilation.

You may only need a few SignalProbe pins, since you can easily reassign
different sources to your SignalProbe pins.

To reserve an unused I/O pin as a SignalProbe pin, perform the following
steps:

1. Click Assign SignalProbe Pins on the SignalProbe Settings page of
the Settings dialog box (Assignment menu). See Figure 8–1.

2. Turn on Show current and potential SignalProbe pins in the
Assign SignalProbe Pins dialog box.

3. Select a pin Number from the Available Pins & Existing
Assignments list.

4. Type your SignalProbe pin name into the Pin name box.

5. Select As SignalProbe output from the Reserve pin list.

6. Turn on Reserve pin.

7. Click Add for a new SignalProbe pin.

or

Click Change for an existing SignalProbe pin.

8. Click OK.

Altera Corporation 8–3
June 2004 Preliminary

Using SignalProbe

Figure 8–1. Reserving a Pin for SignalProbe in the Assign SignalProbe Pins Dialog Box

Adding SignalProbe Sources

A SignalProbe source is a signal in the post-compilation design database
with a possible route to an output pin. You can assign a SignalProbe
source to a SignalProbe pin, an unused output pin, or a reserved output
pin by performing the following steps:

1. Click Assign SignalProbe Pins on the SignalProbe Settings page of
the Settings dialog box (Assignments menu).

2. In the Available Pins & Existing Assignments list, select the pin
number for the pin to which you want to add a SignalProbe source.
The pin must be a reserved SignalProbe pin, an unused output pin,
or a reserved output pin.

3. Browse to a SignalProbe source.

The Node Finder dialog box appears when you click Browse and
automatically selects SignalProbe in the Filter list (see Figure 8–2).
Click List to view all the available SignalProbe sources. If you cannot
find a specific node with the SignalProbe filter, then the node has
been either removed by the Quartus II software during optimization
or placed somewhere in the device where there are no possible routes
to a pin.

8–4 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Figure 8–2. Available SignalProbe Sources in the Node Finder

4. Click Add for a new SignalProbe pin.

or

Click Change for an existing SignalProbe pin.

5. Click OK

Assigning I/O
Standards

The I/O standard of each SignalProbe pin must be compatible with the
I/O bank the pin is in.

You can use the following two methods to assign I/O standards for your
SignalProbe pins.

1. Click Assign SignalProbe Pins on the SignalProbe Settings page of
the Settings dialog box (Assignments menu), select your
SignalProbe output and select an I/O standard from the I/O
standard list in the Assignment box in the Assign Pins dialog box.

2. Choose Assignment Editor (Assignments menu), select I/O
Standard in the Category list, type the SignalProbe pin name in the
To column and select the I/O standard in the I/O Standard column
of the spreadsheet.

Adding
Registers for
Pipelining

You can specify the number of registers to be placed between a
SignalProbe source and a SignalProbe pin to synchronize the data with
respect to a clock and control the latency. The SignalProbe incremental
routing feature automatically inserts the number of registers specified in
the SignalProbe path.

Altera Corporation 8–5
June 2004 Preliminary

Performing a SignalProbe Compilation

For example, you can add a single register between the SignalProbe
source and the SignalProbe output pin to reduce the propagation time
(tCO). You can add multiple registers to your SignalProbe output pins to
synchronize the data with other output pins in your design.

1 When you add one register to a SignalProbe pin, the SignalProbe
compilation always attempts to place the register into the I/O
element. If it is unable to place the register into the I/O element,
it places the register as close to the SignalProbe pin as possible
to reduce clock to output delays (tCO).

You can add registers to your SignalProbe pin by performing the
following steps:

1. Click Assign SignalProbe Pins on the SignalProbe Settings page of
the Settings dialog box (Assignments menu).

2. In the Available Pins & Existing Assignments list, select the pin
number for the SignalProbe output pin you want to register.

3. Under Assignment, type a new Clock name in the Clock box.

4. Under Assignment, type the number of registers necessary to
pipeline your SignalProbe source in the Register box.

1 Altera® strongly recommends using global clock signals to clock
the added registers.

The MAX II, Stratix, Stratix GX, and Cyclone devices support adding
registers to a SignalProbe pin.

Performing a
SignalProbe
Compilation

You can start a SignalProbe compilation manually or automatically after
a full compilation. A SignalProbe compilation performs the following
steps:

1. Validate SignalProbe pins

2. Validate your specified SignalProbe sources

3. If applicable, add registers into SignalProbe paths

4. Attempt to route from SignalProbe sources, through registers, to
SignalProbe pins

8–6 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

To make the SignalProbe compilation run automatically after a full
compile, turn on Automatically route SignalProbe sources during
compilation in the SignalProbe Settings page in the Settings dialog box
(Assignments menu), (see Figure 8–3).

Figure 8–3. SignalProbe Settings Page in the Settings Dialog Box

To run a SignalProbe compilation manually after a full compilation,
choose Start SignalProbe Compilation (Processing menu).

1 You must run the Fitter before a SignalProbe compilation. The
Fitter generates a list of all internal nodes that can be used as
SignalProbe sources.

You can enable and disable each SignalProbe pin by turning on and off
the SignalProbe enable option in the Assignment box in the Assign
SignalProbe Pins dialog box. You can also enable or disable all

Altera Corporation 8–7
June 2004 Preliminary

Running SignalProbe with Smart Compilation

SignalProbe pins by clicking Enable All SignalProbe Routing and
Disable All SignalProbe Routing respectively in the Assignment box in
the Assign SignalProbe Pins dialog box.

The Enable All SignalProbe Routing and Disable All SignalProbe
Routing options are disabled until you turn on Show current and
potential SignalProbe pins in the Assign SignalProbe Pins dialog box.

Running
SignalProbe
with Smart
Compilation

Smart compilation reduces compilation times by running only necessary
modules during compilation. However, a full compilation is required if
any design files, Analysis and Synthesis settings, or Fitter settings have
changed.

To turn on Smart compilation, turn on Use Smart compilation in the
Compilation Process page in the Settings dialog box (Assignments
menu).

If you run a SignalProbe compilation with smart compilation on, and
there are changes to a design file or settings related to the Analysis and
Synthesis or Fitter modules, then you will get the following message:

Error: Can't perform SignalProbe compilation because
design requires a full compilation.

1 Altera recommends turning on smart compilation so that you
are always working with the latest settings and design files.

Understanding
SignalProbe
Routing Failures

If the SignalProbe compilation starts and fails, it could be because of one
of the following reasons:

■ The SignalProbe compilation failed to find a route from the
SignalProbe source to the SignalProbe pin because of routing
congestion

■ You entered a SignalProbe source that does not exist or is an invalid
SignalProbe source.

■ The output pin selected is found to be unusable.

Routing failures can occur if the SignalProbe pin's I/O standard conflicts
with other I/O standards in the same I/O Bank.

If routing congestion is preventing a successful SignalProbe compilation,
you can turn on Modify latest fitting results during SignalProbe
compilation in the SignalProbe Settings page in the Settings dialog box
(Assignments menu) to allow the compiler to modify the routing to the
specified SignalProbe source (see Figure 8–4). This setting allows the
Fitter to modify the existing routing channels used by your design.

8–8 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

1 Turning on Modify latest fitting results during SignalProbe
compilation may change the performance of your design.

Figure 8–4. SignalProbe Settings Page in the Settings Dialog Box

Understanding
the Results of a
SignalProbe
Compilation

Use the Messages window to view the results of the SignalProbe
compilation. This window lists successfully routed SignalProbe pins. In
addition, it displays slack information for each successfully routed
SignalProbe pin.

Altera Corporation 8–9
June 2004 Preliminary

Scripting Support

You can view the status and delays of each SignalProbe pin by viewing
the Status column in the Assign SignalProbe Pins dialog box. Table 8–1
describes the possible values for the Status column.

You can find source to output delays for each routed SignalProbe pin in
the SignalProbe Source to Output Delays page under Timing Analyzer
in the Compilation Report window (see Figure 8–5).

Figure 8–5. SignalProbe Source to Output Delays Page in the Compilation Report Window

Scripting
Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some of these procedures at a command
prompt.

For detailed information about specific scripting command options and
Tcl API packages, type quartus_sh --qhelp at a system command
prompt to run the Quartus II Command-Line and Tcl API Help utility.

Table 8–1. Status Values

Status Description

Routed Connected and routed successfully

Not Routed Not enabled

Failed to Route Failed routing during last SignalProbe compilation

Need to Compile Assignment changed since last SignalProbe compilation

8–10 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

f For more information on Quartus II scripting support, including
examples, refer to the Tcl Scripting and Command-Line Scripting chapters
of the Quartus II Handbook.

Reserving SignalProbe Pins

Use the following Tcl commands to reserve a SignalProbe pin. For more
information about reserving SignalProbe pins, see “Reserving
SignalProbe pins” on page 8–2.

set_location_assignment <location> -to <SignalProbe pin name>

set_instance_assignment -name RESERVE_PIN \
"AS SIGNALPROBE OUTPUT" -to <SignalProbe pin name>

Valid locations are pin location names, such as Pin_A3.

Adding SignalProbe Sources

Use the following Tcl commands to add SignalProbe sources. For more
information about adding SignalProbe sources, see “Adding SignalProbe
Sources” on page 8–3. The following command assigns the node name to
a SignalProbe pin:

set_instance_assignment -name SIGNALPROBE_SOURCE \
<node name> -to <SignalProbe pin name>

The next command enables the SignalProbe routing. You can disable
individual SignalProbe pins by specifying OFF instead of ON.

set_instance_assignment -name SIGNALPROBE_ENABLE ON \
-to <SignalProbe pin name>

Assigning I/O Standards

Use the following Tcl command to assign an I/O standard to a pin. For
more information about assigning I/O standards, see “Assigning I/O
Standards” on page 8–4.

set_instance_assignment -name IO_STANDARD <I/O standard> \
-to <SignalProbe pin name>

For a list of valid I/O standards, refer to the I/O Standards general
description in the Quartus II Help.

Altera Corporation 8–11
June 2004 Preliminary

Scripting Support

Adding Registers for Pipelining

Use the following Tcl commands to add registers for pipelining. For more
information about adding registers for pipelining, see “Adding Registers
for Pipelining” on page 8–4.

set_instance_assignment -name SIGNALPROBE_CLOCK \
<clock name> -to <SignalProbe pin name>

set_instance_assignment \
-name SIGNALPROBE_NUM_REGISTERS <number of registers> \
-to <SignalProbe pin name>

Run SignalProbe Automatically

Use the following Tcl command to cause SignalProbe to run automatically
after a full compile. For more information about running SignalProbe
automatically, see “Performing a SignalProbe Compilation” on page 8–5.

set_global_assignment -name SIGNALPROBE_DURING_NORMAL_COMPILATION ON

Run SignalProbe Manually

You can run SignalProbe manually with a Tcl command or with a
command run at a command prompt. For more information about
running SignalProbe manually, see “Performing a SignalProbe
Compilation” on page 8–5.

Tcl command:

execute_flow -signalprobe

The execute_flow command is in the flow package.

Command prompt:

quartus_fit <project name> --signalprobe r

Enable or Disable All SignalProbe Routing

Use this Tcl code to enable or disable all SignalProbe routing. For more
information about enabling or disabling SignalProbe routing, see
page 8–5. In the set_instance_assignment command, specify ON to
enable all SignalProbe routing or OFF to disable all SignalProbe routing.

8–12 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

set spe [get_all_assignments -name SIGNALPROBE_ENABLE] foreach_in_collection asgn $spe {
set signalprobe_pin_name [lindex $asgn 2]
set_instance_assignment -name SIGNALPROBE_ENABLE -to \

$signalprobe_pin_name <ON|OFF>

}

Running SignalProbe with Smart Compilation

Use the following Tcl command to turn on Smart Compilation. For more
information, see “Running SignalProbe with Smart Compilation” on
page 8–7.

set_global_assignment -name SPEED_DISK_USAGE_TRADEOFF SMART

Allow SignalProbe to Modify Fitting Results

Use the following Tcl command to turn on Modify latest fitting results.
For more information, see “Understanding SignalProbe Routing
Failures” on page 8–7.

set_global_assignment -name SIGNALPROBE_ALLOW_OVERUSE ON

Conclusion Using the SignalProbe incremental routing feature can significantly
reduce the time required for a full recompilation. You can use the
SignalProbe incremental routing feature to get quick access to internal
design signals to perform system-level debugging.

Altera Corporation 9–1
June 2004

9. Design Debugging Using
the SignalTap II Embedded

Logic Analyzer

Introduction Debugging today’s FPGA designs can be a difficult task. As your design
continues to increase in complexity, the time and money you invest in
verifying your design continues to rise. To get your product to market as
quickly as possible, you must minimize the design verification time. To
help alleviate the time-to-market pressure, you need a set of verification
tools that are powerful and easy to use. The Altera® SignalTap® II
Logic Analyzer can be used to evaluate the state of the signals in your
Altera FPGA, helping you to quickly find the cause of design flaws in
your system.

The SignalTap II Logic Analyzer in the Quartus® II software is
non-intrusive, scalable, easy to use, and free with your Quartus II
subscription. This logic analyzer helps you debug your FPGA design by
allowing you to probe the state of the internal signals in your design. It is
equipped with many new and innovative features, allowing you to find
the source of a design flaw in a short amount of time. Figure 9–1 shows
the SignalTap II Logic Analyzer block diagram.

Figure 9–1. SignalTap II Logic Analyzer Block Diagram

qii53009-2.0

9–2 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

This handbook chapter discusses the following topics:

■ Including the SignalTap II Logic Analyzer in your design
■ Programming the device for SignalTap II analysis
■ Advanced features of the SignalTap II Logic Analyzer
■ Design examples

The SignalTap II Logic Analyzer supports the following device families:

■ Stratix® II
■ Stratix
■ Stratix GX
■ Cyclone™ II
■ Cyclone
■ APEX™ II
■ APEX 20KE
■ APEX 20KC
■ APEX 20K
■ Excalibur™
■ Mercury™

Including the
SignalTap II
Logic Analyzer
in Your Design

There are two ways to build the SignalTap II Logic Analyzer. The first
method involves creating a SignalTap II file (.stp) and then defining the
details of the STP file. The second method involves creating and
configuring the STP file with the MegaWizard® Plug-In Manager and
then instantiating the HDL output module from the MegaWizard in your
HDL code.

Figure 9–2 illustrates the process of setting up and using the SignalTap II
Logic Analyzer using both methods. The diagram shows the flow of
operations from the initial MegaWizard custom variation to the final
device configuration.

Altera Corporation 9–3
June 2004

Design Debugging Using the SignalTap II Embedded Logic Analyzer

Figure 9–2. SignalTap II Flow

Using the STP File to Create an Embedded Logic Analyzer

Creating an STP File

The STP file contains the SignalTap II Logic Analyzer settings and the
captured data for viewing and analysis. To create a new STP file, follow
these steps:

1. In the Quartus II software, choose New (File menu).

2. Click on the Other Files tab and select SignalTap II File.

3. Click OK.

To open an existing STP file, select SignalTap II Logic Analyzer (Tools
menu). This method can also be used to create a new STP file.

Both of these methods bring up the SignalTap II window (Figure 9–3).

9–4 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

Figure 9–3. SignalTap II Window

Assigning an Acquisition Clock

You must assign a clock signal to control the acquisition of data by the
SignalTap II Logic Analyzer. The acquisition clock samples data on every
rising edge. You can use any signal in your design as the acquisition clock.
For best results, Altera recommends using a global clock, not a gated
clock. Using a gated clock as your acquisition clock, may result in
unexpected data that does not accurately reflect your design. The
Quartus II Timing Analyzer displays the maximum acquisition clock
frequency.

To assign an acquisition clock, perform the following steps:

1. In the SignalTap II Logic Analyzer window, click the Setup tab.

2. Click Browse next to the Clock list to open the Node Finder.

3. Select SignalTap II: pre-synthesis in the Filter list.

4. In the Named box, enter the name of the signal that you would like
to use as your sample clock.

Altera Corporation 9–5
June 2004

Design Debugging Using the SignalTap II Embedded Logic Analyzer

5. To start the node search, click List.

6. In the Nodes Found list, select the node representing the design’s
global clock signal.

7. To copy the selected node name to the Selected Nodes list, click
“>”.

8. Click OK.

9. The node is now specified as the clock in the SignalTap II window.

If you do not assign an acquisition clock in the SignalTap II window, the
Quartus II software automatically creates a clock pin called
auto_stp_external_clk.

You must make a pin assignment to this pin independently from the
design. You must ensure that a clock signal on your PCB drives the
acquisition clock.

Assigning Signals to the STP File

You can assign the following two types of signals to your STP file:

■ Pre-synthesis: A pre-synthesis signal exists after design elaboration,
but before any synthesis optimizations are done by physical
synthesis. This set of signals should reflect your Register Transfer
Level (RTL) signals.

■ Post-fitting: A post-fitting signal exists after physical synthesis
optimizations and place-and-route.

1 To add only pre-synthesis signals to your STP file, select Start
Analysis & Elaboration (Processing menu). This is particularly
useful if you want to quickly add a new node name after you
have made design changes.

Assigning Data Signals

To assign data signals, follow these steps:

1. Perform analysis and elaboration, or analysis and synthesis, or
compile your design.

2. In the SignalTap II Logic Analyzer window, click the Setup tab.

9–6 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

3. Double-click in the STP window to launch the Node Finder.

4. Select SignalTap II: pre-synthesis or SignalTap II: post-fitting in
the Filter list.

5. In the Named box, enter a node name, partial node name, or
wildcard characters. To start the node name search, click List.

6. In the Nodes Found list, select the node or bus you want to add to
the STP file.

7. To copy the selected node names to the Selected Nodes list,
click “>”.

8. To insert the selected nodes in the STP file, click OK.

Specifying the Sample Depth

The sample depth specifies the number of samples that are stored for each
signal. To set the sample depth, select the desired number of samples in
the Sample Depth list. The sample depth ranges from 0 (zero) to 128K
samples.

Triggering the Analyzer

To control how the analyzer is triggered, set the trigger type and number
of trigger levels:

Trigger Type: Basic or Advanced
If Trigger Type is set to Basic, you must set the Trigger Pattern for each
signal in the STP file. The Trigger Pattern can be set to any of the
following:

● Don't Care
● Low
● High
● Falling Edge
● Rising Edge
● Either Edge

Data capture begins when the logical AND of all the signals for a given
level evaluates to TRUE.

If Trigger Type is set to Advanced, you must build an expression that will
be used to trigger the analyzer.

Altera Corporation 9–7
June 2004

Design Debugging Using the SignalTap II Embedded Logic Analyzer

f For more information on trigger types, see “Creating Complex Triggers”
on page 9–14.

Number of Trigger Levels
The multiple Trigger Level feature gives you precise accuracy over the
trigger condition that you build. This allows for more complex data
capture commands to be given to the logic analyzer, providing greater
accuracy and problem isolation. You can create up to ten trigger levels.

SignalTap II Logic Analyzer first evaluates the trigger patterns associated
with trigger level 1. When the expression for trigger level 1 evaluates to
TRUE, SignalTap II Logic Analyzer evaluates the expression for trigger
level 2. This process continues until all trigger levels have been processed
and the final trigger level evaluates to TRUE.

The multiple trigger level feature can be used with Basic Triggers or
Advanced Triggers.

You can configure the SignalTap II Logic Analyzer to use up to ten trigger
levels. Select the desired number of trigger levels in the Trigger Levels
list.

You can disable the ability to trigger for a signal by turning off that trigger
enable. This option is useful when you only want to see captured data for
a signal, and are not using that signal as a trigger.

You can disable the ability to view data for signal by turning off the data
enable column. This option is useful when you want to trigger on a signal,
but do not care about viewing data for that signal.

Specifying the Trigger Position

You can specify the amount of data that is acquired before the trigger
event. Select the desired ratio of pre-trigger data to post-trigger data by
selecting one of the following ratios:

■ Pre: This selection saves signal activity that occurred after the trigger
(12% pre-trigger, 88% post-trigger).

■ Center: This selection saves 50% pre-trigger and 50% post-trigger
data.

■ Post: This selection saves signal activity that occurred before the
trigger (88% pre-trigger, 12% post-trigger).

■ Continuous: This selection saves signal activity indefinitely (until
stopped manually).

After you configure the STP file, you must compile it with your Quartus II
project before you can use it to analyze your design.

9–8 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

Compiling Your Design with SignalTap II Logic Analyzer

The first time you create and save an STP file, the Quartus II software
automatically adds the file to your project. However, you can add an STP
file manually by performing the following steps:

1. Choose Settings (Assignments menu).

2. In the Category list, select SignalTap II Logic Analyzer.

3. Turn on Enable SignalTap II Logic Analyzer.

4. In the SignalTap II File Name box, type the name of the STP file
you want to compile, or select a file name with Browse.

5. Click OK.

6. To begin the compilation, select Start Compilation (Processing
menu).

1 When you compile your design with an STP file, the
sld_signaltap and sld_hub entities are added in the compilation
hierarchy. These two entities are the main components of the
SignalTap II Logic Analyzer.

Using the MegaWizard Plug-In Manager to Create your
Embedded Logic Analyzer

Alternatively, you can create a SignalTap II Logic Analyzer by using the
MegaWizard Plug-In Manager. If you use this method, you do not need
to create an STP file and include it in your Quartus II project. The
MegaWizard Plug-In Manager generates an HDL file that you instantiate
in your design. You can also use a hybrid approach in which you
instantiate the MegaWizard file in your HDL, along with using the
method described in “Using the STP File to Create an Embedded Logic
Analyzer” on page 9–3.

