Using Library Modules in VHDL Designs

This tutorial explains how Altera’s library modules can beluded in VHDL-based designs, which are imple-
mented by using the Quart@%ll software.

Contents:

Example Circuit

Library of Parameterized Modules
Augmented Circuit with an LPM
Results for the Augmented Design

Practical designs often include commonly used circuitkdmstich as adders, subtractors, multipliers, decoders,
counters, and shifters. Altera provides efficient impletagons of such blocks in the form of library modules that
can be instantiated in VHDL designs. The compiler may retxggthat a standard function specified in VHDL
code can be realized using a library module, in which casajt automaticallynfer this module. However, many
library modules provide functionality that is too complexite recognized automatically by the compiler. These
modules have to be instantiated in the design explicithheatser.

Quartu@ Il software includes dibrary of parameterized modulg¢sPM). The modules are general in struc-
ture and they are tailored to a specific application by spewjfthe values of general parameters.

Doing this tutorial, the reader will learn about:
e Library of parameterizes modules (LPMs)
e Configuring an LPM for use in a circuit

¢ Instantiating an LPM in a designed circuit

The detailed examples in the tutorial were obtained usiegQhartus Il version 5.0, but other versions of the
software can also be used.

1 Example Circuit

As an example, we will use the adder/subtractor circuit shawFigure 1. It can add, subtract, and accu-
mulaten-bit numbers using the 2’'s complement number representafitne two primary inputs are humbers
A=ap_1an_2---agandB = b, _1b,_o--- by, and the primary output i = z,,_1z,_2 - - 20. Another input
is theAddSulzontrol signal which causes = A + B to be performed wheAddSub=0 andZ = A — B when
AddSub= 1. A second control inputSel is used to select the accumulator mode of operatiorself 0, the
operationZ = A + B is performed, but iSel= 1, thenB is added to or subtracted from the current valug of
If the addition or subtraction operations result in arittimeverflow, an output signaDverflow is asserted.

To make it easier to deal with asynchronous input signags; #re loaded into flip-flops on a positive edge of
the clock. Thus, inputgl and B will be loaded into registerAregandBreg, while SelandAddSubwill be loaded
into flip-flops SelRandAddSubRrespectively. The adder/subtractor circuit places thalténto registeZreg

Figure 1. The adder/subtractor circuit.

A= a,_, ay Sel B=Db,_; by AddSub
n-bit register FIF n-bit register FIF
Areg =| areg,_; areg, Breg =| breg,_; breg,
—{ AddSubR
o o o ’ ‘ o 00 ’ d
n-bit 2-to-1 MUX e
SelR
L
G:’gn_l LTI \ go H= hn—l LRI hO
WV
carryout n-bit adder carryin fa——-H
M= | My My
. hn_l ‘ e o 0
[] n-bit register Zreg
over_flow Zreg =| zreg,_, zreg,
F/F o o o
' ,
Overflow Z= 2,4 z,

The required circuit is described by the VHDL code in Figurd=2r our example, we use a 16-bit circuit as
specified byn = 16. Implement this circuit as follows:

e Create a projecddersubtractar

Include a fileaddersubtractor.vhdvhich corresponds to Figure 2, in the project. For convasgethis file
is provided in the directorE2 tutorials\designfiles which is included on the CD-ROM that accompanies
the DE2 board and can also be found on Altera’s DE2 web pages.

Choose the Cyclone Il EP2C35F672C6 device, which is the FEI@g\on Altera’s DE2 board.

Compile the design.

Simulate the design by applying some typical inputs.

LIBRARY ieee;
USE ieee.stdogic_1164.all ;

—— Top-level entity
ENTITY addersubtractor IS
GENERIC (n : INTEGER :=16);

PORT (A,B : IN STDLOGIC_VECTOR(n—-1 DOWNTO 0) ;
Clock, Reset, Sel, AddSub : IN STDOGIC;
Z : BUFFER STDLOGIC_VECTOR(n—1 DOWNTO 0) ;
Overflow : OUT STDLOGIC);

END addersubtractor ;