Creating the HDL Representation of the SignalTap II Logic Analyzer

The Quartus II software allows you to easily create your SignalTap II
Logic Analyzer using the MegaWizard Plug-In Manager. To implement
the SignalTap II megafunction, follow these steps:

1. Launch the MegaWizard Plug-In Manager by choosing
MegaWizard Plug-In Manager (Tools menu) in the Quartus II
software.

Altera Corporation 9–9
June 2004

Design Debugging Using the SignalTap II Embedded Logic Analyzer

2. Select Create a new custom megafunction variation.

3. Click Next.

4. Choose the SignalTap II Logic Analyzer. Select an output file type
and enter the desired name of the SignalTap II megafunction. You
can choose AHDL (.tdf), VHDL (.vhd), or Verilog HDL (.v) as the
output file type.

5. Click Next. See Figure 9–4.

Figure 9–4. Select an Output File and Enter the Selected SignalTap II Name

6. Configure the analyzer by specifying the Sample Depth, Memory
Type, Data Input Width, Trigger Input Width, and Number of
Trigger Levels.

7. Click Next. See Figure 9–5.

9–10 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

Figure 9–5. Select the Parameters for the Analyzer

8. Set the Trigger level options by choosing Basic or Advanced. See
Figure 9–6.

Figure 9–6. Basic and Advanced Trigger Options

Altera Corporation 9–11
June 2004

Design Debugging Using the SignalTap II Embedded Logic Analyzer

9. Click Finish to complete the process of creating an HDL
representation of the SignalTap II Logic Analyzer.

SignalTap II Megafunction Ports

Table 9–1 provides information on the SignalTap II megafunction ports.

1 Refer to the latest version of the Quartus II software Help for the
most current information on the ports and parameters for this
megafunction.

Instantiating the SignalTap II Logic Analyzer in your HDL

The process of instantiating the Logic Analyzer in your HDL is similar to
instantiating any other Verilog HDL or VHDL megafunction in your
design. You can instantiate as many analyzers in your design as will
physically fit in the FPGA. Once you have instantiated the SignalTap II
file in your HDL, compile your Quartus II project to fit the Logic Analyzer
in the target FPGA.

To capture and view the data, you must create an STP file from your
SignalTap II MegaWizard output file. The STP file is automatically
created for you when you select Create SignalTap II File from Design
Instance(s) from the Create/Update Menu (File menu).

Table 9–1. SignalTap II Megafunction Ports

Port Name Type Required Description

acq_data_in Input No These set of signals represent the signals that
are monitored in SignalTap II

acq_trigger_
in

Input No This set of signals represent the set of signals
that are used to trigger the analyzer

acq_clk Input Yes This port represents the sampling clock that
SignalTap II uses to capture data

trigger_in Input No This signal is used to trigger SignalTap II

trigger_out Output No This signal is enabled when the trigger event has
occurred

9–12 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

Programming
the Device for
SignalTap II
Analysis

When the compilation is complete, you must program the FPGA. To
program a device for use with the SignalTap II Logic Analyzer, follow
these steps:

1. In the JTAG Chain Configuration panel in the STP file, select the
SRAM Object File (.sof) that includes the SignalTap II Logic
Analyzer.

2. Click Scan Chain.

3. In the Device list, select the device to which you want to download
the design.

4. Click Program Device.

View Data
Samples

To capture and view data samples, follow these steps:

1. Select the Run button.

2. Run the SignalTap II Logic Analyzer by clicking Run or AutoRun in
the SignalTap II window.

Data capture begins when the trigger event evaluates to TRUE.

1 For more information on triggering, see the “Triggering the
Analyzer” section.

The SignalTap II toolbar has four options for running the analyzer:

■ Run: SignalTap II Logic Analyzer runs until the trigger event occurs.
When the trigger event occurs, data capture stops.

■ Stop: SignalTap II analysis stops. The acquired data does not appear
if the trigger event has not occurred.

■ AutoRun: SignalTap II Logic Analyzer continuously captures data
until the Stop button is clicked.

■ Read Data: Captured data is displayed. This button is useful if you
want to view the acquired data even if the trigger has not occurred.

Advanced
Features

This section describes the following advanced features:

■ “Preserving FPGA Memory”
■ “Creating Complex Triggers”
■ “Using External Triggers”
■ “Embedding Multiple Analyzers in One FPGA”
■ “Faster Compilations”
■ “Time Bars and Next Transition”

Altera Corporation 9–13
June 2004

Design Debugging Using the SignalTap II Embedded Logic Analyzer

■ “Saving Captured Data”
■ “Converting Captured Data to Other File Formats”
■ “Creating Mnemonics for Bit Patterns”
■ “Capturing Data to a Specific RAM Type”
■ “FPGA Resources Used by SignalTap II” II
■ “Using SignalTap II in a Lab Environment”
■ “Remote Debugging Using SignalTap II”
■ “Signal Preservation”
■ “Tappable Signals”
■ “Timing Preservation with SignalTap II Logic Analyzer”
■ “Using SignalTap Il Logic Analyzer to Simultaneously Debug

Multiple Designs”
■ “Locating a Node in the Chip Editor”

Preserving FPGA Memory

You can configure the SignalTap II Logic Analyzer to store captured data
in the device RAM, or route captured data to I/O pins to analyze with an
external Logic Analyzer. The following factors can affect the mode of
operation you choose:

■ The availability of device RAM and I/O pins
■ The number of trigger levels being used in analysis
■ Whether the SignalTap II Logic Analyzer is used in conjunction with

external test equipment

When device RAM is limited, the software can route internal signals to
unused I/O pins for capture by an external Logic Analyzer. This method
is useful for data-intensive applications in which the amount of saved
data exceeds the available sample buffer depth provided by the device
RAM. In this signal, the Quartus II software automatically generates
debugging port signals that connect internal FPGA signals to output pins.
You must assign these signals to I/O pins. To use the SignalTap II Logic
Analyzer debugging port configuration, follow these steps:

1. Right-click on a signal in the Debug Port Out column.

2. Choose Enable Debug Port (Edit menu).

If you want to rename the debugging port pin, type the new name in
the Out column. The default signal name for the debugging ports is
auto_stp_debug_out_<m>_<n>, where m refers to the instance
number and n refers to the signal number.

3. Manually assign the debugging port signal name to an unused I/O
pin.

9–14 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

Creating Complex Triggers

The most crucial feature of an analyzer is the triggering capability. If you
do not have the ability to create a trigger condition that allows you to
capture relevant data, your logic analyzer may not help you debug your
design.

With the SignalTap II Logic Analyzer, you can build very complex
triggers that allow you to capture data when a set of trigger conditions
exist. Advanced triggers are built with a simple graphical interface. You
can drag-and-drop operators into the Advanced Trigger window to build
the complex trigger condition in an expression tree. The operators that
you can use are listed in Table 9–2.

Table 9–2. Advanced Triggering Operators Note (1)

Name of Operator Type

Less Than Comparison

Less Than or Equal To Comparison

Equality Comparison

Inequality Comparison

Greater Than Comparison

Greater Than or Equal To Comparison

Logical NOT Logical

Logical AND Logical

Logical OR Logical

Logical XOR Logical

Reduction AND Reduction

Reduction OR Reduction

Reduction XOR Reduction

Left Shift Shift

Right Shift Shift

Bitwise Complement Bitwise

Bitwise AND Bitwise

Bitwise OR Bitwise

Bitwise XOR Bitwise

Edge and Level Detector Signal Detection

Note to Table 9–2:
(1) For more information on each of these operators, see Quartus II Help.

Altera Corporation 9–15
June 2004

Design Debugging Using the SignalTap II Embedded Logic Analyzer

Some of the operators have the ability to be configured at run-time. This
allows you to change one operator type to another operator type without
recompiling your design. Operators that have a white background are
run-time configurable.

The following examples show how to use Advanced Triggering:

■ Trigger when bus outa is greater than or equal to outb (see
Figure 9–7)

Figure 9–7. Bus Out a is Greater Than or Equal to Out b

■ Trigger when bus outa is greater than or equal to outb, and when
the enable signal has a rising edge (see Figure 9–8)

9–16 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

Figure 9–8. Enable Signal Has a Rising Edge

■ Trigger when bus outa is greater than or equal to bus outb, or when
the enable signal has a rising edge. Or, when a bitwise AND
operation has been performed with bus outc and bus outa, and all
bits of the result of that operation are 0 (see Figure 9–9).

Figure 9–9. Bitwise AND Operation

The advanced triggering capability can only be used with pre-synthesis
nodes. Post-fitting nodes can only be used for basic trigger operations.
However, you can create an advanced trigger that uses the results of the

Altera Corporation 9–17
June 2004

Design Debugging Using the SignalTap II Embedded Logic Analyzer

basic trigger created with post-fitting nodes as an element of an advanced
trigger condition. When your STP file contains post-fitting nodes, the
symbol (as shown in Figure 9–10) appears in the advanced trigger panel.

Figure 9–10. Symbol for STP File Containing Post-Fitting Nodes

The output of this symbol can be combined with the operators listed in
Table 9–2.

Using External Triggers

You can create a trigger input that allows you to trigger the SignalTap II
Logic Analyzer from an external source. The analyzer can also be
operated in the trigger output configuration in which it supplies an
external signal to trigger other devices. These features allow you to
synchronize the internal Logic Analyzer with external logic analysis
equipment.

Trigger In

To use Trigger In, perform the following steps:

1. In the SignalTap II window, click the Setup tab.

2. In the Signal Configuration window, turn on Trigger In.

3. In the Pattern pull down list, select the condition you would like to
act as your trigger event.

4. Click on the Browse button next to the Trigger In.

When the Node Finder window appears, select an input pin in your
design by setting the Trigger In source.

Trigger Out

To use Trigger Out, perform the following steps:

1. In the SignalTap II window, click the Setup tab.

9–18 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

2. In the Signal Configuration window, turn on Trigger Out.

3. In the Level list, select the condition you would like to signify that
the trigger event is occurring.

4. Click Browse next to the Trigger Out.

When the Node Finder window appears, select an output pin in your
design.

Using the Trigger Out of One Analyzer as the Trigger In of Another
Analyzer

One advanced feature of the SignalTap II Logic Analyzer is the ability to
use the Trigger Out of one analyzer as the Trigger In to another analyzer.
This feature allows you to synchronize and debug events that occur
across multiple clock domains.

To perform this operation, first enable the Trigger Out of the first analyzer
and set the name for the Trigger Out signal (see the colored portion of
Figure 9–11). Next, you must enable the Trigger In of the second analyzer
and set the name of the Trigger In of the second analyzer as the
Trigger Out of the first analyzer (see the colored portion of Figure 9–12).

Altera Corporation 9–19
June 2004

Design Debugging Using the SignalTap II Embedded Logic Analyzer

Figure 9–11. Enabling the Trigger Out Signal

Figure 9–12. Enabling the Trigger In Signal

9–20 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

Embedding Multiple Analyzers in One FPGA

The SignalTap II Logic Analyzer includes support for multiple logic
analyzers in an FPGA device. This feature allows you to create a unique
logic analyzer for each clock domain in the design. As multiple instances
of the analyzer are added to the STP file, the LE count increases
proportionally.

In addition to debugging multiple clock domains, this feature allows you
to apply the same SignalTap II settings to a group of signals in the same
clock domain. For example, if you have a set of signals that must use a
sample depth of 64K, while another set of signals in the same clock
domain need a sample depth of 1K, you can create two instances to meet
these needs.

To create multiple analyzers, select Create Instance (Edit menu), or
right-click in the Instance Manager window, and select Create Instance.

1 You can start all instances at the same time by clicking Run on
the SignalTap II toolbar.

Faster Compilations

The incremental routing feature allows you to add new nodes to your STP
file without having to perform a full recompilation. Adding these new
nodes to your STP file does not affect the existing placement and routing
of your design. Before using the SignalTap II incremental routing feature,
you must perform the following steps:

1. Set the number of nodes allocated.

2. Select any nodes reserved for incremental routing.

Set the Number of Nodes Allocated

Before you can fully utilize the incremental routing feature you must first
select Manual under Nodes allocated, as shown in Figure 9–13, and enter
a value that includes the number of nodes you currently want to analyze,
plus any extra nodes you may want to incrementally route later in the
verification process. The extra allocated nodes act as place-holders for
nodes that you will add later.

Setting Nodes Allocated to Auto causes the Quartus II software to build
the SignalTap II Logic Analyzer to accommodate only the number of
channels that were selected in the STP file.

Altera Corporation 9–21
June 2004

Design Debugging Using the SignalTap II Embedded Logic Analyzer

Figure 9–13. Nodes Allocated

Select Nodes Reserved for Incremental Routing

As shown in Figure 9–14, the SignalTap II Setup window shows
pre-synthesis nodes and post-fitting nodes, and an Incremental Route
column. Post-fitting nodes are displayed in blue, with the Incremental
Route option enabled and dimmed, so it cannot be edited.

By turning on Incremental Routing for pre-synthesis nodes, you
preserve the signal to the post-fitting stage of the compilation. You can
later delete the incrementally-routed pre-synthesis node and replace it
with a post-fitting node. You cannot replace this node with a SignalTap II
pre-synthesis node.

Figure 9–14. The SignalTap II Setup Window Note (1)

Note to Figure 9–14:
(1) Post-fitting nodes are displayed in blue, and Incremental Route is always turned

on.

The next time you add a SignalTap II post-fitting node to the STP file and
start a compilation, the Quartus II software incrementally routes only the
new nodes. When the Quartus II software performs incremental routing,
the existing placement and routing of your design is not modified.

If routing resources are limited, the Quartus II software may not be able
to incrementally route your SignalTap II signal. If you are running into a
situation where the Quartus II software is not able to route your signal

9–22 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

you can turn on the Modify latest fitting result during a SignalProbe
Compilation option. When this option is turned on, the placement and
routing of your existing design may change.

Time Bars and Next Transition

Time bars enable you to calculate the number of clock cycles between two
transitions for captured data in your system. There are two types of time
bars:

■ Master Time Bar—The Master Time Bar’s label displays the absolute
time of its location. The captured data has only one master time bar;
however, you can create an unlimited number of reference time bars
that display the time relative to the master time bar.

■ Reference Time Bar—The Reference Time Bar’s label displays time
relative to the master time bar. You can create an unlimited number
of reference time bars.

To help you find a transition of a signal, you can use either the Next
Transition or the Previous Transition button.

Saving Captured Data

The data log shows the history of captured data that is acquired with the
SignalTap II Logic Analyzer and the triggers used to capture the data. The
analyzer acquires data, stores it in a log, and displays it as waveforms.
The default name for the log is based on the timestamp that shows when
the data was acquired. It is a good idea to rename the data log with a more
meaningful name.

The logs are organized in a hierarchical manner; similar logs of captured
data are grouped together in trigger sets. To enable data logging, turn on
the Data Log option. To recall a data log for a given trigger set and make
it active, double click on the name of the data log in the list.

1 This feature is useful for organizing different sets of trigger
conditions and different sets of signal configurations.

Converting Captured Data to Other File Formats

You can export captured data in the following industry-standard file
formats, some of which can be used with other EDA simulation tools:

■ Comma Separated Values (.csv) File
■ Table (.tbl) File
■ Value Change Dump (.vcd) File
■ Vector Waveform File (.vwf)

Altera Corporation 9–23
June 2004

Design Debugging Using the SignalTap II Embedded Logic Analyzer

To export SignalTap II Logic Analyzer’s captured data, choose Export
(File menu) and select the File Name, the Export Format, and the Clock
Period.

Creating Mnemonics for Bit Patterns

The mnemonic table feature allows you to assign a meaningful name to a
set of bit patterns. To create a mnemonic table, right-click in the Setup
view of an STP file and select Mnemonic Setup. To assign a group of
signals to a mnemonic value, right-click on the group, and select Bus
Display Setup.

Buffer Acquisition

The Buffer Acquisition feature in SignalTap II Logic Analyzer allows you
to significantly reduce the amount of memory that is required for
SignalTap II data acquisition. This feature makes it easier to debug
systems that contain relatively infrequent periodic events. An example of
this type of system is shown in Figure 9–15.

Figure 9–15. Example System Generating Periodic Events

SignalTap II Logic Analyzer can be used to verify functionality of the
design shown in Figure 9–15 and ensure that the correct data are written
to the SDRAM controller. The buffer acquisition in SignalTap II Logic
Analyzer allows you to monitor the RDATA port when H’0F0F0F0F is
sent into the RDADDR port. You have the ability to monitor multiple read
transactions from the SDRAM device without re-running SignalTap II
Logic Analyzer. The buffer acquisition feature allows you to segment the
memory so that you can capture the same event multiple times without

QDR SRAM
Controller

WADDR[17..0]

RADDR[17..0]

WDATA[35..0]

RDATA[35..0]

CMD[1..0]

INCLK

A[17..0]

Q[17..0]

D[17..0]

BWSn[1..0]

RPSn

WPSn

K, Kn

QDR
SRAM

Reference Design Top-Level File

Stratix Device

Pipeline
Registers
(Optional)

K_FB_OUT

K_FB_IN

C, Cn

SRAM Interface Signals

9–24 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

wasting the allocated memory. The number of cycles that are captured
varies depending on the number of segments that you have specified
through the Signal Configuration settings.

To enable and configure buffer acquisition, select Segmented in the
SignalTap II window, and then choose the number of segments to use.
Selecting sixty-four 64-bit segments allows you to capture 64 read cycles
when the RADDR signal is H’0F0F0F0F.

f For more information on the buffer acquisition mode, see Setting the
Buffer Acquisition Mode in the Quartus II Help.

Capturing Data to a Specific RAM Type

When using the SignalTap II Logic Analyzer with a Stratix device, you
can select the RAM type that is used to store the acquisition data. RAM
selection allows you to preserve a specific memory block for your design,
and allocate another portion of memory for SignalTap II data acquisition.
For example, if your design implements a large buffering application
such as a system cache, it may be ideal to place this application into
M-RAM blocks so that the remaining M512 or M4K blocks can be used for
SignalTap II data acquisition.

Use this feature when the acquired data (as reported by the SignalTap II
resource estimator) is not larger than the available memory of the
memory type that you have selected in the Stratix FPGA. For example,
there are 94 M512 RAM blocks in a Stratix EP1S10 device. For 94x576
RAM bits, if you set the RAM type to M512, then you should make sure
that your SignalTap II configurations do not need more than the number
of RAM bits that are available for that type of memory.

FPGA Resources Used by SignalTap II

SignalTap II Logic Analyzer has a built-in resource estimator that
dynamically calculates the number of LEs and the amount of memory
that each SignalTap II analyzer uses. This feature is useful when device
resources are limited and you must know what device resources the
SignalTap II analyzer uses. The value reported in the resource usage
estimator may vary by as much as 5% from the actual resource usage.

The following tables provides an estimate of the number of LEs and the
amount of memory that are required to add SignalTap II Logic Analyzer
to your design.

Table 9–3 shows the SignalTap II Logic Analyzer M4K memory block
resource usage for these devices per signal width and sample depth.

Altera Corporation 9–25
June 2004

Design Debugging Using the SignalTap II Embedded Logic Analyzer

Using SignalTap II in a Lab Environment

You can install a stand-alone version of the SignalTap II Logic Analyzer.
This version of SignalTap II is particularly useful in lab environments
where you may not have a workstation that meets the requirements for a
complete Quartus II installation or you do not have a license for a full
installation of the Quartus II software. The stand-alone version of the
SignalTap II Logic Analyzer is included with the Quartus II stand-alone
Programmer and is available from the Downloads page of the Altera web
site.

Another useful feature that is part of the SignalTap II interface in the
Quartus II software is the SRAM Object File (SOF) Manager. This feature
allows you to archive multiple SOFs that have different SignalTap II
configurations into one STP file. For more information on how to use this
feature refer to the Quartus II help.

Remote Debugging Using SignalTap II

You can use a SignalTap II Logic Analyzer to debug a design that is
running on a PCB in a remote location.

To perform this debugging session you need the following setup:

■ Quartus II software installed on the local PC
■ Stand-alone SignalTap II installed on the remote PC
■ Programming hardware connected to the PCB at the remote location
■ TCP/IP connection

Table 9–3. SignalTap II Logic Analyzer M4K Block Utilization for Cyclone,
Stratix GX, and Stratix Devices Note (1)

Signals
(Width)

Samples (Width)

256 512 2,048 8,192

8 < 1 1 4 16

16 1 2 8 32

32 2 4 16 64

64 4 8 32 128

256 16 32 128 512

Note to Table 9–3:
(1) When configuring a SignalTap II Logic Analyzer, the Instance Manager reports an

estimate of the memory bits and logic elements required to implement the given
configuration.

9–26 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

Equipment Setup:

1. On the PC in the remote location install the stand-alone version of
the SignalTap II Logic Analyzer. This remote computer must have a
connected Altera programming hardware, for example,
USB-Blaster™ or ByteBlaster™.

2. On the local PC, install the full version of the Quartus II software.
This local PC must be connected to the remote PC across a LAN
with the TCP/IP protocol.

Software Setup - Remote PC:

1. Select Hardware Setup from the Quartus II programmer.

2. Select the JTAG Settings tab. See Figure 9–16.

3. Click the Configure local JTAG server button.

Figure 9–16. Configure Hardware Settings

Altera Corporation 9–27
June 2004

Design Debugging Using the SignalTap II Embedded Logic Analyzer

4. In the Configure Local JTAG Server dialog box (see Figure 9–17),
turn on Enable remote clients to connect to the local JTAG server
and type in your password. Type your password again in the
Confirm Password box and click OK.

Figure 9–17. Configure Local JTAG Server

Software Setup - Local PC:

1. Launch the Quartus II programmer.

2. Click Hardware Setup.

3. Click the JTAG settings tab. Click Add server.

4. In the Add Server dialog box (see Figure 9–18), type the network
name or IP address of the server you want to use and the password
for the JTAG server created on the Remote PC.

Figure 9–18. Add Server Dialog Box

5. Click OK.

9–28 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

SignalTap II Setup - Local PC

1. Select the hardware by clicking the Hardware Setup tab and
choosing the hardware on the Remote PC. See Figure 9–19.

Figure 9–19. SignalTap II Hardware Setup

2. Click Close.

3. Program the PCB in the remote location using the TCP/IP link and
the hardware on the remote PC.

Signal Preservation

Many of your RTL signals may be optimized during the process of
synthesis and place-and-route. This may lead to issues when you are
attempting to debug your design, because the post-fitting signal names
differ significantly from your RTL names. To avoid this issue you may
need to use the synthesis attributes to preserve signals during synthesis
and place-and-route. When the Quartus II software encounters these
synthesis attributes, it does not perform any optimization on the specified
signals. Therefore, you may see an increase in resource utilization and/or
a decrease in timing performance. The two attributes you may be able to
use are:

■ Keep—This attribute ensures that combinational signals do not get
removed.

■ Preserve—This attribute ensures that registers do not get removed.

Altera Corporation 9–29
June 2004

Design Debugging Using the SignalTap II Embedded Logic Analyzer

For more information on using these attributes, see the Quartus II
Integrated Synthesis chapter in Volume 1 of the Quartus II Handbook.

Tappable Signals

Not all of the post-fitting signals in your design are available in the
SignalTap II: post-fitting in the Node Finder. The types of signals that
cannot be tapped are listed below:

■ Signals that are part of a Carry Chain: You cannot tap the carry out
(cout0 or cout1) signal of a logic element. Due to architectural
restrictions, the carry out signal can only feed the carry in of another
LE.

■ PLL clkout: You cannot tap the output clock of a PLL. Due to
architectural restrictions, the clock out signal can only feed the clock
port of a register.

■ JTAG Signals: You cannot tap the JTAG (TCK, TDI, TDO, and TMS)
signals.

■ LVDS: You cannot tap the data out of a SERDES block.

Timing Preservation with SignalTap II Logic Analyzer

In addition to verifying functionality, timing closure is one the most
crucial processes in successfully completing a design. When you compile
a project with SignalTap II Logic Analyzer, you are adding IP to your
existing design, therefore you could potentially affect the existing
placement and routing, and the timing of your design. To minimize the
effect that SignalTap II Logic Analyzer has on your design, Altera
recommends that you back-annotate your design prior to inserting the
SignalTap II Logic Analyzer. This allows you to run your design at the
desired frequency.

For an example of timing preservation with SignalTap II, see the Design
Optimization for Altera Devices chapter in Volume 2 of the Quartus II
Handbook.

Using SignalTap Il Logic Analyzer to Simultaneously Debug
Multiple Designs

You can simultaneously debug multiple designs using one instance of the
Quartus II software. To perform this operation, follow these steps:

1. Create, configure, and compile the STP file for each design.

2. Open each individual STP file. Note: a Quartus II project does not
have to be open to open an STP file.

9–30 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

3. Use the JTAG Chain controls to select the target device in each STP
file.

4. Program each FPGA.

5. Run each analyzer independently.

Figures 9–20 through 9–23 show a JTAG chain and its associated STP files.

Figure 9–20. JTAG Chain

Figure 9–21. STP File for the First Device in the JTAG Chain

Stratix FPGA1

STP1

Stratix FPGA2

STP2

Stratix FPGA3

STP3

Communication
Cable

Altera Corporation 9–31
June 2004

Design Debugging Using the SignalTap II Embedded Logic Analyzer

Figure 9–22. STP File for the Second Device in the JTAG Chain

Figure 9–23. STP File for the Third Device in the JTAG Chain

Locating a Node in the Chip Editor

Once you have found the source of a bug in your design using
SignalTap II Logic Analyzer, you can locate that signal in the Chip Editor.
Then, you can change your design to correct the flaw that was found
using SignalTap II Logic Analyzer. To locate a signal from the SignalTap II
Logic Analyzer in the Chip Editor, right-click on a signal in the STP file
and select Locate in Chip Editor.

9–32 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

For more information on using the Chip Editor, see the Design Analysis &
Engineering Change Management with Chip Editor chapter in Volume 3 of
the Quartus II Handbook.

Design Example:
Preserving
Timing

The following example shows the importance of back annotating your
design prior to inserting SignalTap II Logic Analyzer. The design files that
are used for this example vary slightly from the FIR filter design that is
included in the \qdesigns directory. To follow this example, you should
first restore the compile_fir_filter_original.qar design file.

Scenario: After programming your FPGA you notice incorrect behavior
with your circuit. Because you are using a fine-pitch package, using a
traditional logic analyzer is not possible. To debug this design you need
to use the SignalTap II embedded Logic Analyzer. The design calls for an
fMAX requirement of 125 MHz to be met.

1. Initial compilation without SignalTap II Logic Analyzer

When you run the Quartus II Timing Analyzer, you see the following
results for the main clock in the design (see Table 9–4).

2. Compilation with SignalTap II Logic Analyzer

You are debugging this design with SignalTap II Logic Analyzer, so
you must compile it with an STP file. To enable SignalTap II Logic
Analyzer, the STP file included in the project archive (stp1.stp) must
be correctly set in the Quartus II software. Do this by enabling the
STP file in the SignalTap II Logic Analyzer page of the Settings
dialog box (Assignments menu), as shown in Figure 9–24.

Table 9–4. fMAX Results from the Quartus II Timing Analysis

Slack (ns)
Actual fMAX

(MHz)
From To Clock

Source

0.167 127.67 state_m:inst1|filter~22 acc:inst3|result[11] clk

0.256 129.13 state_m:inst1|filter~22 acc:inst3|result[6] clk

0.144 127.29 state_m:inst1|filter~22 acc:inst3|result[7] clk

0.144 127.29 state_m:inst1|filter~22 acc:inst3|result[8] clk

Altera Corporation 9–33
June 2004

Design Debugging Using the SignalTap II Embedded Logic Analyzer

Figure 9–24. Enabling the STP File in the SignalTap II Logic Analyzer Page

Once the compilation is complete, the results shown in Table 9–5 are
reported by the Quartus II Timing Analyzer.

Notice that when you added the SignalTap II Logic Analyzer to your
design, the longest register-to-register path changed. The delay increased
by approximately 8%. This increase results in the system not meeting the
timing requirements.

Figure 9–25 shows a failing path in the timing closure floorplan editor.

Table 9–5. fMAX Results from the Quartus II Timing Analysis with SignalTap II Logic Analyzer Added

Slack (ns)
Actual fMAX

(MHz)
From To Clock

Source

-0.266 120.98 state_m:inst1|filter~22 acc:inst3|result[11] clk

-0.177 122.29 state_m:inst1|filter~22 acc:inst3|result[6] clk

-0.076 123.82 state_m:inst1|filter~22 acc:inst3|result[7] clk

-0.076 123.82 state_m:inst1|filter~22 acc:inst3|result[8] clk

9–34 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

Figure 9–25. Failing Path in the Timing Closure Floorplan Editor

3. Back-annotate the original design

To minimize the effect that SignalTap II Logic Analyzer has on the
original design, you should back-annotate the design to constrain it to a
portion of the FPGA. This is done by selecting Back-Annotate
Assignments (Assignments menu). After you have back-annotated your
design, it is safe to insert SignalTap II Logic Analyzer to your project.

Compile the design and you will see the results shown in Table 9–6.

By back-annotating your original design, the register-to-register delay
decreased significantly and the original timing requirements have been
met.

Table 9–6. FMAX Results from the Quartus II Timing Analysis with SignalTap II Logic Analyzer After Back-
Annotation

Slack
(ns)

Actual FMAX
(MHz)

From To Clock
Source

0.053 125.83 state_m:inst1|filter~22 acc:inst3|result[11] clk

0.196 128.14 taps:inst|xn[0]~reg0 acc:inst3|result[11] clk

0.171 127.89 state_m:inst1|filter~22 acc:inst3|result[6] clk

0.171 127.89 state_m:inst1|filter~22 acc:inst3|result[7] clk

Altera Corporation 9–35
June 2004

Design Debugging Using the SignalTap II Embedded Logic Analyzer

Figure 9–26 shows the timing closure floorplan editor.

Figure 9–26. Timing Closure Floorplan Editor

Design Example:
Using
SignalTap II
Logic Analyzers
in SOPC Builder
Systems

Application Note 323: Using SignalTap II Embedded Logic Analyzers in SOPC
Builder Systems describes how to use the SignalTap II Logic Analyzer to
monitor signals located inside a system module generated by SOPC
Builder. The system in this example contains many components,
including a Nios® processor, a DMA controller, an on-chip memory, and
an interface to external SDRAM memory. In this example, the Nios
processor executes a simple C program from on-chip memory and waits
for a button push. After a button is pushed, the processor initiates a DMA
transfer, which you analyze using the SignalTap II Logic Analyzer.

f For more information on this example, see Application Note 323: Using
SignalTap II Embedded Logic Analyzers in SOPC Builder Systems.

Conclusion As the FPGA industry continues to make technological advancements,
outdated methodologies need to be replaced with a new set of
technologies that maximize productivity. The SignalTap II Logic
Analyzer gives you the same benefits as a traditional logic analyzer,
without the many shortcomings of a piece of dedicated test equipment.
This version of SignalTap II Logic Analyzer provides many new and
innovative features, allowing you to capture and analyze internal signals
in your FPGA, thereby allowing you to find the source of a design flaw in
the shortest amount of time.

9–36 Altera Corporation
June 2004

Quartus II Handbook, Volume 3

Altera Corporation 10–1
June 2004 Preliminary

10. Design Analysis and
Engineering Change

Management with Chip Editor

Introduction One of the toughest challenges that FPGA designers must face is
implementing incremental engineering change orders (ECOs) late in the
design cycle while maintaining timing closure. With the Quartus® II
software’s new Chip Editor, you can view the internal structure of Altera®
devices and incrementally edit device resource functionality and
parameter settings. The Chip Editor can also help you document and
manage ECOs.

The Chip Editor works directly on design netlists so you can implement
device changes in minutes without performing a design compilation.
Changes are restricted to a particular device resource to maintain timing
closure in the remaining portions of the design. Design rule checks are
performed on all changes to prevent you from making illegal edits.

This chapter describes how to use the Chip Editor and includes coverage
of the following topics:

■ Chip editor floorplan
■ Resource property editor
■ Common applications

Background With the Chip Editor, you can view the following architecture-specific
information related to your design:

■ FPGA routing resources used by your design. For example, you can
visually examine how blocks are physically connected, as well as the
signal routing that connects the blocks.

■ LE utilization information: You can view how a logic element (LE) is
configured within your design. For example, you can view which LE
inputs are used, if the LE utilizes the register or the look-up table
(LUT) or both, as well as the signal flow through the LE.

■ ALM utilization information: You can view how an adaptive logic
module (ALM) is configured within your design. For example, you
can view which ALM inputs are used, if the ALM utilizes the
registers, the upper LUT, the lower LUT, or all of them. You can also
view the signal flow through the ALM.

■ I/O utilization information: You can view how the device I/O
resources are used. For example, you can view what components of
the I/O are used, if the delay chain settings are enabled, and the
signal flow through the I/O.

qii53010-2.0

10–2 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

■ PLL utilization information: You can view how a phase-locked loop
(PLL) is configured within your design. For example, you can view
which control signals of the PLL are used along with the settings for
your PLL.

With the Chip Editor, you can modify the following elements within the
Altera device:

■ Logic elements
■ I/O cells
■ Phase-locked loops (PLL)

1 With the Chip Editor, you can view the contents of an ALM and
its implementation, but you cannot edit its properties.

f For more information on the Change Manager, see “Change Manager”
on page 10–23.

The Chip Editor can be used with the following device families:

■ Stratix® II
■ Stratix
■ Stratix GX
■ Cyclone™
■ MAX® II

Using the Chip
Editor in Your
Design Flow

An ideal design flow starts by developing the design specification,
creating register transfer level (RTL) code that describes the design
specification, verifying that the RTL code performs the correct
functionality, verifying that the fitted design satisfies the design's timing
constraints, and ends with successfully programming the targeted FPGA.

Unfortunately, similar to most difficult processes, the ideal design flow
rarely occurs. Often, you find bugs in the RTL code—or worse—the
design specifications change midway through the design cycle. The
challenge lies in efficiently accommodating these types of design issues.
Traditionally, you have to go back to the source RTL code, make the
appropriate changes, and then go through the entire design flow again.

With the Altera Chip Editor, you can significantly shorten the design
cycle time, and ultimately the time to market for your product. You can
make changes directly to the post place-and-route netlist, generate a new
programming file, and test the revised design without ever modifying the
RTL code. Figure 10–1 describes how the Chip Editor can be used in your
design flow.

Altera Corporation 10–3
June 2004 Preliminary

Chip Editor Overview

Figure 10–1. Chip Editor Design Flow

Chip Editor
Overview

The Chip Editor contains many advanced features that enable you to
quickly and efficiently make design changes. The Chip Editor's
integrated tool set provides the following features:

Design Specification

Design Entry

Synthesis

RTL Simulation

 Chip Editor

PCB Implementation

Place & Route

Gate-Level
Simulation

Timing
Analysis

10–4 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

■ Chip Editor Floorplan: Allows you to examine FPGA resources used
by your design

■ Resource Property Editor: Allows you make modifications to your
post place-and-route design

■ Change Manager: Allows you to track all design changes

Chip Editor Floorplan

The Chip Editor allows you to quickly and easily view post-compilation
placement and routing information. You can start the Chip Editor in any
of the following ways:

■ Choose Chip Editor (Tools menu)
■ Right button pop-up menu from the Compilation Report
■ Right button pop-up menu from the RTL source code
■ Right button pop-up menu from the Timing Closure Floorplan
■ Right button pop-up menu from the Node Finder
■ Right button pop-up menu from the Simulation Report

The Chip Editor uses a hierarchical zoom viewer that shows various
abstraction levels of the targeted Altera device. As you increase the zoom
level, the level of abstraction decreases, thus revealing more detail about
your design.

Table 10–1 gives a summary of the Chip Editor features. These features
are easily accessible from the Chip Editor Toolbar.

Table 10–1. Chip Editor Floorplan Features

Feature Description

Birds Eye View Gives a high-level picture of resource usage at the chip
level, allows you to specify which elements of the Chip
Editor are displayed, and assists you in rapidly
navigating the floorplan

Fan-In Connections Displays the connections to the selected resource

Fan-Out Connections Displays the connections away from the selected
resource

Immediate Fan-In Highlights the resource that directly feeds the selected
element

Immediate Fan-Out Highlights the resource that is directly fed by the
selected element

Show Delays Displays the time delay between the two selected
resources

Altera Corporation 10–5
June 2004 Preliminary

Chip Editor Overview

f For more information on the Chip Editor Toolbar refer to the Quartus II
on-line help.

Bird’s Eye View

The Bird's Eye View (see Figure 10–2) displays a high-level picture of
resource usage for the entire chip. It provides a fast and efficient means of
navigating between areas of interest in the Chip Editor. In addition, it
provides controls that allow you to specify which graphic elements are
displayed. The controls apply to both the Bird’s Eye View and the main
Chip Editor window.

Figure 10–2. Bird’s Eye View

The Bird's Eye View is displayed as a separate window that is linked to
the Chip Editor. When you select an area of interest in the Bird's Eye View,
the Chip Editor automatically refreshes the window as necessary to
display the selected area in greater detail, in accordance with whatever
zoom factor is in effect. For example, when you zoom-in (or zoom-out) in
the Bird’s Eye View window, the main Chip Editor window will also
zoom-in (or zoom-out). You have the option of setting the amount of
detail that you see when you use the zoom-in feature. To adjust the
default values, specify the appropriate values on the Chip Editor page of
the Options dialog box (Tools menu).

10–6 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

The Bird’s Eye View is particularly useful when the parts of your design
that you are interested in are at opposite ends of the chip and you want to
quickly navigate between resource elements without losing your frame of
reference.

First (Highest) Level View

The first (highest) zoom level provides a high-level view of the entire
device floorplan. This view provides a similar level of detail as the
Quartus II Timing Closure floorplan. You can easily locate and view the
placement of any node in your design. Figure 10–3 shows the Chip
Editor's first level view.

Figure 10–3. Chip Editor's First (Highest) Level View

Altera Corporation 10–7
June 2004 Preliminary

Chip Editor Overview

Each resource is shown in a different color, making it easier to distinguish
between resources. The Chip Editor uses a gradient color scheme: the
color becomes darker as the utilization of a resources increases. For
example, as more LEs are used in the LAB, the color of the LAB becomes
darker.

When you place the mouse pointer over a resource at this level, a tooltip
appears that describes, at a high level, the utilization of the resource (see
Figure 10–4).

Figure 10–4. Tooltip Message: First Level View

Second Level View

As you continue to zoom in, you see an increase in the level of detail.
Figure 10–5 shows the Chip Editor’s second level view.

Figure 10–5. Chip Editor’s Second Level View

10–8 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

At this level you can see the contents of LABs and I/O banks. You also see
the routing channels that are used to connect resources together.

When you place the mouse pointer over an LE at this level, a tooltip is
displayed that describes the name of the LE, the location of the LE, and
the number of resources that are used with that LAB. When you place the
mouse pointer over an interconnect, the tooltip shows the routing
channels that are used by that interconnect.

Figure 10–6 shows the level 2 tooltip information.

Figure 10–6. Tooltip Message: Second Level View

Third Level View

Figure 10–7 shows the level of detail at the third and lowest level. At this
level you can see within the FPGA. You can see each routing resource that
is used with a LAB.

You also have the ability to move LEs and I/Os from one physical location
to another. You can move a resource by selecting, dragging, and dropping
it into the desired location. At this level you also have the ability to create
new LEs and I/Os. To create a resource, right-mouse click at the location
you want to create the resource and select Create Atom.

Altera Corporation 10–9
June 2004 Preliminary

Resource Property Editor

Figure 10–7. Chip Editor’s Third Level View

Resource
Property Editor

You can view the following elements with the Resource Property Editor:

■ LEs
■ ALMs
■ I/O elements
■ PLLs

The Logic Element (LE)

An Altera logic element contains a four-input LUT, which is a function
generator that can implement any function of four variables. In addition,
each LE contains a register that can be fed by the output of the LUT or by
an independent function generated in a separate LE. Figure 10–8 shows
what the LE looks like in the Resource Property Editor.

Any LE that is placed in the FPGA can be viewed and edited using the
Resource Property Editor. To launch the Resource Property Editor for an
LE, right-mouse click on an LE in the Timing Closure Floorplan, Last
Compilation Floorplan, Node Finder, or Chip Editor and select Locate in
Resource Property Editor from the menu.

10–10 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

For a detailed description of the LE for a particular device family, refer to
the Handbook or data sheet for the device family.

Figure 10–8. Stratix LE Architecture

The Adaptive Logic Module (ALM)

The basic building block of logic in the Stratix II architecture is the
Adaptive Logic Module (see Figure 10–9). The ALM provides advanced
features with efficient logic utilization. Each ALM contains a variety of
LUT-based resources that can be divided between two adaptive LUTs
(ALUTs). With up to eight inputs to the two ALUTs, each ALM can
implement various combinations of two functions. This adaptability
allows the ALM to be completely backward-compatible with four-input
LUT architectures. One ALM can also implement any function with up to
six inputs and certain seven-input functions. In addition to the adaptive
LUT-based resources, each ALM contains two programmable registers,
two dedicated full adders, a carry chain, a shared arithmetic chain, and a
register chain. Through these dedicated resources, the ALM can
efficiently implement various arithmetic functions and shift registers.

You can view any ALM in a Stratix II device with the Resource Property
Editor. To view a specific ALM in the Resource Property Editor, right-click
on the ALM in the Timing Closure Floorplan, Last Compilation
Floorplan, or Node Finder, and select Locate in Resource Property Editor
from the right button pop-up menu.

Altera Corporation 10–11
June 2004 Preliminary

Resource Property Editor

For a detailed description of the ALM refer to the Stratix II device family
handbook.

Figure 10–9. ALM Architecture

Supported Changes for an LE/ALM

Table 10–2 shows which operations are supported for various device
families.

Table 10–2. Supported Operations for an LE/ALM

Operation Stratix Stratix GX Stratix II Cyclone MAX II

View the LEs/ALMs in the Resource
Property Editor

v v v v v

Edit properties of the LEs/ALMs v v v v
Placement changes the LEs/ALMs v v v v
Create new LEs/ALMs v v v v

10–12 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Properties of the
Logic Element

This section discusses the following properties of the logic element that
can be examined using the Resource Property Editor:

■ Mode of operation
■ LUT equation
■ LUT mask
■ Synchronous mode
■ Register cascade mode

Mode of Operation

An LE can operate in either normal or arithmetic mode. For more
information on the modes of operation, see Volume 1 of the Stratix Device
Handbook, Volume 1 of the Cyclone Device Handbook, or the MAX II Device
Handbook.

When configured in normal mode, the LUT can implement a function of
four inputs.

When configured in arithmetic mode, the LUT is divided into 2
three-input LUTs. The first LUT generates the signal that drives the
output of the LUT, while the second LUT is used to generate the carry-out
signal. The carry-out signal can drive only a carry-in signal of another LE.

LUT Equation

The LUT equation allows you to change the logic equation that is
currently implemented by the LUT. When the LE is configured in normal
mode, you can only change the SUM equation. When the LE is configured
in arithmetic mode, you can change both the SUM and the CARRY
equation.

When a change is made to the LUT equation, the Quartus II software
automatically changes the LUT mask.

To change the function implemented by the LUT, you must first
understand how the LUT works. A LUT contains storage cells that
implement small logic blocks as a function of the inputs. Each storage cell
is capable of holding a logic value, either a 0 or a 1. The Stratix, Stratix GX,
and Cyclone device families use a four-input LUT and have 16 storage
cells. The LUT can store 16 output values in its storage cells. The output
from the LUT depends on the signal that is driven into the input ports of
the LUT.

Assume that you need to build the following logic function:

(A XOR B) OR (C AND D)

Altera Corporation 10–13
June 2004 Preliminary

Properties of the Logic Element

LUT Mask

To generate the LUT mask, the truth table for an equation must be
computed. Table 10–3 lists the truth table for logic equation from the
section above:

The LUT mask is the hexadecimal representation of the LUT output. For
example, the LUT output of (A XOR B) OR (C AND D) is represented by
the following binary number: 1111011001100110. The LUT mask, in
hexadecimal, for this binary number is: F666.

When the LE is set to arithmetic mode, the first eight bits in the LUT mask
represent the SUM equation output. The second eight bits represent the
CARRY equation.

When a change is made to the LUT mask, the Quartus II software
automatically computes the LUT equation.

Table 10–3. LUT Mask Truth Table

D Input C Input B Input A Input Output

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 0

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

10–14 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Synchronous Mode

When an LE is in synchronous mode, the synchronous load (sload) and
synchronous clear (sclr) signals are used. You can change the
synchronous mode of an LE by connecting (or disconnecting) the sload
and sclr. You cannot remove VCC connections to the sload, however if
you want to change the synchronous mode of the LE to off, you can
connect the sload and sclr to a valid GND signal in your design.

You can invert either the sload or sclr signal feeding into the LE. The
sload signal, if used in an LE, must be the same for all other LEs in the
same LAB. This includes the inversion state of the signal. For example, if
two LEs in a LAB have the sload signal connected, both LEs must have
the sload signal set to the same value. This is also true for the sclr
signal.

Register Cascade Mode

When register cascade mode is enabled, the cascade-in port feeds the
input to the register. The register cascade mode is used most often when
the design implements a series of shift registers. You can change the
register cascade mode by connecting (or disconnecting) the cascade-in.
However, if you are creating this port, you must ensure that the source LE
is directly above the destination LE.

Properties of an
ALM

LUT Mask

As mentioned in the section above, the LUT mask is the hexadecimal
representation of the LUT output. Each ALM is broken down into a ‘top’
LUT and a ‘bottom’ LUT. The LUT mask for each LUT is computed in the
same manner as the above example. However, instead of four inputs, six
inputs are used. Since the LUTs are driven by six inputs, the LUT output
is represented by a 64-bit binary number or a 16-digit hexadecimal
number.

The following examples illustrate the use of the LUT Mask of an ALM.

Example 1:

If the ALM implements a logical AND function in the ‘top’ LUT using the
DATAE and DATAF, you will get the following:

LUT Mask: 000000000000FFFF

COMBOUT Equation: DATAE & DATAF

Example 2:

Altera Corporation 10–15
June 2004 Preliminary

FPGA I/O Elements

If the ALM implements a logical XOR function in the ‘top’ LUT using the
DATAE and DATAF, you will get the following:

LUT Mask: 0000FFFFFFFF0000

COMBOUT Equation: (!DATAE & DATAF) # (!DATAF & DATAE)

Extended LUT Mode

When the extended LUT mode is used, the ALM creates a specific set of
seven-input functions. The Quartus II software automatically recognizes
the applicable 7-input function and fits them into an ALM. The ‘top’ and
‘bottom’ LUTs are both a function of five inputs, where four of the inputs
are shared. The other input of the ALM is used to control the MUX, which
selects which LUT is used to drive the COMBOUT port.

1 For more information on Extended Mode refer to the Stratix II
Device Handbook.

Shared Arithmetic Mode

When an ALM is in arithmetic mode it uses two sets of two four-input
LUTs along with two dedicated full adders. The carry-in signal that feeds
the ALM drives adder0. The carry-out from adder0 feeds the carry-in of
adder1. The carry-out from adder1 drives adder0 of the next ALM in the
LAB. ALMs in arithmetic mode can drive out registered and/or
unregistered versions of the adder outputs.

1 For more information on Shared Arithmetics Mode refer to the
Stratix II Device Handbook.

FPGA I/O
Elements

Stratix, Stratix GX, and Stratix II I/O Elements

The I/O element in Stratix devices contains a bidirectional I/O buffer, six
registers, and a latch for a complete bidirectional single data rate or DDR
transfer. Figure 10–10 shows the Stratix I/O element structure. The I/O
element contains two input registers (plus a latch), two output registers,
and two output enable registers.

10–16 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Figure 10–10. Stratix Device I/O Element

Figure 10–11 shows the Stratix II I/O element structure.

Figure 10–11. Stratix II Device I/O Element

Altera Corporation 10–17
June 2004 Preliminary

FPGA I/O Elements

Cyclone I/O Elements

The I/O element in Cyclone device contain a bidirectional I/O buffer and
three registers for complete bidirectional single data rate transfer.
Figure 10–12 shows the Cyclone I/O element structure. The I/O element
contains one input register, one output register, and one output enable
register.

Figure 10–12. Cyclone Device I/O Elemnent

MAX II I/Os

MAX II device I/O elements contain a bidirectional I/O buffer.
Figure 10–13 shows the MAX II I/O element structure. Registers from
adjacent LABs can drive to or be driven from the I/O element’s
bidirectional I/O buffers.

10–18 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Figure 10–13. MAX II Device I/O Elemnent

f For a detailed description of the Stratix device I/O element, see the
Stratix Architecture chapter in Volume 1 of the Stratix Device Handbook.

f For a detailed description of the Stratix II device I/O element, see the
Stratix II Architecture chapter in Volume 1 of the Stratix II Device
Handbook.

f For a detailed description of the Cyclone device I/O element, see the
Cyclone Architecture chapter in Volume 1 of the Cyclone Device Handbook.

f For a detailed description of the MAX II device I/O element, see the
MAX II Architecture chapter in the MAX II Device Handbook.

Supported Changes for an I/O Element

Table 10–4 shows which operations are supported by the different device
families.

Table 10–4. Supported Operations for an I/O Element

Operation Stratix Stratix GX Stratix II Cyclone MAX II

View the I/O elements in the Resource
Property Editor

v v v v v

Edit properties of the I/O elements v v v v
Placement changes the I/O elements v v v v
Create new I/O elements v v v v

Altera Corporation 10–19
June 2004 Preliminary

FPGA I/O Elements

Editable Properties of I/O Elements

Stratix and Stratix GX Properties

You can use the Resource Property Editor to modify the following
properties of Stratix and Stratix GX device I/O cells:

■ Bus Hold
■ Weak Pull Up
■ Slow Slew Rate
■ Open Drain
■ I/O Standard
■ Current Strength
■ Extend OE Disable
■ PCI I/O
■ On-Chip Termination
■ Input Register Mode
■ Input Register Reset Mode
■ Input Register Synchronous Reset Mode
■ Input Powers Up
■ Output Register Mode
■ Output Register Reset Mode
■ Output Register Synchronous Reset Mode
■ Output Powers Up
■ OE Register Mode
■ OE Register Reset Mode
■ OE Register Synchronous Reset Mode
■ OE Powers Up
■ Input Clock Enable Delay
■ Output Clock Enable Delay
■ Output Enable Clock Enable Delay
■ Input Pin to Logic Array Delay
■ Output Pin Delay
■ Input Pin to Input Register Delay
■ Output Enable Register tCO Delay
■ Output tZX Delay
■ Logic Array to Output Register Delay

Stratix II Properties

You can use the Resource Property Editor to view the following
properties of Stratix II device I/O cells:

■ Bus Hold
■ Weak Pull Up
■ Slow Slew Rate
■ Open Drain

10–20 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

■ I/O Standard
■ Current Strength
■ Extend OE Disable
■ PCI I/O
■ On-Chip Termination
■ Input Register Mode
■ Input Register Reset Mode
■ Input Register Synchronous Reset Mode
■ Input Powers Up
■ Output Register Mode
■ Output Register Reset Mode
■ Output Register Synchronous Reset Mode
■ Output Powers Up
■ OE Register Mode
■ OE Register Reset Mode
■ OE Register Synchronous Reset Mode
■ OE Powers Up
■ Output Enable Clock Enable Delay
■ Input Pin to Logic Array Delay
■ Output Pin Delay
■ Input Pin to Input Register Delay
■ Output Enable Register tCO Delay

Cyclone Properties

You can use the Resource Property Editor to modify the following
properties of Cyclone device I/O cells:

■ Bus Hold
■ Weak Pull Up
■ Slow Slew Rate
■ Open Drain
■ I/O Standard
■ Current Strength
■ Extend OE Disable
■ PCI I/O
■ On-Chip Termination
■ Input Register Mode
■ Input Register Reset Mode
■ Input Register Synchronous Reset Mode
■ Input Powers Up
■ Output Register Mode
■ Output Register Reset Mode
■ Output Register Synchronous Reset Mode
■ Output Powers Up
■ OE Register Mode
■ OE Register Reset Mode

Altera Corporation 10–21
June 2004 Preliminary

Modifying the PLL Using the Chip Editor

■ OE Register Synchronous Reset Mode
■ OE Powers Up
■ Input Pin to Logic Array Delay
■ Output Pin Delay
■ Input Pin to Input Register Delay

Max II Properties

You can use the Resource Property Editor to modify the following
properties of MAX II device I/O cells:

■ Bus Hold
■ Weak Pull Up
■ Slow Slew Rate
■ Open Drain
■ I/O Standard
■ Current Strength
■ Extend OE Disable
■ PCI I/O
■ Input Pin to Logic Array Delay

Modifying the
PLL Using the
Chip Editor

PLLs are used to modify and generate clock signals to meet design
requirements. Additionally, PLLs are used for distributing clock signals
to different devices in a design, reducing clock skew between devices,
improving I/O timing, and generating internal clock signals.

Properties of the PLL

You can change many of the PLL properties with the Resource Property
Editor. You can modify the following internal parameters of the PLL.

The in-loop parameters that can be modified include:

■ M initial
■ M
■ Counter Time Delay M
■ M VCO Tap
■ N
■ Counter Time Delay N
■ M2
■ N2
■ Loop filter resistance
■ Loop filter capacitance
■ Charge pump current

The post-loop parameters that can be modified include:

10–22 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

■ Counter high
■ Counter low
■ Counter PH
■ Counter initial
■ Counter time delay

Adjusting the Duty Cycle

Use the following equations to adjust the duty cycle of individual output
clocks:

High % = Counter High/(Counter High + Counter Low)
Low % = Counter Low/(Counter High + Counter Low)

Adjusting the Phase Shift

Use the following equations to adjust the phase shift of an output clock of
a PLL:

Phase Shift = (VCO Period * 1/8 * VCO Tap) + (VCO Init * VCO
Period)

Normal Mode

VCO Tap = Counter PH - M VCO Tap
VCO Init = Counter Initial - M Initial
VCO Period = In Clock Period * N / M

External Feedback Mode

VCO Tap = Counter PH - M VCO Tap
VCO Init = Counter Initial - M Initial
VCO Period = In Clock Period * N / (M + Counter High + Counter
Low)

Adjusting the Output Clock Frequency

Use the following equations to adjust the output clock of a PLL.

Normal Mode

OUTCLK = INCLK ((M)/(N)(Counter High + Counter Low))

Altera Corporation 10–23
June 2004 Preliminary

Change Manager

External Feedback Mode

OUTCLK = INCLK ((M + Counter High + Counter
Low)/(N)(Counter High + Counter Low))

You can adjust all the output clocks by modifying the M and N values.
You can adjust individual output locks by modifying the Counter High
and Counter Low values.

Adjusting the Spread Spectrum

Use the following equation to adjust the spread spectrum for your PLL:

1 For a detailed description of the settings, see Quartus II Help.
For more information on Stratix device PLLs, see the Stratix
Architecture chapter in Volume 1 of the Stratix Device Handbook.

Change
Manager

The Change Manager allows you to track all the design changes made
with the Chip Editor. Table 10–5 summarizes the information shown by
the Change Manager.

The current state of your change can be viewed in the Change Manager.
When the Check & Save All Netlist Changes function is performed, you
will see the status of the change in the Change Manager. See Figure 10–14.

%spread = 1 –
M2N1
M1N2

Table 10–5. Change Manager Information

Column Name Description

Node name Name of the node modified with the Chip Editor

Change type Type of change made to the node

Old value Value previous to the change

Target value Value of the change that you want to set (before a Check and
Save has been performed)

Current value Value in the currently viewed netlist. This value is not necessarily
ready for POF generation

Disk value Current value of the node as contained within the assembler
netlist (Value available for use in the Assembler, Timing
Analysis, Simulation)

Status Current state of the change made to the node specified

Comments User comments

10–24 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Figure 10–14. Change Manager Results

Table 10–6 describes the values that appear in the Status column of the
Change Manager.

Common
Applications

The Chip Editor can be used in a number of ways to help build your
system as quickly as possible. The list below shows some of the ways you
can use the Chip Editor:

■ Gate-level register retiming
■ Routing an internal signal to an output pin
■ Adjust the phase shift of a PLL to meet I/O timing
■ Correct a functional flaw in a design

Gate-Level Register Retiming

Retiming your design involves moving registers to balance the
combinational delay across a data path, while preserving the overall
functionality of the circuit. Figure 10–15 illustrates this point.

Table 10–6. Status Values in the Change Manager

Value Description

Applied A change has been made and saved, but Check & Save All
Netlist Changes has not been performed

Committed A change has been made, saved, and Check & Save All Netlist
Changes has been performed

Not Valid A change has been made and saved. A new change to the same
element that supersedes the original change results in the status
being set to “Not Valid”.

Not Applied A change has been made and saved. However, if the original
value has been restored, the newly created entry appears as
“Not Applied”.

Altera Corporation 10–25
June 2004 Preliminary

Common Applications

Figure 10–15. Gate-Level Register Retiming Diagram

f For information on how Quartus II Physical Synthesis can automatically
perform gate-level retiming without altering functionality, see the Netlist
Optimizations and Physical Synthesis chapter in Volume 2 of the Quartus II
Handbook.

Figure 10–16 shows a design with unbalanced combinational delay. To
balance the logic on either side of the combinational logic, follow the
steps listed below:

Figure 10–16. Combinational Logic Before Using Chip Editor

1. Create a new LE using the Chip Editor (LE-NEW).

2. Connect the COMBOUT port of LE2 to the DATAIN port of LE-NEW.

3. Connect the REGOUT port of LE-NEW to the input of LE3.

Figure 10–17 shows the design with balanced combinational delay.

D Q D Q D Q10 ns 5 ns

D Q D Q D Q7 ns 8 ns

LE1 - LUT

COMBOUT

LE2 - LUT

COMBOUT

LE3 - LUT

COMBOUT

LE4 - LUT

REGOUT

10–26 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Figure 10–17. Combinational Logic After Using Chip Editor

Routing an Internal Signal to an Output Pin

You can use the capabilities in the Chip Editor to route internal signals to
unused output pins. This capability allows you to capture signals that are
internal to the FPGA with an external logic analyzer.

The process of routing these signals is straightforward, and requires very
little time, allowing you to spend less time on the setup and more time on
debugging.

The following steps will help you understand the process required to
route an internal signal to an output pin (see Figure 10–18).

Figure 10–18. Routing an Internal Signal to an Output Pin

1. Create an output pin.

2. Create the REGOUT or COMBOUT of Source LE.

3. Connect the DATAIN of the output pin to the REGOUT or the
COMBOUT of the Source LE.

4. Optional—Connect a clock to the CLK port of the output pin.

LE1 - LUT

COMBOUT

LE2 - LUT

COMBOUT

LE - NEW - LUT

COMBOUT

LE3 - LUT

COMBOUT

LE4 - LUT

REGOUT

LE1 - LUT

COMBOUT

Output Pin

Altera Corporation 10–27
June 2004 Preliminary

Example Design: Meeting I/O Timing

Adjust the Phase Shift of a PLL to Meet I/O Timing

Using a PLL in your design should help I/O timing. However, if your I/O
timing requirements are still unmet, you can adjust the PLL phase shift to
try to meet the I/O timing requirements of your design. Shifting the clock
backwards will give a better tCO at the expense of the tSU, while shifting it
forward will give a better tSU at the expense of tCO and tH.

Use the equations shown in the PLL section to set the new phase shift
value to optimize your I/O Timing.

Correcting a Design Flaw

You may find functional flaws while you are debugging your design.
Traditionally, these flaws (bugs) are corrected by modifying the RTL code,
and going through the entire design flow again. This process can be very
time-consuming, because the process of synthesis and place-and-route
may take a significant amount of time. However, with the Chip Editor,
you can make a change to your design without having to repeat the
synthesis and place-and-route process.

To make a change with the Chip Editor, you can modify the LUT equation
(or the LUT mask) of an LE with the Resource Property Editor.

Example Design:
Meeting I/O
Timing

Meeting the timing requirements of a design can be a difficult task. There
are a number of proven methods that you can use to correct timing issues;
however, the most efficient method will vary depending on a number of
factors. The following example demonstrates how using the Chip Editor
can help you to meet the timing requirements in a design.

f To download the design files, go to the Quartus II Handbook section of the
Altera web site and find the retiming.zip link, in Volume 3, Chapter 10.

Scenario: The tCO requirement for a particular design is 7.0 ns. This
requirement must be met to ensure that the output data is latched
correctly before being sent to a receiving device.

Based on the Quartus II place-and-route results, the timing analysis data
is shown in Table 10–7.

Table 10–7. Timing Analysis Data (Part 1 of 2)

Slack Required tC O Actual tC O From To From CLK

-0.317 ns 7.000 ns 7.317 ns outff_a~7 Out clk

-0.204 ns 7.000 ns 7.204 ns outff_a~6 Out clk

10–28 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

The equation for tCO is defined as:

tCO = <clock to source register delay> + <micro clock to output delay> +
<register to pin delay>

To meet the tCO requirement, either the <clock-to-source register delay> or
the <register-to-pin delay> (or both) need to be reduced.

Solution: Use the Chip Editor to manually perform gate-level retiming to
correct the tCO.

If we examine one of the four failing paths in the timing analysis report,
we see the following results:

Info: Slack time is -318 ps for clock clk between source register outff_a~9 and destination
pin out

Info: - tco from clock to output pin is 7.318 ns
Info: + Longest clock path from clock clk to source register is 2.684 ns

Info: 1: + IC(0.000 ns) + CELL(0.619 ns) = 0.619 ns; Loc. = Pin_L2; Fanout =
100; CLK Node = 'clk'

Info: 2: + IC(1.523 ns) + CELL(0.542 ns) = 2.684 ns; Loc. = LC_X32_Y30_N2;
Fanout = 1; REG Node = 'outff_a~9'

Info: Total cell delay = 1.161 ns (43.26 %)
Info: Total interconnect delay = 1.523 ns (56.74 %)

Info: + Micro clock to output delay of source is 0.156 ns
Info: + Longest register to pin delay is 4.478 ns

Info: 1: + IC(0.000 ns) + CELL(0.000 ns) = 0.000 ns; Loc. = LC_X32_Y30_N2;
Fanout = 1; REG Node = 'outff_a~9'

Info: 2: + IC(0.400 ns) + CELL(0.366 ns) = 0.766 ns; Loc. = LC_X32_Y30_N8;
Fanout = 1; COMB Node = 'xx[0]~190'

Info: 3: + IC(1.093 ns) + CELL(2.619 ns) = 4.478 ns; Loc. = Pin_J9; Fanout =
0; PIN Node = 'out'

Info: Total cell delay = 2.985 ns (66.66 %)
Info: Total interconnect delay = 1.493 ns (33.34 %)

There are several methods that you can use to meet the tCO requirement.
However, further investigation shows that the most efficient method is to
reduce the register-to-pin delay using gate-level retiming.

Based on the analysis just performed, you can see that the data passes
from the register, through the combinational logic, to the pin. You can
move the register between the combinational logic and the pin to reduce

-0.136 ns 7.000 ns 7.136 ns outff_a~8 Out clk

-0.008 ns 7.000 ns 7.008 ns outff_a~9 Out clk

Table 10–7. Timing Analysis Data (Part 2 of 2)

Slack Required tC O Actual tC O From To From CLK

Altera Corporation 10–29
June 2004 Preliminary

Example Design: Meeting I/O Timing

the register-to-pin delay, thereby reducing the tCO. It should be noted that
by moving the register, the fMAX of the overall circuit may decrease. Also,
to use the manual gate-level retiming process you must ensure that
moving the register does not alter the functionality of the circuit. In
general, this method should only be used when you understand the
design completely. If you are unsure about altering functionality, it is best
to use the Perform gate-level register retiming option in the Quartus II
software.

To reduce the register-to-pin delay you need to move the register to the
other side of the combinational logic. Perform this operation manually by
following the steps shown below:

1. Locate the failing path in Chip Editor Floorplan (see Figure 10–19).

Right click in the tCO section of the Timing Analysis Report (use the
entry where the source register is outff_a~9) and select Locate in
Chip Editor (right button pop-up menu).

Figure 10–19. Failing Path in Chip Editor

2. Open the Resource Property Editor and locate the source register.

10–30 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Right click on the source register (outff_a~9) and select Locate in
Resource Property Editor (right button pop-up menu).

3. Create the COMBOUT port for outff_a~9.

Right click the COMBOUT port and select Create COMBOUT (right
button pop-up menu). See Figure 10–20.

Figure 10–20. Select Create COMBOUT

4. Connect COMBOUT of outff_a~9 to DATA input of xx[0]~190.

To perform this step, you must perform a Check & Save All Netlist
Changes from the Change Manager to ensure that the newly created
COMBOUT port for outff_a~9 appears in the Node Finder.

a. Right click in the Change Manager and select Check & Save
All Netlist Changes.

b. Open the Resource Property Editor for xx[0]~190.

c. Right click on the DATA port of xx[0]~190 and select Edit
Connections. In the Edit Connections dialog box, find the
COMBOUT port outff_a~9 with the Node Finder.

Altera Corporation 10–31
June 2004 Preliminary

Example Design: Meeting I/O Timing

We have now removed the register from outff_a~9 and created a
COMBOUT connection to xx[0]~190. The next step is to create the
register in xx[0]~190.

5. Create the register in xx[0]~190.

a. Right click on the CLK port and select Edit Connections. In the
Edit Connections dialog box, type in clk (the name of the
system clock in the design).

b. Right click on the REGOUT port and select Create REGOUT (see
Figure 10–21).

Figure 10–21. Select Create REGOUT

6. Remove connection between COMBOUT of xx[0]~190 and DATAIN of
out.

a. Right click on the COMBOUT of xx[0]~190 and select Go To
Destination atom out.

b. Right click on the DATAIN port of out and select Remove
Connection.

7. Connect REGOUT to DATAIN of the output pin-out.

10–32 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

To perform this step you must run the Check & Save All Netlist
Changes command in the Change Manager to ensure that the newly
created REGOUT from step 6 for xx[0]~190 appears in the Node
Finder.

a. Right click in the Change Manager and select Check & Save
All Netlist Changes.

b. Open the Resource Property Editor for out.

c. Right click on the DATAIN port of out and select Edit
Connections. In the Edit Connections dialog box, find the
REGOUT port for xx[0]~190 (use the Node Finder). See
Figure 10–22.

Figure 10–22. Select Edit Connections

8. Check and save netlist.

Right click in the Change Manager and select Check & Save All
Netlist Changes.

You have now manually retimed your system to meet the tCO
requirements for one of the four failing paths. You must perform the same
procedure on the other three paths to ensure the entire system meets the
timing requirements Once the other paths are fixed, you can run the

Altera Corporation 10–33
June 2004 Preliminary

Example Design: Meeting I/O Timing

Quartus II Timing Analyzer to verify the timing results and the
Quartus II Simulator (or another EDA tool vendor’s simulator) to verify
the functionality of the design.

Table 10–8 describes the Timing Analysis report after the changes have
been made.

Running the Quartus II Timing Analyzer

After you have made a change with the Chip Editor, you should perform
timing analysis of your design with the Quartus II Timing Analyzer, to
ensure that your changes have not adversely affected your design's
timing performance.

For example, when you enable one of the delay chain settings for a
specific pin, you change the I/O timing. Therefore, to ensure that all
timing requirements are still met, you need to perform timing analysis.

Once you make a change to your design using the Chip Editor, you
should perform timing simulation on your design with either the
Quartus II Simulator or another EDA vendor's simulation tool.

Generating a Netlist for Other EDA Tools

When you use the Chip Editor, it may be necessary to verify the
functionality using an Altera-supported simulation tool and/or verify
timing using an Altera-supported timing analysis tool. You can run the
Netlist Writer to generate a gate-level netlist that allows you to perform
simulation or timing analysis in an EDA simulation or timing analysis
tool of your choice.

Generating a Programming File

Once you have performed simulation and timing analysis, and are
confident that the changes meet your design requirements, you can
generate a programming file with the Quartus II Assembler. You use the
programming file to implement your design in an Altera device.

Table 10–8. Timing Analysis Report After Changes Have Been Made

Slack Required tC O Actual tC O From To From CLK

0.405 ns 7.000 ns 6.595 ns Outff_a~14 Out Clk

10–34 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Conclusion As the time-to-market pressure mounts, it is increasingly important to be
able to produce a fully-functional design in the shortest amount of time.
To address this challenge, Altera developed the Quartus II Chip Editor.
The Chip Editor enables you to modify the post place-and-route
properties of your design. Specifically, you can change certain key
properties of the LE, I/O element, and PLL resources. Most importantly,
changes made with the Chip Editor do not require a full recompilation,
eliminating the lengthy process of RTL modification, resynthesis, and
another place-and-route cycle.

In summary, the new features in the Chip Editor allow you to perform
gate-level register retiming to optimize the timing of your design. The
overall effect of using the Chip Editor shortens the verification cycle and
brings timing closure to your design in a shorter period of time.

Altera Corporation 11–1
August 2004

11. In-System Updating of
Memory & Constants

FPGA designs are growing larger in density and are becoming more
complex. Designers and verification engineers require more access to the
design that is programmed in the device to quickly identify, test, and
resolve issues. The in-system updating of memory and constants
capability of the Quartus® II software provides read and write access to
in-system FPGA memories and constants through the JTAG interface,
making it easier to test changes to memory contents.

This chapter explains how to use the Quartus II In-System Memory
Content Editor as part of your FPGA design and verification flow.

Overview The ability to update memory and constants in a programmed device
provides more insight into and control over your design. The Quartus II
In-System Memory Content Editor gives you access to device memories
and constants. When used in conjunction with the SignalTap® II logic
analyzer, this feature provides you the visibility required to debug your
design in the hardware lab.

f For more information on SignalTap II, see the Design Debugging Using the
SignalTap II Embedded Logic Analyzer chapter of the Quartus II Handbook.

The ability to read data from memories and constants allows you to
quickly identify the source of problems. In addition, the write capabilities
allow you to bypass functional issues by writing expected data. For
example, if a parity bit in your memory is incorrect, you can use the
In-System Content Editor to write the correct parity bit values into your
RAM, allowing your system to continue functioning. You can also
intentionally write incorrect parity bit values into your RAMs to check
your design’s error handling functionality.

qii53012-1.1

11–2 Altera Corporation
 August 2004

Device & Megafunction Support

Device &
Megafunction
Support

The following tables list the devices and types of memories and constants
that are currently supported by the Quartus II software version 4.1.
Table 11–2 lists the types of memory supported by the MegaWizard
Plug-In Manager and the In-System Memory Content Editor.

Table 11–2 lists support for in-system updating of memory and constants
for the APEX™ 20K, APEX II, Mercury™, Stratix®, and Cyclone™ device
families.

Table 11–1. MegaWizard Plug-In Manager Support

Installed Plug-Ins Category Megafunction Name

Gates LPM_CONSTANT

Memory Compiler RAM: 1-PORT, ROM: 1-PORT

Storage ALTSYNCRAM, LPM_RAM_DQ,
LPM_ROM

Table 11–2. Supported Megafunctions

MegaFunction APEX 20K APEX II Mercury
Stratix
M512
blocks

Stratix
M4K

blocks

Stratix
MegaRAM

blocks
Cyclone

LPM_CONSTANT Read/
Write

Read/
Write

Read/Write Read/
Write

Read/
Write

Read/
Write

Read/
Write

LPM_ROM Write Read/
Write

Read/Write Write Read/
Write

N/A Read/
Write

LPM_RAM_DQ N/A (1) Read/
Write

Read/Write Read/
Write

Read/
Write

Read/
Write

Read/
Write

ALTSYNCRAM
(ROM)

N/A N/A N/A N/A Read/
Write

Read/
Write

Read/
Write

ALTSYNCRAM
(Single-Port RAM
Mode)

N/A N/A N/A Read/
Write

Read/
Write

Read/
Write

Read/
Write

Note to Table 11–2:
(1) Only write-only mode is applicable for this single-port RAM. In read only mode, use LPM_ROM instead of

LPM_RAM_DQ.

Altera Corporation 11–3
August 2004

In-System Updating of Memory & Constants

Using In-System
Updating of
Memory &
Constants with
Your Design

Using the In-System Updating of Memory and Constants feature requires
the following steps:

1. Identify the memories and constants that you want to access.

2. Edit the memories and constants to be run-time configurable.

3. Perform a full compilation.

4. Program your device.

Creating
In-System
Configurable
Memory and
Constants

When you enable a memory or constant to be run-time configurable, the
Quartus II software changes the default implementation. A single-port
RAM is converted to dual-port RAM, and a constant is implemented in
registers instead of look-up tables (LUTs). These changes enable run-time
configuration without changing the functionality of your design. For a list
of run-time configurable megafunctions, refer to Table 11–1.

To enable your memory or constant to be configurable, perform the
following steps:

1. Choose MegaWizard Plug-In Manager (Tools menu).

2. If you are creating a new Megafunction, select Create a new custom
megafunction variation. If you have an existing megafunction,
select Edit an existing custom megafunction variation.

3. In addition to the characteristics required by your design, turn on
Allow In-System Memory Content Editor to capture and update
content independently of the system clock and type a value for
Instance ID. These parameters can be changed on the last page of
the wizards for megafunctions that support in-system updating.

4. Click Finish.

5. Choose Start Compilation (Processing menu).

If you instantiate a memory or constant megafunction directly using ports
and parameters in VHDL or Verilog HDL, add or modify the lpm_hint
parameter as shown below.

In VHDL code, add the following:

lpm_hint => "ENABLE_RUNTIME_MOD=YES, INSTANCE_NAME =
<instantiation name>"

11–4 Altera Corporation
 August 2004

Running the In-System Memory Content Editor

In Verilog HDL code, add the following:

<megafunction>_component.lpm_hint = "ENABLE_RUNTIME_MOD
= YES, INSTANCE_NAME=<instantiation name>"

Running the
In-System
Memory Content
Editor

The In-System Memory Content Editor is separated into the Instance
Manager, JTAG Chain Configuration and the Hex Editor (Figure 11–1).

Figure 11–1. In-System Memory Content Editor

The Instance Manager displays all available run-time configurable
memories and constants in your FPGA device. The JTAG Chain
Configuration section allows you to program your FPGA and select the
Altera device in the chain to update. Enter and evaluate data in the Hex
Editor.

Using the In-System Memory Content Editor does not require you to
open a project. The In-System Memory Content Editor retrieves all
instances of run-time configurable memories and constants by scanning
the JTAG chain and sending a query to the specific device selected in the
JTAG Chain Configuration section.

Altera Corporation 11–5
August 2004

In-System Updating of Memory & Constants

The In-System Memory Content Editor can modify the contents of
memory in a single device. If you have more than one device containing
in-system configurable memories or constants in a JTAG chain, you can
launch multiple In-System Memory Content Editors within the Quartus
II software to access the memories and constants in each of the devices.

Instance Manager

Scan the JTAG chain to update the Instance Manager with a list of all
run-time configurable memories and constants in the design. The
Instance Manager displays the Index, Instance, Status, Width, Depth,
Type and Mode of each element in the list.

You can read and write to in-system memory using the Instance Manager
as shown in Figure 11–2.

Figure 11–2. Instance Manager Controls

The following buttons are provided in the Instance Manger:

■ Read data from In-System Memory–reads the data from the device
independently of the system clock and displays it in the Hex Editor.

■ Continuously Read Data from In-System Memory—Continuously reads
the data asynchronously from the device and displays it in the Hex
Editor.

■ Stop—Stops the current read or write operation
■ Write Data to In-System Memory—Asynchronously writes data

present in the Hex Editor to the device

Write Data to In-System Memory

Stop In-System Analysis

Continuously Read Data from In-System Memory

Read Data from In-System Memory

11–6 Altera Corporation
 August 2004

Running the In-System Memory Content Editor

The status of each instance is also displayed beside each entry in the
Instance Manager. The status indicates if the instance is “Not running”,
“Offloading data” or “Updating Data”. The health monitor provides
useful information about the status of the editor.

The Quartus II software assigns a different index number to each
in-system memory and constant to distinguish between multiple
instances of the same memory or constant function. View the In-System
Memory Content Editor Setting section of the compilation report to
match an index with the corresponding instance ID (Figure 11–3).

Figure 11–3. Compilation Report In-System Memory Content Editor Setting Section

Making Changes

To read the contents of in-system memory, click Read Data from
In-System Memory or Continuously Read Data from In-System
Memory in the Instance Manager. You can also run these commands by
right-clicking in the Instance Manager or Hex Editor and choosing from
the right button pop-up menu.

To edit data before writing it back to the device, place the insertion point
at the desired location in the Hex Editor and begin typing. Editing always
overwrites data in the hex editor. Modified data appears in blue until it is
written, when it appears red.

To prepare data, type or paste changes into the Hex Editor or import a
memory file. The In-System Memory Content Editor supports importing
of hexadecimal (.hex) and memory initialization file (.mif) formats.

Altera Corporation 11–7
August 2004

In-System Updating of Memory & Constants

To import a file, right-click the target instance in the Instance Manager or
a specific location in the Hex Editor and choose Import Data from File in
the Instance Manager. The file data overwrites the data displayed at the
chosen location in the Hex Editor.

After reading data from in-system memory, export it to a file by right
mouse clicking the instance in the Instance Manager or the data in the
Hex Editor and choosing Export Data to File. You can export data to HEX,
MIF, Value Change Dump (.vcd), or RAM Initialization file (.rif) format.

Viewing Memory & Constants in the Hex Editor

For each instance of an in-system memory or constant, the Hex Editor
displays data in hexadecimal numbers and ASCII characters (if the word
size is a multiple of 8 bits). The arrangement of the hexadecimal numbers
depends on the dimensions of the memory. For example, if the word
width is 16 bits, the Hex Editor displays data in columns of words that
contain columns of bytes (Figure 11–4).

Figure 11–4. Editing 16-bit Memory Words Using the Hex Editor

Unprintable ASCII characters are represented by a period (.). The color of
the data changes in color as you perform reads and writes. Data displayed
in black indicates the data in the Hex Editor was the same as the data read
from the device. If the data in the Hex Editor changes color to red, the data
previously shown in the Hex Editor was different from the data read from
the device.

11–8 Altera Corporation
 August 2004

Running the In-System Memory Content Editor

As you analyze the data, you can use the cursor and the status bar to
quickly identify the exact location in memory. The status bar is located at
the bottom of the In-System Memory Content Editor and displays the
selected instance name, word position and the bit offset (Figure 11–5).

Figure 11–5. Status Bar in the In-System Memory and Content Editor

The bit offset is the bit position of the cursor within the word. In the
following example, a word is set to be 8 bits wide.

With the cursor in the position shown in Figure 11–7, the word location is
0x0000 and the bit position is 0x0007.

Figure 11–6. Hex Editor Cursor Positioned at Bit 0x0003

With the cursor in the position shown in Figure 11–6, the word location
remains 0x0000 but the bit position is 0x0003.

Figure 11–7. Hex Editor Cursor Positioned at Bit 0x0007

Programming the Device Using the In-System Memory Content
Editor

If you make changes to your design, you can program the device from
within the In-System Memory Content Editor. To program the device,
follow these steps:

1. Choose In-System Memory Content Editor (Tools menu).

2. In the JTAG Chain Configuration panel of the In-System Memory
Content Editor, select the SOF file that includes the modifiable
memories and constants.

Altera Corporation 11–9
August 2004

In-System Updating of Memory & Constants

3. Click Scan Chain.

4. In the Device list, select the device you want to program.

5. Click Program Device.

Conclusion The In-System Updating of Memory and Constants feature and In-
System Memory Content Editor provides access into a device for efficient
debug in a hardware lab. You can use In-System Memory Updating of
Memory and Constants with SignalTap II to maximize the visibility into
an Altera FPGA. The more visibility and access to the internal logic of the
device that you have, the quicker problems can be identified and
resolved.

11–10 Altera Corporation
 August 2004

Conclusion

Altera Corporation Section V–1
Preliminary

Section V. Formal
Verification

The Quartus® II software easily interfaces with EDA formal design
verification tools such as the Cadence Incisive Conformal and Synplicity
Synplify software. In addition, the Quartus II software has built-in
support for verifying the logical equivalence between the synthesized
netlist from Synplicity Synplify and the post-fit Verilog Quartus Mapped
(.vqm) files using Incisive Conformal software.

This section discusses formal verification, how to set-up the
Quartus II software to generate the VQM file and Incisive Conformal
script, and how to compare designs using Incisive Conformal software.

.This section includes the following chapter:

■ Chapter 12, Cadence Incisive Conformal Support

Revision History The table below shows the revision history for Chapter 12.

Chapter(s) Date / Version Changes Made

12 June 2004 v2.0 ● Updates to tables, figures.
● New functionality for Quartus 4.1.
● This chapter was formerly chapter 11 in the

previous section.

Feb. 2004 v1.0 Initial release.

Section V–2 Altera Corporation
Preliminary

Formal Verification Quartus II Handbook, Volume 3

Altera Corporation 12–1
June 2004

12. Cadence Incisive
Conformal Support

Introduction The Altera® Quartus® II software version 4.1 easily interfaces with EDA
tools such as the Cadence Incisive Conformal software and Synplicity
Synplify software. In addition, the Quartus II software has built-in
support for verifying the logical equivalence between the synthesized
(.vqm) netlist from Synplicity Synplify and the post-fit Verilog (.vo) files
using the Incisive Conformal software.

This chapter discusses the following topics:

■ Formal verification
■ Setting up the Quartus II software to generate the VQM file and

Incisive Conformal script
■ Comparing designs using Incisive Conformal software
■ Known issues and limitations

Formal
Verification

Formal verification uses exhaustive mathematical techniques to verify
design functionality. There are two types of formal verification:
equivalence checking and model checking. This chapter discusses
equivalence checking.

1 The formal verification flow can be used for designs targeting
the Cyclone™, Stratix™ GX, and Stratix device families.

Equivalence Checking

Equivalence checking is used to compare the functional equivalence of
the original design with the revised design by using mathematical
techniques rather than by performing simulation using test vectors,
greatly decreasing the time to verify the design.

Altera supports formal verification of the post-synthesis netlist from
Synplify and Synplify Pro and the post-place-and-route netlist from
Quartus II software, as shown in Figure 12–1.

qii53011-2.0

12–2 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Figure 12–1. Formal Verification Flow Using Synplify & Incisive Conformal
Software

Generating the
VO File &
Incisive
Conformal Script

The following steps describe how to set up the Quartus II software
environment to generate the post-fit VO netlist file and Incisive
Conformal script for use in formal verification:

1. If you have not yet done so, create a new Quartus II project or open
an existing project.

2. Choose EDA Tools Settings (Assignments menu).

3. On the EDA Tool Settings page of the Settings dialog box, under
EDA tools, for Design entry/synthesis specify Synplify or
Synplify Pro. Specify Conformal LEC for Formal verification
(Figure 12–2).

Synplicity Synplify
Software

(Synthesis)

Conformal LEC
Software

(Equivalence
Checking)

Quartus II Software
(Place & Route)

Golden Netlist

Revised Netlist

.vhd
.v

.vqm

.vqm

Formal Verificatio
 Library

Altera Corporation 12–3
June 2004 Preliminary

Generating the VO File & Incisive Conformal Script

Figure 12–2. EDA Tools Selection Note (1)

 Note to Figure 12–2:
(1) The Quartus II software allows up to six EDA tools to be selected in the EDA tools list.

4. Choose Analysis and Synthesis in the Category list of the Settings
dialog box.

5. Under Analysis and Synthesis, select Synthesis Netlist
Optimizations. On the Synthesis Netlist Optimizations page,
ensure that Perform gate-level register retiming is turned off
(Figure 12–3).

12–4 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Figure 12–3. Synthesis Netlist Optimizations

6. Choose Fitter Settings in the Category list of the Settings dialog
box. Under Fitter Settings, select Physical Synthesis
Optimizations. On the Physical Synthesis optimizations page,
ensure that Perform register retiming is turned off (Figure 12–4).

1 Retiming a design usually results in moving and merging
registers along the critical path and is not very well supported
by equivalence checking tools. Because equivalence checkers
compare the cones of logic terminating at registers, it is
necessary that registers not be moved during Quartus II
optimization.

If the options described in this section are not selected, the Incisive
Conformal script may be presented with a different set of compare
points, and the resulting netlist would be difficult to compare against
the reference netlist file.

Altera Corporation 12–5
June 2004 Preliminary

Generating the VO File & Incisive Conformal Script

The Quartus II software version 4.1 supports register duplication to
improve timing results. The formal verification tool also supports
register duplication and can be used during the formal verification
flow (Figure 12–4).

Figure 12–4. Setting Parameters for Netlist Optimizations

f To learn more about register duplication, see the “Physical Synthesis for
Registers - Register Duplication” section in the Netlist Optimization &
Physical Synthesis chapter in Volume 2 of the Quartus II Handbook.

12–6 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

7. Perform full compilation of the design either by selecting Start
Compilation (Processing menu) or by clicking the Start
Compilation icon in the tool bar.

If your project includes any of the following design entities, the
synthesized VQM netlist file from the Synplify software contains
black boxes and their boundary interface must be preserved:

● Altera library of parameterized modules (LPMs) functions. The
black box property is applied to only those LPM modules for
which an equivalent Incisive Conformal model does not exist.

● Encrypted intellectual property (IP) cores.
● Entities that are defined in the design format other than Verilog

HDL or VHDL.

The Quartus II software version 4.1 can identify black boxes
automatically and set the Preserve Hierarchical Boundary logic option to
Firm to preserve the boundary interfaces of the black boxes to aid in the
formal verification.

Users can also set the black box property on the entities that need not be
compared by the formal verification tool. To do so make the following
assignments for the entities in question:

■ An EDA Formal Verification Hierarchy assignment with the value
BLACKBOX

■ A Preserve Hierarchical Boundary assignment with the value Firm
(Figure 12–5).

Altera Corporation 12–7
June 2004 Preliminary

Generating the VO File & Incisive Conformal Script

Figure 12–5. Setting the Black Box Property on a Module

The Quartus II software compiler generates:

■ A VO file <design_name>.vo
■ A Script file <design_name>.ctc used with Incisive Conformal

software, referencing <design_name>.clg and <design_name>.clr to
read the library files and black box descriptions

■ A blackboxes directory, containing all the user-defined black box
entities in the design at <project directory>/fv/conformal/blackboxes.

The script file contains the setup constraints to be used along with the
formal verification tool. Following is the sample setup constraints
generated by the Quartus II software:

add renaming rule r1”_aI$” ““-revised

add renaming rule r2 “\/” “_a” -golden

add renaming rule r3 “\/” “_a” -revised

12–8 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

add ignored inputs data_b[3] data_b[2] data_b[1]
address_b[3] address_b[2] address_b[1]
-module altsyncram_width_a8_widthad_a7
-revised

set mapping method -unreach

set mapping method -phase

The file <entity>.v in the blackboxes directory contains the module
description of only those entities that are not defined in the formal
verification library. For example, if there is a reference to a black box for
an instance of the altdpram megafunction in the design, the blackboxes
directory does not contain a module description for the altdpram
megafunction as it is defined in the altdpram.v file of the formal
verification library.

Comparing
Designs Using
Incisive
Conformal
Software

This section discusses using the Incisive Conformal software to compare
designs.

Black Boxes in the Incisive Conformal Flow

A module must be treated as a black box by the Incisive Conformal
software if the corresponding formal verification model is not available.
As discussed in “Generating the VO File & Incisive Conformal Script” on
page 12–2, the netlist synthesized by the Quartus II software contains
black boxes if your project includes any of the following:

■ LPM functions
■ Encrypted IP functions
■ Entities not implemented in Verilog HDL or VHDL

Every LPM function is treated as a black box by the Synplify software. If
a corresponding Incisive Conformal verification model exists, however,
the LPM function is replaced by logic cells in the VQM netlist file
generated by the Quartus II software. For example, if the design has
references to the functions lpm_mult and lpm_rom, only lpm_rom is
treated as a black box because the corresponding Incisive Conformal
verification model is not available.

Altera Corporation 12–9
June 2004 Preliminary

Comparing Designs Using Incisive Conformal Software

VO netlist files written by the Quartus II software also contain the black
box hierarchy when the user makes the following assignments for a
module:

■ An EDA Formal Verification Hierarchy assignment with the value
BLACKBOX

■ A Preserve Hierarchical Boundary assignment with the value Firm
(Figure 12–3).

If the above two assignments are not made for a module, the Quartus II
software replaces the black box with logic cells and the VO netlist file no
longer contains the black box hierarchy or preserves the port interface,
resulting in a mismatch within the Incisive Conformal software.

Running the Incisive Conformal Software

Run Incisive Conformal software from either a system command prompt
or using the graphical user interface (GUI), using the CTC script
generated by the Quartus II software.

Running the Incisive Conformal Software From a System Command
Prompt

To run the Incisive Conformal Software from a system command prompt
type the following:

lec -dofile /<path to project directory>/fv/conformal/<design_name>.ctc
-nogui r

Running the Incisive Conformal Software from the GUI

To run the Incisive Conformal software using the GUI, do the following:

1. Select Do Dofile (File menu).

2. Select the file <path to project directory>/fv/conformal<design>.ctc.

The Incisive Conformal GUI displays results as shown in Figure 12–6.
The original VQM netlist is displayed in the Golden window and the
Quartus II generated VQM netlist is displayed in the Revised window.
The status bar at the bottom of the window reports verification results,
including the number of compared D-Type Flip Flops (DFFs) and
Primary Outputs (POs), as well as the number of DFFs and POs that are
equivalent and non-equivalent, respectively.

12–10 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Figure 12–6. Incisive Conformal Software GUI Display of Functional Comparisons

To investigate verification results, click the Mapping Manager icon in the
toolbar, or choose Mapping Manager (Tools menu). The Incisive
Conformal software reports the mapped, unmapped, and compared
points in the Mapped Points, Unmapped Points, and Compared Points
windows, respectively.

f For more information on how to diagnose non-equivalent points, refer to
the user documentation for the Incisive Conformal software.

Altera Corporation 12–11
June 2004 Preliminary

Known Issues & Limitations

Known Issues &
Limitations

The following known issues and limitations may be encountered when
using the formal verification flow described in this chapter:

■ Unused logic optimized within a black box by the Quartus II
software can result in an interface different from the interface in the
synthesized VQM netlist.

■ In designs with combinational feedback loops, the Incisive
Conformal software may incorrectly insert extra, unmapped cut
points in the revised netlist.

Conclusion Formal verification software enables verification of the design during all
stages from RTL to placement and routing. Verifying designs takes more
times as designs get bigger. Formal verification is a technique that helps
reduce the time needed for your design verification cycle.

12–12 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 3

Altera Corporation Index–1

Index

+transport_int_delays 2–8
+transport_path_delays 2–8

A
Acquisition Clock

Assigning 9–4
Adaptive Logic Module 10–10
Add Signals

Command-Line Mode 3–15
GUI Mode 3–16
to View 3–23
to View 3–15

Advanced Timing Analysis
Reports Using Tcl Scripts 4–34

ALM Properties 10–14
Altera Megafunction 3–8
Analyzer

Triggering 9–6
Applications

Common 10–24
Assigning Data Signals 9–5
Assignments

Multicycle 4–16
Multicycle Hold 4–17
Multicycle Source 4–18
Source Multicycle Hold 4–19

Asynchronous Memory 4–14

B
Bird’s Eye View 10–5
Buffer Acquisition 9–23

C
Captured Data

Converting to Other File Formats 9–22
Saving 9–22

cds.lib 3–6
Command-Line Mode 3–7

GUI Mode 3–7
Change Manager 10–23
Chip Editor 10–3

Floorplan 10–4
Locating a Node 9–31
Using in Design Flow 10–2

Clock
Derived Clocks 4–13
Frequency

Maximum 4–3
Hold Time 4–2
Inverted Clock 4–10
Not a Clock 4–11
Output Clock Frequency

Adjusting 10–22
Requirements

Specifying Individual 4–7
Settings 4–8
Setup Time 4–1
Skew 4–5, 4–13

Reduce 4–31
to-Output Delay 4–3

Command Prompt
2–11, 3–30

Compilation
Command-Line Mode 3–11
Faster 9–20
GUI Mode 3–12

Compile
Project Files & Libraries 3–21
Source Code & Testbenches 3–11

Cut Off
Clear and Preset

Signal Paths 4–28
Feedback

I/O Pins 4–28
Read During Write Signal Paths 4–29

Cut Paths Between Unrelated Clock
Domains 4–30

Cut Timing Path 4–30

Index–2 Altera Corporation

Quartus II Handbook, Volume 3

D
Data

Capturing to Specific RAM Type 9–24
Data Delay

Increase 4–32
Data Samples

View 9–12
Design

Cycle
Estimating Power 6–3

Elaborate 3–21
Flaw

Correcting 10–27
Simulating with Memory 3–10

Device & Megafunction Support 11–2
Duty Cycle

Adjusting 10–22
Dynamically Link 3–24
Dynamically Load 3–25

E
EDA Simulation Tools

Estimating Power 7–4
Elaborate Design 3–13
Elaboration

Command-Line Mode 3–13
GUI Mode 3–14

Elements
Cyclone I/O 10–17
Editable Properties of I/O 10–19
FPGA I/O 10–15
Stratix, Stratix GX, & Stratix II I/O 10–15
Supported Changes for an I/O 10–18

Embedded Logic Analyzer
Creating with MegaWizard Plug-In

Manager 9–8
Embedding Multiple Analyzers in One

FPGA 9–20
Environment

Setting Up 3–5, 3–20
Setting Variables 3–5

Equipment Setup
9–26

Equivalence Checking 12–1

F
False Paths 4–28
File Conversion

HEX 1–10, 2–4
FPGA Memory

Preserving 9–13
Functional RTL Simulation 1–3, 1–4, 2–2

Altera Memory Blocks 2–3
Command-Line Mode 3–18
GUI Mode 3–18
Libraries 1–4

Functional RTL Simulation 3–2, 3–5

H
Hex Editor

Viewing Memory & Constants 11–7
Hold Time Violations

Fixing 4–31

I
I/O Elements

MAX II 10–17
I/O Standards

Assigning 8–4, 8–10
Incisive Conformal

12–8
Black Boxes in Flow 12–8
Running 12–9
Running from Command Prompt 12–9
Running from GUI 12–9
Script & VO File 12–2

Instance Manager 11–5
In-System

Configurable Memory and Constants 11–3
Memory Content Editor 11–4, 11–8
Updating 11–3

L
LE/ALM

Supported Changes 10–11
Libraries

Create 3–6, 3–20
LPM Function 3–8

Libraries
Quartus II Timing Simulation 3–20

Altera Corporation Index–3

Library Setup 3–6
Licensing 1–20
Local PC

Software Setup 9–27
Logic Element 10–9

Properties 10–12
LPM

Functional RTL Simulation Models 1–4
LUT

Equation 10–12
Mask 10–13

LUT Mask 10–14

M
Maximum Delay

Input 4–9
Output 4–9

Meeting I/O Timing 10–27
MegaWizard-Generated File

Modifying 1–10, 2–4
MIF to RIF 1–10, 2–4
Minimum Timing Analysis

4–33
Performing 4–33
Reporting 4–34
Settings 4–33

Mnemonics
Creating for Bit Patterns 9–23

Mode
Extended LUT Mode 10–15
External Feedback 10–22
of Operation 10–12
Register Cascade Mode 10–14
Shared Arithmetic Mode 10–15
Synchronous Mode 10–14

ModelSim-Altera Software 1–3
Quartus II Software Output Files 1–11

Modes
Operation 3–3

Modifying the PLL Using the Chip
Editor 10–21

Multicycle Assignments
Typical Applications 4–19

Multicycle Hold Assignments 4–31
Multicycle Paths

Multi-Frequency Domains 4–24

Offsets 4–23
Simple 4–19

Multiple Clock Domains 4–15

N
NativeLink

Using with ModelSim 1–19
NC Simulation Flow 3–4
NC-Sim

Generated Simulation Output Files 3–29
Netlist

Generating for Other EDA Tools 10–33
Nodes

Select Nodes Reserved for Incremental
Routing 9–21

Set Number Allocated 9–20
nopli.v

Compiling 1–11, 2–4

O
Output Files

Quartus II Simulation 3–18

P
Phase Shift

Adjusting 10–22
of PLL

Adjusting to Meet I/O Timing 10–27
Pin-to-Pin Delay 4–3
Pipelining

Adding Registers 8–4, 8–11
PLI Routines

Incorporating 3–23
VCS

Software 2–10
PLL Mode

External Feedback 10–23
Normal 10–22

Post-Synthesis Simulation 2–4
Generating Netlist 2–5

Power
Calculator

Excel-Based 6–1
Estimation

Index–4 Altera Corporation

Quartus II Handbook, Volume 3

Quartus II Software 7–2
Simulation-Based Settings 7–7

Input File
Generate 7–8

Report File 6–6
Preserving Timing 9–32
PrimeTime

Environment
Generated Files 5–2

Format
Specified Constraint Samples 5–4

Quartus II Settings to Generate Files 5–1
Running 5–6
Sample Timing Report 5–5
Timing Reports 5–4

Programming File 10–33
Properties

Cyclone 10–20
Max II 10–21
PLL 10–21
Stratix and Stratix GX 10–19
Stratix II 10–19

Q
Quartus II

Megafunction
Simulation Models 1–4

R
Register Retiming

Gate-Level 10–24
Remote PC

Software Setup 9–26
Resource Property Editor 10–9
Routing Internal Signal to Output Pin 10–26

S
Sample Depth

Specifying 9–6
Scripting Support 2–10, 3–29, 7–7, 8–9
SDF Command File 3–22
Signal Preservation 9–28
SignalProbe

Adding Sources 8–3, 8–10

Compilation
Performing 8–5

Fitting Results Modification 8–12
Pins

Reserving 8–2, 8–10
Results Compilation 8–8
Routing

Enable or Disable All 8–11
Routing Failures 8–7
Run Automatically 8–11
Run Manually 8–11
Running with Smart Compilation 8–7, 8–12
Using 8–1

SignalTap II
Analysis

Programming Device 9–12
Logic Analyzer

Compiling Design 9–8
Creating HDL Representation 9–8
Debug Multiple Designs 9–29
Including in Design 9–2
Instantiating in HDL 9–11
Timing Preservation 9–29

Logic Analyzers
SOPC Builder Systems 9–35

SignalTap II
Local PC Setup 9–28
Megafunction Ports 9–11
Remote Debugging 9–25
Used FPGA Resources 9–24
Using in Lab Environment 9–25

Simulate
Design 3–23
Design 3–17

Simulation
Flow 3–1
Libraries

Gate Level 1–12
Slack 4–4

Hold Time 4–4
Spread Spectrum

Adjusting 10–23
Standard Delay Output File

Compiling 3–22
Statically Link 3–28
STP File

Assigning Signals 9–5

Altera Corporation Index–5

Creating 9–3
Using to Create Embedded Logic

Analyzer 9–3

T
Tappable Signals 9–29
Tcl

Commands 2–11
commands 3–29
Executing Script-Based Timing

Commands 4–6
tCO Requirement 4–11
Testbench

Compile into Work Library 1–18
tH Requirement 4–12
Time Bars and Next Transition 9–22
Timing

Analysis
Advanced 4–13
Asynchronous Domains 4–32
Basics 4–1
Third-Party Software 4–34

Analysis Reporting 4–12
Analyzer 4–6

Running 10–33
Assignments

Setting Global 4–7
Setting Other Individual 4–8

Simulation
Gate-Level 1–4, 1–11, 2–6
Generating Gate-Level Netlist 2–6

Simulation Netlist
Gate-Level for VCS 2–11

Simulation
Gate-Level 3–3, 3–18

Wizard 4–12
tPD Requirement 4–12
Transport Delays 2–8
Trigger

Creating Complex 9–14
In 9–17
Levels

Number of 9–7
Out 9–17

Using as Trigger In of Another
Analyzer 9–18

Position
Specifying 9–7

Type
Basic or Advanced 9–6

Using External 9–17
tSU Requirement 4–12

V
Variable

LM_LICENSE_FILE 1–20
VCS

Compile Switches
Common 2–8

Debugging
VCS

Command-Line Interface 2–9
Netlist

Generating Post-Synthesis
Simulation 2–11

Using in Quartus II Design Flow 2–1
Verilog

Code
Preparing & Linking C Programs 2–10

Functional RTL Simulation with Altera Mem-
ory Blocks 1–10

Simulating Designs 1–7
Simulation Designs 1–17

Verilog HDL
3–11

Code 3–15
veriuser.c

Modified 3–26
Original 3–25

VHDL
3–11

Simulating Designs 1–5, 1–15
View

First Level View 10–6
Second Level View 10–7
Third Level View 10–8

VirSim
Using 2–9

Index–6 Altera Corporation

Quartus II Handbook, Volume 3

	Quartus II Handbook, Volume 1 Design & Synthesis
	Contents
	Chapter Revision Dates
	About this Handbook
	How to Contact Altera
	Typographic Conventions

	Section I. Design Flows
	Revision History
	1. Hierarchical Block-Based & Team-Based Design Flows
	Introduction
	Design Flows: Flattened versus Hierarchical Block-Based
	Block-Based & Team-Based Designs
	Block-Based Design with the Quartus II LogicLock Methodology
	Preserving Timing Results Using the LogicLock Flow
	Preserving Routing

	Design Partitioning & Creating Multiple Netlist Files
	Performing Incremental Fitting
	Tcl Script
	Command Prompt

	Save a Node-Level Netlist into a Persistent Source File (Verilog Quartus Mapping File).
	Prevent Further Netlist Optimization

	Conclusion

	2. Quartus II Design Flow for MAX+PLUS II Users
	Introduction
	Chapter Overview
	Typical Design Flow
	Device Support
	Quartus II GUI Overview
	Project Navigator
	Node Finder
	Tcl Console
	Messages
	Status

	Setting up MAX+PLUS II Look and Feel in Quartus II
	Compiler Tool
	Converting an Existing MAX+PLUS II Design
	Converting MAX+PLUS II Graphic Design Files
	Importing MAX+PLUS II Assignments

	Quartus II Design Flow
	Creating a New Project
	Design Entry
	Making Assignments
	Assignment Editor
	Timing Assignments

	Synthesis
	Functional Simulation
	Place & Route
	Timing Analysis
	Timing Closure Floorplan
	Timing Simulation
	Quartus II Simulator Tool
	EDA Timing Simulation

	Power Estimation
	Programming

	Conclusion
	Quick Menu Reference

	3. System Design Using SOPC Builder
	Introduction
	SOPC Builder Peripherals
	SOPC Builder Ready Functions
	User-Defined Peripherals

	Embedded Software Applications
	Avalon Switch Fabric
	Automatic Generation
	Function

	System Generation
	Simulation Model & Testbench

	Using SOPC Builder
	System Contents Page
	Module Pool
	Module Table
	Additional Settings

	System Generation Page
	SDK Option
	HDL Option
	Simulation Option
	Simulating with ModelSim
	Simulating with Other Simulators

	System Dependency Pages
	Generating a System

	Further Information

	4. Quartus II Support for HardCopy Devices
	Introduction
	Features
	HARDCOPY_FPGA _PROTOTYPE, HardCopy Stratix, and Stratix Devices
	HardCopy Design Flow
	The Design Flow Steps of the One Step Process
	Compile the Design for an FPGA
	Migrate the Compiled Project
	Close the Quartus FPGA Project
	Open the Quartus HardCopy Project
	Compile for HardCopy Stratix Device

	How to Design HardCopy Devices
	Targeting Designs to HARDCOPY_ FPGA_PROTOTYPE Devices
	Tcl Support for HardCopy Migration

	Design Optimization & Performance Estimation
	HardCopy Floorplans & Timing Models
	Performance Estimation
	Placement Constraints

	Location Constraints
	LAB Assignments
	LogicLock Assignments
	An Example of Supported LogicLock Constraints
	LogicLock Region Definition in the HARDCOPY_FPGA_PROTOTYPE .qsf File
	LogicLock Region Definition in the Migrated HardCopy Stratix .qsf File

	Targeting Designs to HardCopy APEX 20KC and HardCopy APEX 20KE Devices

	Checking Designs for HardCopy Design Guidelines
	Design Assistant Settings
	Running Design Assistant
	Reports and Summary

	Generating the HardCopy Design Database
	Static Timing Analysis (STA)
	Power Estimation
	HardCopy Stratix Power Calculator
	Opening HardCopy Stratix Power Calculator
	HardCopy APEX 20K Power Calculator
	Power Calculators for FPGAs

	Tcl Support for HardCopy Stratix
	Conclusion
	Related Documents

	5. Engineering Change Management
	Impact of Last Minute Design Changes
	Performance
	Compile Time
	Verification
	Documentation

	ECO Support
	ECO Support at the HDL Level
	ECO Support at the Netlist Level

	Conclusion

	Section II. Design Guidelines
	Revision History
	6. Design Recommendations for Altera Devices
	Introduction
	Synchronous FPGA Design Practices
	Fundamentals of Synchronous Design
	Hazards of Asynchronous Design

	Recommended Design Techniques
	Combinational Logic Structures
	Combinational Loops
	Delay Chains
	Pulse Generators & Multivibrators
	Latches

	Clocking Schemes
	Internally-Generated Clocks
	Divided Clocks
	Ripple Counters
	Multiplexed Clocks
	Gated Clocks
	Synchronous Clock Enables
	Recommended Clock-Gating Method

	Hierarchical Design Partitioning
	Targeting Clock & Register- Control Architectural Features
	Clock Network Resources
	Reset Resources
	Register Control Signals

	Conclusion

	7. Recommended HDL Coding Styles
	Introduction
	Instantiating and Inferring Altera Megafunctions
	Instantiating Altera Megafunctions in HDL Code
	Instantiating Megafunctions Using the MegaWizard Plug-In Manager
	Instantiating Megafunctions Using the Port & Parameter Definition

	Inferring Megafunctions from HDL Code
	Counters
	Verilog HDL Counter with Count Enable & Asynchronous Clear
	VHDL Counter with Synchronous Load

	Adder/Subtractors
	Verilog HDL Adder/Subtractor
	VHDL Adder/Subtractor

	Multipliers
	Verilog HDL Unsigned Multiplier
	Verilog HDL Signed Multiplier with Input & Output Registers (Pipelining = 2)
	VHDL Unsigned Multiplier with Input & Output Registers (Pipelining = 2)
	VHDL Signed Multiplier

	Multiply-Accumulators & Multiply-Adders
	Verilog HDL Unsigned Multiply-Accumulator with Input, Output & Pipeline Registers (Latency = 3)
	Verilog HDL Signed Multiply-Adder (Latency = 0)
	VHDL Unsigned Multiply-Adder with Input, Output & Pipeline Registers (Latency = 3)
	VHDL Signed Multiply-Accumulator with Input, Output & Pipeline Registers (Latency = 3)

	RAM
	Verilog HDL Single-Clock Synchronous RAM
	Verilog HDL Dual-Clock Synchronous RAM
	VHDL Single-Clock Synchronous RAM
	VHDL Dual-Clock Synchronous RAM
	Verilog HDL Single-Clock Synchronous RAM with Asynchronous Read Address
	VHDL Single-Clock Synchronous RAM with Asynchronous Read Address

	ROM
	Verilog HDL Synchronous ROM
	VHDL Synchronous ROM

	Shift Registers
	Verilog HDL Single-Bit Wide, 64-Bit Long Shift Register
	Verilog HDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps
	VHDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps

	Device-Specific Coding Recommenda- tions
	Secondary Control Signals in Registers or Flip-Flops
	Verilog HDL D-Flip-Flop (Register) with Control Signals
	VHDL D-Flip-Flop (Register) with Control Signals

	Tri-State Signals
	Tri-State Signal in Verilog HDL
	Tri-State Signal in VHDL

	Adder Trees
	Architectures With Four-Input LUTs in Logic Elements (LEs)
	Verilog HDL Pipelined Binary Tree

	Architectures With Six-Input LUTs in Adaptive Logic Modules (ALMs)
	Verilog HDL Pipelined Ternary Tree

	General Coding Recommenda- tions
	Latches
	VHDL Code Preventing Unintentional Latch Creation

	State Machines
	Verilog HDL State Machines
	Verilog HDL State Machine Coding Example
	Example State Machine in Verilog HDL

	VHDL State Machines
	VHDL State Machine Coding Example
	Example State Machine in VHDL

	Multiplexers
	Types of Multiplexers
	Binary Multiplexers
	Simple Binary-Encoded “Case” Statement
	Selector Multiplexers
	Simple One-Hot-Encoded “Case” Statement
	Priority Multiplexers
	IF Statement Implying Priority

	Default or Others Case Assignment
	Implicit Defaults
	IF Statement with Implicit Defaults
	IF Statement with Default Conditions Explicitly Specified

	Degenerate Multiplexers
	CASE Statement Describing a Degenerate Multiplexer
	Recoder Design for Degenerate Binary Multiplexer
	4:1 Binary Multiplexer Design

	Buses of Multiplexers
	Quartus II Option for Multiplexers Restructuring

	Conclusion

	Section III. Synthesis
	Revision History
	8. Quartus II Integrated Synthesis
	Introduction
	Verilog HDL & VHDL Support
	Verilog HDL
	VHDL

	Types of Synthesis Options
	Synthesis Directives
	Verilog HDL
	VHDL

	Synthesis Attributes
	Verilog-1995 HDL
	Verilog-2001 HDL
	VHDL

	Quartus II Logic Options

	Quartus II Synthesis Options
	Translate Off & On
	Verilog HDL Example of Translate Off & On
	VHDL Example of Translate Off & On

	Read Comments as HDL
	Verilog HDL Example of Read Comments as HDL
	VHDL Example of Read Comments as HDL

	Full Case
	Sample Verilog HDL Code with a full_case Attribute

	Parallel Case
	Sample Verilog HDL Code with a parallel_case Attribute

	Keep Combinational Node/Implement as Output of Logic Cell
	Verilog HDL
	Verilog-2001
	VHDL

	Preserve Registers
	Verilog HDL
	Verilog-2001
	VHDL

	Maximum Fan-Out
	Verilog HDL
	Verilog-2001
	VHDL

	Optimization Technique
	State Machine Processing
	Preserve Hierarchical Boundary
	Restructure Multiplexers
	Power-Up Level
	Power-Up Don’t Care
	Remove Duplicate Logic
	Remove Duplicate Registers
	Remove Redundant Logic Cells
	Megafunction Inference Control
	Multiply-Accumulators & Multiply-Adders
	Shift Registers
	RAM and ROM

	RAM Style
	Sample Verilog-1995 Code with a ramstyle Attribute
	Sample Verilog-1995 Code with a ramstyle Attribute
	Sample VHDL Code with a ramstyle Attribute

	Setting Other Quartus II Options in Your HDL Source Code
	Use I/O Flip-Flops
	Sample Verilog HDL Code with a useioff Attribute
	Sample VHDL Code with a useioff Attribute

	Altera Attribute
	Verilog-1995 Example of Applying Altera Attribute to an Instance
	Verilog-2001 Example of Applying Altera Attribute to an Instance
	VHDL Example of Applying Altera Attribute to an Instance
	Verilog-1995 Example of Applying Altera Attribute to an Entity
	Verilog-2001 Example of Applying Altera Attribute to an Entity
	VHDL Example of Applying Altera Attribute to an Entity

	Chip Pin
	Verilog-1995 Example of Applying Chip Pin to a Single Pin
	Verilog-2001 Example of Applying Chip Pin to a Single Pin
	VHDL Example of Applying Chip Pin to a Single Pin
	Verilog-1995 Example of Applying Chip Pin to a Bus of Pins
	Verilog-2001 Example of Applying Chip Pin to Part of a Bus of Pins
	VHDL Example of Applying Chip Pin to Part of a Bus of Pins

	Scripting Support
	Quartus II Synthesis Options
	Assigning a Pin

	Conclusion

	9. Synplicity Synplify & SynplifyPro Support
	Introduction
	Design Flow
	Synplify Optimization Strategies
	Implementations in Synplify Pro
	Timing-driven Synthesis Settings
	Clock Frequencies
	Multiple Clock Domains
	Input/Output Delays
	Multi-Cycle Paths
	False Paths

	Finite State Machine (FSM) Compiler
	VHDL Code for syn_encoding
	FSM Explorer in Synplify Pro

	General Optimization Attributes & Options
	Maximum Fan-out
	Preserving Nets
	Register Packing
	Preserving Hierarchy
	Retiming in Synplify Pro

	Altera Specific Attributes
	altera_chip_pin_lc
	altera_chip_pin_lc with VHDL for ACEX 1K and FLEX 10KE Devices
	altera_chip_pin_lc with Other Devices

	altera_implement_in_esb or altera_implement_in_eab
	altera_io_powerup
	altera_io_opendrain

	Exporting Designs to the Quartus II Software Using NativeLink Integration
	Running the Quartus II Software from within the Synplify Software
	Using the Quartus II Software to Launch the Synplify Software

	Cross-Probing with the Quartus II Software
	Enabling Cross-Probing
	Cross-Probing from the Quartus II Software
	Cross-Probing from the Synplify Software

	Guidelines for Altera Megafunctions & Architecture- Specific Features
	Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager
	Clear Box Methodology
	Using MegaWizard-generated Verilog HDL Files for Clear Box Megafunction Instantiation
	Using MegaWizard-generated VHDL Files for Clear Box Megafunction Instantiation

	Black Box Methodology
	Using MegaWizard-generated Files for Certain LPM Functions in the Synplify LPM timing flow
	Using MegaWizard-generated Verilog HDL Files for Black-Box Megafunction Instantiation
	Top-level Verilog HDL Code with Black Box Instantiation of LPM_COUNTER
	Using MegaWizard-generated VHDL Files for Black-Box Megafunction Instantiation
	Top-level VHDL Code with Black Box Instantiation of LPM_COUNTER
	Other Synplify Software Attributes for Black-boxing
	Verilog HDL Example

	Inferring Altera Megafunctions from HDL Code
	Multipliers
	Resource Balancing
	Controlling the Inferring of DSP Blocks
	Signal Level Attribute
	Signal Attributes for Controlling DSP Block Inference in Verilog HDL
	Signal Attributes for Controlling DSP Block Inference in VHDL Code

	RAM
	VHDL Code for Inferred Dual-Port RAM
	VHDL Code for Inferred Dual-Port RAM Preventing Bypass Logic

	Inferring ROM

	Hierarchy & Design Considerations with Multiple VQM Files
	Creating a Design with Multiple VQM Files
	Creating a Design with Multiple VQM Files using Multipoint Synthesis (Synplify Pro only)
	Set Compile Points & Create Constraint Files
	Defining Compile Points Using Tcl or SDC
	Manually Defining Compile Points from the GUI
	Automatically Defining Compile Points from the GUI

	Apply the LogicLock Attributes
	Creating a Quartus II Project for Multiple VQM Files

	Generating a Design with Multiple VQM Files Using Black Boxes
	Manually Creating Multiple VQM Files Using Black Boxes
	Black Boxing in Verilog HDL
	Black-Boxing Example for Top-Level File A.v
	Black Boxing in VHDL
	Black-Boxing Example for Top-Level File A.vhd

	Creating a Quartus II Project for Multiple VQM Files

	Conclusion

	10. Mentor Graphics LeonardoSpectrum Support
	Introduction
	Design Flow
	Optimization Strategies
	Timing-Driven Synthesis
	Global Power Tab
	Clock Power Tab
	Input & Output Power Tabs

	Other Constraints
	Encoding Style
	Resource Sharing
	Mapping I/O Registers

	Timing Analysis with the Leonardo- Spectrum Software
	Exporting Designs Using NativeLink Integration
	Generating Netlist Files
	Including Design Files for Black-Boxed Modules
	Passing Constraints Via Scripts
	Integration with the Quartus II Software

	Guidelines for Altera Megafunctions & LPM Functions
	Instantiating Altera Megafunctions
	Inferring Altera Memory Elements
	Inferring RAM
	Inferring ROM

	Inferring Multipliers & DSP Functions
	Simple Multipliers
	Multiplier Accumulators
	Multiplier Adders

	Controlling DSP Block Inference
	Global Attribute
	Module Level Attributes
	Using Module Level Attributes in Verilog HDL Code
	Using Module Level Attributes in VHDL Code

	Signal Level Attributes
	Signal Attributes for Controlling DSP Block Inference in Verilog HDL Code
	Signal Attributes for Controlling DSP Block Inference for VHDL Code

	Guidelines for Using DSP Blocks

	Block-based Design with the Quartus II LogicLock Methodology
	Hierarchy & Design Considerations
	Creating a Design with Multiple EDIF Files
	Generating Multiple EDIF Files Using the LogicLock Option
	Creating a Quartus II Project for Multiple EDIF Files Including LogicLock Regions

	Generating Multiple EDIF Files Using Black Boxes
	Black Boxing in Verilog HDL
	A.v Top-Level File Black-Boxing Example

	Black Boxing in VHDL
	A.vhd Top-Level File Black-Boxing Example

	Creating a Quartus II Project for Multiple EDIF Files

	Incremental Synthesis Flow
	Modifications Required for the LogicLock_Incremental.tcl Script File
	LogicLock_Interface.tcl Script File for Incremental Synthesis

	Running the Tcl Script File in LeonardoSpectrum

	Conclusion

	11. Mentor Graphics Precision RTL Synthesis Support
	Introduction
	Design Flow
	Creating a Project & Compiling a Design
	Creating a Project
	Compiling the Design

	Setting Constraints
	Setting Timing Constraints
	Setting Mapping Constraints
	Assigning Pin Numbers & I/O Settings
	Assigning I/O Registers
	Disabling I/O Pad Insertion
	Preventing the Precision RTL Synthesis Software from Adding Any I/O Pads
	Preventing the Precision RTL Synthesis Software from Adding an I/O Pad On an Individual Pin

	Controlling Fan-Out on Data Nets

	Synthesizing the Design & Evaluating the Results
	Obtaining Accurate Logic Utilization & Timing Analysis Reports
	Running the Quartus II Software Manually

	Megafunctions & Architecture- Specific Features
	Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager
	Clear Box Methodology
	Using MegaWizard-generated Verilog HDL Files for Clear Box Megafunction Instantiation
	Using MegaWizard-generated VHDL Files for Clear Box Megafunction Instantiation

	Black Box Methodology
	Using MegaWizard-generated Verilog HDL Files for Black Box Megafunction Instantiation
	Using MegaWizard-generated VHDL Files for Black-Box Megafunction Instantiation

	Inferring Altera Megafunctions from HDL Code
	Multipliers
	Controlling DSP Block Inference
	Using the GUI
	Using Attributes
	Verilog HDL:
	VHDL:
	Verilog HDL:
	VHDL:
	Verilog HDL Multiplier Implemented in Logic
	VHDL Multiplier Implemented in Logic

	Multiplier-Accumulators & Multiplier-Adders
	Controlling DSP Block Inference
	Verilog HDL:
	VHDL:
	Use of dedicated_mult and preserve_signal in Verilog HDL
	Use of extract_mac, dedicated_mult, and preserve_signal in VHDL

	RAM & ROM

	Block-Based Design with the Quartus II LogicLock Methodology
	Hierarchy & Design Considerations
	Creating a Design with Separate Blocks for the LogicLock Methodology
	Creating a Design with Separate Blocks Using the LogicLock Attribute in a Single Precision Project
	Creating a Quartus II Project for EDIF File Including LogicLock Regions

	Generating a Design with Multiple EDIF Files Using Black Boxes
	Manually Creating Multiple EDIF Files Using Black-Boxes
	Black Boxing in Verilog HDL
	Black Boxing in VHDL

	Creating a Quartus II Project for Multiple EDIF Files

	Conclusion

	12. Synopsys FPGA Compiler II BLIS & Quartus II LogicLock Design Flow
	Introduction
	Design Hierarchy
	Block-Level Incremental Synthesis
	FPGA Compiler II Design Block
	FPGA Compiler II & Quartus II Synthesis
	Block Root
	How the BLIS Feature Works with the LogicLock Feature
	Hierarchy Considerations
	Time Stamp Synthesis

	Creating & Maintaining a Design
	Opening the Modules Constraint Table & Labeling Block Roots
	Exporting Block-Level Netlist Files
	Changing Source Within a Block
	Removing a Block Root
	Using BLIS Shell Commands

	Conclusion

	13. Synopsys Design Compiler FPGA Support
	Design Flow Using the DC FPGA Software & the Quartus II Software
	Setup of the DC FPGA Software Environment for Altera Device Families
	Megafunctions & Architecture- Specific Features
	Reading MegaWizard-Generated Variation Wrapper Files
	Using MegaWizard-Generated Variation Wrapper Files in a Black-Box Methodology
	Using MegaWizard-Generated Verilog HDL Files for Black-Box Megafunction Instantiation
	Using MegaWizard-Generated VHDL Files for Black-Box Megafunction Instantiation

	Inferring Altera Megafunctions from HDL Code
	Reading Design Files into the DC FPGA Software
	Selecting a Target Device
	Compilation & Synthesis
	Saving Synthesis Results
	Exporting Designs to the Quartus II Software
	Place & Route with the Quartus II Software
	Conclusion

	14. Analyzing Designs with the Quartus II RTL Viewer & Technology Map Viewer
	Introduction
	RTL Viewer Overview
	Technology Map Viewer Overview
	Quartus II Design Flow with the RTL & Technology Map Viewers
	Introduction to the User Interface
	Schematic View
	Schematic Symbols
	Code Sample for Counter Schematic Shown in Figure 14-3

	Selecting an Item in the Schematic View

	Hierarchy List
	Selecting an Item in the Hierarchy List

	Navigating the Schematic View
	Zooming & Magnification
	Page Partitioning in the Schematic View
	Moving Between Schematic Pages
	Following Nets Between Schematic Pages
	Input Connectors
	Output Connectors

	Traversing the Design Hierarchy
	Back & Forward Page Viewing
	Go to Net Driver

	Filtering in the Schematic View
	Examples of Filtered Netlists
	Expanding a Filtered Netlist
	Reducing a Filtered Netlist

	Probing to Source Design File & Other Quartus II Features
	Viewing a Timing Path in the Technology Map Viewer
	Other Features in the Schematic Viewer
	Tooltips
	Displaying Net Names
	Full Screen View
	Find Command
	Exporting Schematic as JPEG or BMP Image & Copying to Clipboard
	Printing

	Using the RTL & Technology Map Viewers to Analyze Design Problems
	Conclusion

	Index

	Quartus II Handbook, Volume 2 Design Implementation & Optimization
	Contents
	Chapter Revision Dates
	About this Handbook
	How to Contact Altera
	Typographic Conventions

	Section I. Scripting & Constraint Entry
	Revision History
	1. Assignment Editor
	Introduction
	Using the Assignment Editor
	Effects of Settings Made Outside the Assignment Editor User Interface
	Category, Node Filter, Information, Edit Bars & Spreadsheet
	Category Bar
	Node Filter Bar
	Information Bar
	Edit Bar

	Assignment Editor Features
	Using the Enhanced Spreadsheet Interface
	Dynamic Syntax Checking
	Node Filter Bar
	Using Time Groups
	Customizable Columns
	Tcl Interface

	Exporting and Importing Assignments
	Exporting Assignments
	Importing Assignments

	Conclusion

	2. Command-Line Scripting
	Introduction
	The Benefits of Modular Executables
	Introductory Example
	Design Flow
	Text-Based Report Files
	Compilation with quartus_sh --flow

	Command-Line Scripting Help
	Command-Line Option Details
	Option Precedence

	Command-Line Scripting Examples
	Check Design File Syntax
	Create a Project & Synthesize a Netlist Using Netlist Optimizations
	Attempt to Fit a Design as Quickly as Possible
	Fit a Design Using Multiple Seeds
	Makefile Implementation
	The QFlow Script

	More Help with Quartus II Modular Executables
	Conclusion

	3. Tcl Scripting
	Introduction
	What is Tcl?
	Tcl Scripting Basics
	Hello World Example
	Variables
	Nested Commands
	Arithmetic
	Lists
	Control structures
	Procedures

	Quartus II Tcl API Reference
	Quartus II Tcl Packages
	Loading Packages

	Executables Supporting Tcl
	Command-Line Options (-s, -t, etc)
	Run a Tcl Script
	Interactive Shell Mode
	Evaluate as Tcl
	Using the Quartus II Tcl Console Window

	Examples
	Accessing Command-Line Arguments
	Using the cmdline Package
	PCreating Projects & Making Assignments
	Compiling Designs
	The ::quartus::flow Package

	Extracting Report Data
	Using Collection Commands
	The foreach_in_collection command
	The get_collection_size command

	Timing Analysis
	EDA Tool Assignments
	Importing LogicLock Functions
	Using the Quartus II Tcl Shell in Interactive Mode

	Getting Help on Tcl & Quartus II Tcl APIs
	The Tcl/Tk GUI Help Interface

	Quartus II Legacy Tcl Support
	References

	4. Quartus II Project Management
	Introduction
	Using Revisions with Your Design
	Creating and Deleting Revisions
	Comparing Revisions

	Creating Different Versions of Your Design
	Archiving Projects

	Version- Compatible Databases
	Scripting Support
	Managing Revisions
	Creating Revisions
	Setting the Current Revision
	Getting a List of Revisions
	Deleting Revisions

	Archiving Projects
	Restoring Archived Projects
	Importing and Exporting Version-Compatible Databases

	Conclusion

	Section II. Device & Board Utilities
	Revision History
	5. I/O Assignment Planning & Analysis
	Introduction
	I/O Assignment Planning & Analysis
	I/O Assignment Planning & Analysis Design Flows
	Design Flow without Design Files
	Design Flow with Complete or Partial Design Files

	Inputs Used for I/O Assignment Analysis
	Creating I/O Assignments
	Reserving Pins
	Location Assignments
	Assignments with the Floorplan Editor
	Generating a Mapped Netlist

	Running the I/O Assignment Analysis
	Understanding the I/O Assignment Analysis Report
	Suggested & Partial Placement
	Detailed Error/Status Messages

	Scripting Support
	Reserving Pins
	Location Assignments
	Generating a Mapped Netlist
	Tcl Command
	Command Prompt

	Running the I/O Assignment Analysis

	Conclusion

	Section III. Area Optimization & Timing Closure
	Revision History
	6. Design Optimization for Altera Devices
	Introduction
	Initial Compilation
	Device Setting
	Timing Requirements Settings
	Smart Compilation Setting
	Timing Driven Compilation Settings
	Fitter Effort Setting
	I/O Assignments

	Design Analysis
	Resource Utilization
	I/O Timing (including tPD)
	fMAX Timing
	Compilation Time

	Optimization Techniques for LUT-Based (FPGA and MAX II) Devices
	Optimization Advisors

	Resource Utilization Optimization Techniques (LUT-Based Devices)
	Use Register Packing
	Remove Fitter Constraints
	Perform WYSIWYG Resynthesis for Area
	Optimize Synthesis for Area
	Optimize for Area, Not Speed
	Change State Machine Encoding
	Flatten the Hierarchy

	Retarget Memory Blocks
	Retarget DSP Blocks
	Optimize Source Code
	Modify Pin Assignments or Choose a Larger Package
	Use a Larger Device
	Resolving Resource Utilization Issues Summary

	I/O Timing Optimization Techniques (LUT-Based Devices)
	Timing-Driven Compilation
	Fast Input, Output, & Output Enable Registers
	Programmable Delays
	Using Fast Regional Clocks in Stratix Devices
	Using PLLs to Shift Clock Edges
	Improving Setup & Clock-to-Output Times Summary

	fMAX Timing Optimization Techniques (LUT-Based Devices)
	Synthesis Netlist Optimizations and Physical Synthesis Optimizations
	Seed
	Optimize Synthesis for Speed
	Optimize for Speed, Not Area
	Flatten the Hierarchy
	Set the Synthesis Effort to High (where applicable)
	Change State Machine Encoding
	Duplicate Logic for Fan-Out Control
	Other Synthesis Options

	LogicLock Assignments
	Hierarchy Assignments
	Path Assignments

	Location Assignments & Back Annotation
	Custom Regions
	Back Annotation and Manual Placement
	Optimizing Placement for Stratix II, Stratix, Stratix GX, & Cyclone II Devices
	Optimizing Placement for Cyclone Devices
	Optimizing Placement for Mercury, APEX II, & APEX 20KE/C Devices

	Optimize Source Code
	Improving fMAX Summary

	Optimization Techniques for Macrocell- Based (MAX 7000 and MAX 3000) CPLDs
	Resource Utilization Optimization Techniques (Macrocell- based CPLDs)
	Use Dedicated Inputs for Global Control Signals
	Reserve Device Resources
	Pin Assignment Guidelines & Procedures
	Control Signal Pin Assignments
	Output Enable Pin Assignments
	Estimate Fan-In When Assigning Output Pins
	Outputs Using Parallel Expander Pin Assignments

	Resolving Resource Utilization Problems
	Resolving Macrocell Usage Issues
	Resolving Routing Issues
	Using LCELL Buffers to Reduce Required Resources

	Timing Optimization Techniques (Macrocell- based CPLDs)
	Improving Setup Time
	Improving Clock-to-Output Time
	Improving Propagation Delay (tPD)
	Improving Maximum Frequency (fMAX)
	Optimizing Source Code-Pipelining for Complex Register Logic

	Compilation Time Optimization Techniques
	Reducing Synthesis and Synthesis Netlist Optimization Time
	Reducing Placement Time
	Fitter Effort Setting
	Physical Synthesis Effort Settings
	Incremental Fitting
	LogicLock Regions

	Reducing Routing Time
	Routing Congestion
	LogicLock Regions

	Scripting Support
	Initial Compilation Settings
	Resource Utilization Optimization Techniques (LUT-Based Devices)
	I/O Timing Optimization Techniques (LUT-Based Devices)
	FMAX Timing Optimization Techniques (LUT-Based Devices)

	Conclusion

	7. Timing Closure Floorplan
	Introduction
	Design Analysis Using the Timing Closure Floorplan
	Timing Closure Floorplan Views
	Viewing Assignments
	Viewing Critical Paths
	Physical Timing Estimates
	LogicLock Region Connectivity
	Viewing Routing Congestion
	I/O Timing Analysis Report File
	fMAX Timing Analysis Report File

	Conclusion

	8. Netlist Optimizations and Physical Synthesis
	Introduction
	Synthesis Netlist Optimizations
	WYSIWYG Primitive Resynthesis
	Gate-Level Register Retiming
	Allow Register Retiming to Trade-Off tSU/tCO with fMAX

	Preserving Your Synthesis Netlist Optimization Results

	Physical Synthesis Optimizations
	Physical Synthesis for Combinational Logic
	Physical Synthesis for Registers - Register Duplication
	Physical Synthesis for Registers - Register Retiming
	Physical Synthesis Report
	Preserving Your Physical Synthesis Results

	Applying Netlist Optimization Options
	Scripting Support
	Synthesis Netlist Optimizations
	Physical Synthesis Optimizations
	Back-Annotating Assignments

	Conclusion

	9. Design Space Explorer
	Introduction
	DSE Concepts
	Exploration Space & Exploration Point
	Seed & Seed Sweeping

	DSE Exploration

	DSE General Information
	DSE Flow
	DSE Support for Altera Device Families
	DSE Exploration

	DSE Project Settings
	DSE Project Settings
	Search for Best Area or Performance Options
	Advanced Search Option

	Performing an Advanced Search in Design Space Explorer
	Allow LogicLock Region Restructuring
	Exploration Space
	Seed Sweep
	Extra Effort Search
	Physical Synthesis Search
	Retiming Search
	Area Optimization Search
	Custom Space
	Signature Mode

	Optimization Goal
	Search Method

	DSE Flow Options
	Continue Exploration Even if Base Compile Fails
	Run Quartus Assembler During Exploration
	Archive All Compiles
	Save Exploration Space to File
	Stop Flow After Time
	Stop Flow After Gain

	DSE Advanced Information
	Computer Load Sharing in DSE Using Distributed Exploration Searches
	Distributed DSE Using LSF
	Distributed DSE Using a Quartus II Master Process

	Creating Custom Spaces for DSE
	DESIGNSPACE Tag
	POINT Tag
	PARAM Tag

	Conclusion

	10. LogicLock Design Methodology
	Introduction
	Improving Design Performance
	Preserving Module Performance

	Designing with the LogicLock Feature
	Creating LogicLock Regions
	LogicLock Regions Window
	Timing Closure Floorplan Editor
	Hierarchy Window
	Tcl Scripts

	Floorplan Editor View
	LogicLock Region Properties
	Hierarchical (Parent and/or Child) LogicLock Regions
	Assigning LogicLock Region Content
	Using the Assignment Editor to Place Logic

	Tcl Scripts
	Quartus II Block-Based Design Flow
	Synthesize the Module
	Optimize the Module
	Export the Module
	Import the Module
	Compile & Verify the Top-Level Design

	Additional Quartus II LogicLock Design Features
	Tooltips
	Repair Branch
	Reserve LogicLock Region
	Prevent Assignment to LogicLock Regions Option
	LogicLock Regions Connectivity
	Rubber Banding
	Show Critical Paths
	Show Connection Count
	Analysis & Synthesis Resource Utilization by Entity
	Path-Based Assignments
	Quartus II Revisions Feature
	LogicLock Assignment Precedence
	LogicLock Regions versus Soft LogicLock Regions
	Virtual Pins

	LogicLock Restrictions
	Constraint Priority
	Placing LogicLock Regions
	Placing Memory, Pins & Other Device Features into LogicLock Regions

	Back-Annotating Routing Information
	Exporting Back-Annotated Routing in LogicLock Regions
	Importing Back-Annotated Routing in LogicLock Regions

	Scripting Support
	Initializing and Uninitializing a LogicLock Region
	Creating or Modifying LogicLock Regions
	Obtaining LogicLock Region Properties
	Assigning LogicLock Region Content
	Prevent Further Netlist Optimization
	Save a Node-level Netlist into a Persistent Source File (.vqm)
	Exporting LogicLock Regions
	Importing LogicLock Regions
	Setting LogicLock Assignment Priority
	Assigning Virtual Pins
	Back-Annotating LogicLock Regions

	Conclusion

	11. Timing Closure in HardCopy Devices
	Introduction
	Timing Closure
	Placement Constraints

	Location Constraints
	Location Array Block (LAB) Assignments
	LogicLock Assignments
	LogicLock

	Tutorial

	Minimizing Clock Skew
	Checking the HardCopy Device Timing
	Clock Definitions
	Primary Input Pin Timing
	Primary Output Pin Timing
	Combinatorial Timing
	Timing Exceptions

	Correcting Timing Violations
	Hold-Time Violations
	Setup-Time Violations

	Timing ECOs
	Conclusion

	12. Synplicity Amplify Physical Synthesis Support
	Introduction
	Software Requirements
	Amplify Physical Synthesis Concepts
	Amplify-to- Quartus II Flow
	Initial Pass: No Physical Constraints
	Create New Implementations

	Iterative Passes: Optimizing the Critical Paths

	Using the Amplify Physical Optimizer Floorplans
	Multiplexers
	Independent Paths
	Feedback Paths
	Starting and Ending Points
	Utilization
	Detailed Floorplans
	Forward Annotating Amplify Physical Optimizer Constraints into the Quartus II Software
	Altera Megafunctions Using the MegaWizard Plug-In Manager with the Amplify Software
	Clear Box Methodology
	Black Box Methodology

	Conclusion

	Index

	Quartus II Handbook, Volume 3 Verification
	Contents
	Chapter Revision Dates
	About this Handbook
	How to Contact Altera
	Typographic Conventions

	Section I. Simulation
	Revision History
	1. Mentor Graphics ModelSim Support
	Introduction
	Background
	Software Compatibility
	Altera Design Flow with ModelSim- Altera Software
	Functional RTL Simulation
	Gate-Level Timing Simulation

	Functional RTL Simulation
	Functional RTL Simulation Libraries
	LPM and Altera Megafunction Functional RTL Simulation Models
	Altera Megafunction Simulation Models

	Simulating VHDL Designs
	Create Simulation Libraries
	Compile Simulation Models into Simulation Libraries
	Compile Testbench and Design Files into Work Library
	Loading the Design
	Running the Simulation

	Simulating Verilog Designs
	Create Simulation Libraries
	Compile Simulation Models into Simulation Libraries
	Compile Testbench and Design Files into Work Library
	Loading the Design
	Running the Simulation
	Verilog Functional RTL Simulation with Altera Memory Blocks
	Converting a HEX File or MIF to a RIF
	Modifying the MegaWizard-Generated File
	Compiling nopli.v

	Gate-Level Timing Simulation
	Quartus II Software Output Files for use in the ModelSim-Altera Software
	Gate Level Simulation Libraries
	Simulating VHDL Designs
	Create Simulation Libraries
	Compile Simulation Models into Simulation Libraries
	Compile Testbench and VHO into Work Library
	Loading the Design
	Running the Simulation

	Simulation Verilog Designs
	Create Simulation Libraries
	Compile Simulation Models into Simulation Libraries
	Compile Testbench and VO into Work Library
	Loading the Design
	Running the Simulation

	Using the NativeLink Feature with ModelSim
	Software Licensing & Licensing Set- Up
	LM_LICENSE_FILE Variable

	Conclusion

	2. Synopsys VCS Support
	Introduction
	Software Requirements
	Using VCS in the Quartus II Design Flow
	Functional RTL Simulations
	Functional RTL Simulation with Altera Memory Blocks
	Converting a HEX File or MIF to a RIF
	Modifying the MegaWizard-Generated File
	Compiling nopli.v

	Post-Synthesis Simulation
	Generating a Post-Synthesis Simulation Netlist

	Gate-Level Timing Simulation
	Generating a Gate-Level Timing Simulation Netlist in Quartus II
	Transport Delays
	+transport_path_delays
	+transport_int_delays

	Common VCS Compile Switches
	Using VirSim: The VCS Graphical Interface
	VCS Debugging SupportæVCS Command-Line Interface
	Using PLI Routines with the VCS Software
	Preparing & Linking C Programs to Verilog Code

	Scripting Support
	Generating a Post-Synthesis Simulation Netlist for VCS
	Tcl Commands
	Command Prompt

	Generating a Gate-Level Timing Simulation Netlist for VCS
	Tcl Commands
	Command Prompt

	Conclusion

	3. Cadence NC-Sim Support
	Introduction
	Software Requirements
	Simulation Flow Overview
	Functional/RTL Simulation
	Gate-Level Timing Simulation
	Operation Modes
	Quartus II/NC Simulation Flow Overview

	Functional/RTL Simulation
	Set Up Your Environment
	Setting Environment Variables

	Create Libraries
	Basic Library Setup
	Using Multiple cds.lib Files
	Create cds.lib: Command-Line Mode
	Create cds.lib: GUI Mode

	LPM Function & Altera Megafunction Libraries

	Simulating a Design with Memory
	Compile Source Code & Testbenches
	Compilation: Command-Line Mode
	Verilog HDL
	VHDL
	Verilog HDL:
	VHDL:

	Compilation: GUI Mode

	Elaborate Your Design
	Elaboration: Command-Line Mode
	Elaboration: GUI Mode

	Add Signals to View
	Adding Signals: Command-Line Mode
	Example SHM Verilog HDL Code

	Adding Signals: GUI Mode

	Simulate Your Design
	Functional/RTL Simulation: Command-Line Mode
	Functional/RTL Simulation: GUI Mode

	Gate-Level Timing Simulation
	Quartus II Simulation Output Files
	Quartus II Timing Simulation Libraries
	Set Up Your Environment
	Create Libraries
	Compile the Project Files & Libraries
	Elaborate the Design
	Compiling the Standard Delay Output File (VHDL Only): Command Line
	Example SDF Command File

	Compiling the Standard Delay Output File (VHDL Only): GUI

	Add Signals to View
	Simulate Your Design

	Incorporating PLI Routines
	Dynamically Link
	Dynamically Load
	Original veriuser.c packaged with the Quartus II software
	Modified veriuser.c for dynamic loading

	Statically Link

	Scripting Support
	Generate NC-Sim Simulation Output Files
	Tcl commands:
	Command prompt:

	Conclusion
	References

	Section II. Timing Analysis
	Revision History
	4. Quartus II Timing Analysis
	Introduction
	Timing Analysis Basics
	Clock Setup Time (tSU)
	Clock Hold Time (tH)
	Clock-to-Output Delay (tCO)
	Pin-to-Pin Delay (tPD)
	Maximum Clock Frequency (fMAX)
	Slack
	Hold Time Slack
	Clock Skew

	Executing Tcl Script-Based Timing Commands
	Setting up the Timing Analyzer
	Setting Global Timing Assignments
	Specifying Individual Clock Requirements
	Setting Other Individual Timing Assignments
	Clock Settings
	Input Maximum Delay
	Output Maximum Delay
	Inverted Clock
	Not a Clock
	tCO Requirement
	tH Requirement
	tPD Requirement
	tSU Requirement

	Timing Wizard

	Timing Analysis Reporting in the Quartus II Software
	Advanced Timing Analysis
	Clock Skew
	Derived Clocks
	Asynchronous Memory

	Multiple Clock Domains
	Multicycle Assignments
	Multicycle Assignment
	Multicycle Hold Assignment
	Source Multicycle Assignment
	Source Multicycle Hold Assignment

	Typical Applications of Multicycle Assignments
	Simple Multicycle Paths
	Multicycle Paths with Offsets
	Multicycle Paths Across Multi-Frequency Domains

	False Paths
	Cut Off Feedback from I/O Pins
	Cut Off Clear and Preset Signal Paths
	Cut Off Read During Write Signal Paths
	Cut Paths Between Unrelated Clock Domains
	Cut Timing Path

	Fixing Hold Time Violations
	Make Multicycle Hold Assignments
	Reduce Clock Skew
	Increase Data Delay

	Timing Analysis Across Asynchronous Domains

	Minimum Timing Analysis
	Minimum Timing Analysis Settings
	Performing Minimum Timing Analysis
	Minimum Timing Analysis Reporting

	Third-Party Timing Analysis Software
	Advanced Timing Analysis & Reports Using Tcl Scripts
	Conclusion

	5. Synopsys PrimeTime Support
	Introduction
	Quartus II Settings to Generate PrimeTime Files
	Files Generated for the PrimeTime Environment
	Sample of Constraints Specified in PrimeTime Format
	PrimeTime Timing Reports
	Sample PrimeTime Timing Report

	Running PrimeTime
	Conclusion

	Section III. Power Estimation & Analysis
	Revision History
	6. Early Power Estimation
	Introduction
	Excel-Based Power Calculator
	Estimating Power in the Design Cycle
	Quartus II Power Report File
	Conclusion
	References

	7. Simulation-Based Power Estimation
	Introduction
	Power Estimation in the Quartus II Software
	Estimating Power with EDA Simulation Tools
	Scripting Support
	Simulation-Based Power Estimation Settings
	Generate a Power Input File

	Conclusion
	References

	Section IV. On-Chip Debugging
	Revision History
	8. Quick Design Debugging Using SignalProbe
	Introduction
	Using SignalProbe
	Reserving SignalProbe pins
	Adding SignalProbe Sources

	Assigning I/O Standards
	Adding Registers for Pipelining
	Performing a SignalProbe Compilation
	Running SignalProbe with Smart Compilation
	Understanding SignalProbe Routing Failures
	Understanding the Results of a SignalProbe Compilation
	Scripting Support
	Reserving SignalProbe Pins
	Adding SignalProbe Sources
	Assigning I/O Standards
	Adding Registers for Pipelining
	Run SignalProbe Automatically
	Run SignalProbe Manually
	Enable or Disable All SignalProbe Routing
	Running SignalProbe with Smart Compilation
	Allow SignalProbe to Modify Fitting Results

	Conclusion

	9. Design Debugging Using the SignalTap II Embedded Logic Analyzer
	Introduction
	Including the SignalTap II Logic Analyzer in Your Design
	Using the STP File to Create an Embedded Logic Analyzer
	Creating an STP File
	Assigning an Acquisition Clock
	Assigning Signals to the STP File
	Assigning Data Signals
	Specifying the Sample Depth
	Triggering the Analyzer
	Trigger Type: Basic or Advanced
	Number of Trigger Levels

	Specifying the Trigger Position
	Compiling Your Design with SignalTap II Logic Analyzer

	Using the MegaWizard Plug-In Manager to Create your Embedded Logic Analyzer
	Creating the HDL Representation of the SignalTap II Logic Analyzer
	SignalTap II Megafunction Ports
	Instantiating the SignalTap II Logic Analyzer in your HDL

	Programming the Device for SignalTap II Analysis
	View Data Samples
	Advanced Features
	Preserving FPGA Memory
	Creating Complex Triggers
	Using External Triggers
	Trigger In
	Trigger Out
	Using the Trigger Out of One Analyzer as the Trigger In of Another Analyzer

	Embedding Multiple Analyzers in One FPGA
	Faster Compilations
	Set the Number of Nodes Allocated
	Select Nodes Reserved for Incremental Routing

	Time Bars and Next Transition
	Saving Captured Data
	Converting Captured Data to Other File Formats
	Creating Mnemonics for Bit Patterns
	Buffer Acquisition
	Capturing Data to a Specific RAM Type
	FPGA Resources Used by SignalTap II
	Using SignalTap II in a Lab Environment
	Remote Debugging Using SignalTap II
	Equipment Setup:
	Software Setup - Remote PC:
	Software Setup - Local PC:
	SignalTap II Setup - Local PC

	Signal Preservation
	Tappable Signals
	Timing Preservation with SignalTap II Logic Analyzer
	Using SignalTap Il Logic Analyzer to Simultaneously Debug Multiple Designs
	Locating a Node in the Chip Editor

	Design Example: Preserving Timing
	Design Example: Using SignalTap II Logic Analyzers in SOPC Builder Systems
	Conclusion

	10. Design Analysis and Engineering Change Management with Chip Editor
	Introduction
	Background
	Using the Chip Editor in Your Design Flow
	Chip Editor Overview
	Chip Editor Floorplan
	Bird’s Eye View
	First (Highest) Level View
	Second Level View
	Third Level View

	Resource Property Editor
	The Logic Element (LE)
	The Adaptive Logic Module (ALM)
	Supported Changes for an LE/ALM

	Properties of the Logic Element
	Mode of Operation
	LUT Equation
	LUT Mask
	Synchronous Mode
	Register Cascade Mode

	Properties of an ALM
	LUT Mask
	Extended LUT Mode
	Shared Arithmetic Mode

	FPGA I/O Elements
	Stratix, Stratix GX, and Stratix II I/O Elements
	Cyclone I/O Elements
	MAX II I/Os
	Supported Changes for an I/O Element
	Editable Properties of I/O Elements
	Stratix and Stratix GX Properties
	Stratix II Properties
	Cyclone Properties
	Max II Properties

	Modifying the PLL Using the Chip Editor
	Properties of the PLL
	Adjusting the Duty Cycle
	Adjusting the Phase Shift
	Normal Mode
	External Feedback Mode

	Adjusting the Output Clock Frequency
	Normal Mode
	External Feedback Mode

	Adjusting the Spread Spectrum

	Change Manager
	Common Applications
	Gate-Level Register Retiming
	Routing an Internal Signal to an Output Pin
	Adjust the Phase Shift of a PLL to Meet I/O Timing
	Correcting a Design Flaw

	Example Design: Meeting I/O Timing
	Running the Quartus II Timing Analyzer
	Generating a Netlist for Other EDA Tools
	Generating a Programming File

	Conclusion

	11. In-System Updating of Memory & Constants
	Overview
	Device & Megafunction Support
	Using In-System Updating of Memory & Constants with Your Design
	Creating In-System Configurable Memory and Constants
	Running the In-System Memory Content Editor
	Instance Manager
	Making Changes
	Viewing Memory & Constants in the Hex Editor
	Programming the Device Using the In-System Memory Content Editor

	Conclusion

	Section V. Formal Verification
	Revision History
	12. Cadence Incisive Conformal Support
	Introduction
	Formal Verification
	Equivalence Checking

	Generating the VO File & Incisive Conformal Script
	Comparing Designs Using Incisive Conformal Software
	Black Boxes in the Incisive Conformal Flow
	Running the Incisive Conformal Software
	Running the Incisive Conformal Software From a System Command Prompt
	Running the Incisive Conformal Software from the GUI

	Known Issues & Limitations
	Conclusion

	Index