ARCHITECTURE Behavior OF addersubtractor 1S
SIGNAL G, H, M, Areg, Breg, Zreg, AddSuhR : STDLOGIC_VECTOR(n-1 DOWNTO 0) ;
SIGNAL SelR, AddSubR, carryout, ovélow : STD_LOGIC ;
COMPONENT mux2tol
GENERIC (k : INTEGER :=8);
PORT (V,W : IN STDLOGIC_VECTOR(k-1 DOWNTO 0);
Selm : IN STDLOGIC;
F : OUT STDLOGIC_VECTOR(k-1 DOWNTO 0)) ;
END COMPONENT ;
COMPONENT adderk
GENERIC (k : INTEGER :=8);
PORT (carryin : IN STDLOGIC;
X, Y : IN STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;
S : OUT STDLOGIC_VECTOR(k-1 DOWNTO 0) ;
carryout : OUT STDLOGIC);
END COMPONENT ;
BEGIN
PROCESS (Reset, Clock)
BEGIN
IF Reset="1" THEN
Areg <= (OTHERS =>'0’); Breg <= (OTHERS =>"'0’);
Zreg<= (OTHERS =>'0’); SelR <="0"; AddSubR<="0"; Overflow <="0’;
ELSIF Clock’EVENT AND Clock ='1" THEN
Areg <= A; Breg<=B; Zreg<=M,;
SelR<= Sel; AddSubR<= AddSub; Overflowk= overflow;
END IF;
END PROCESS;

nbit adder: adderk
GENERIC MAP (k=>n)
PORT MAP (AddSubR, G, H, M, carryout) ;
multiplexer: mux2tol
GENERIC MAP (k=>n)
PORT MAP (Areg, Z, SelrR, G) ;
AddSubRn <= (OTHERS => AddSubR) ;
H <= Breg XOR AddSubkh ;
overflow <= carryout XOR G(r-1) XOR H(n—1) XOR M(n—1) ;
Z<=17Zreqg;
END Behavior;
... continued in Park

Figure 2. VHDL code for the circuit in Figure 1 (Pat

—— k-bit 2-to-1 multiplexer
LIBRARY ieee;
USE ieee.stdogic_1164.all ;

ENTITY mux2tol IS
GENERIC (k : INTEGER :=8);
PORT (VW :IN STDLOGIC_VECTOR(k—1 DOWNTO 0) ;
Selm :IN STDLOGIC;
F : OUT STDLOGIC.VECTOR(k—1 DOWNTO0));
END mux2tol;

ARCHITECTURE Behavior OF mux2tol IS
BEGIN
PROCESS (V, W, Selm)
BEGIN
IF Selm="0" THEN
F<=V;
ELSE
F<=W;
END IF;
END PROCESS;
END Behavior ;

—— k-bit adder

LIBRARY ieee;

USE ieee.stdogic_1164.all ;
USE ieee.stdogic_signed.all ;

ENTITY adderk IS
GENERIC (k : INTEGER :=8);
PORT (carryin : IN STDLOGIC;
X,Y : IN STD_LOGIC.VECTOR(k—1 DOWNTO 0) ;

S : OUT STDLOGIC_VECTOR(k—1 DOWNTO 0) ;
carryout: OUT STDLOGIC);
END adderk;;

ARCHITECTURE Behavior OF adderk IS

SIGNAL Sum : STDLOGIC_VECTOR(k DOWNTO 0) ;
BEGIN

Sum<=(0'& X) + (0’ & Y) + carryin ;

S <=Sum(k-1 DOWNTO 0) ;

carryout<= Sum(k) ;
END Behavior ;

Figure 2. VHDL code for the circuit in Figure 1 (Pdut

2 Library of Parameterized Modules

The LPMs in the library of parameterized modules are genarsiructure and they can be configured to suit a
specific application by specifying the values of variousapaeters. Seled¢ielp > Megafunctions/LPM to see a
listing of the available LPMs. One of them is an adder/sudttnramodule calletbm_add.sub megafunctiarSelect
this module to see its description. The module has a numhepofs and outputs, some of which may be omitted
in a given application. Several parameters can be defingukiifg a particular mode of operation. For example,
the number of bits in the operands is specified in the pararh&®l _WIDTH. The LPM.REPRESENTATION
parameter specifies whether the operands are to be inedpastsigned or unsigned numbers, and so on. Tem-
plates on how an LPM can be instantiated in a hardware déserilanguage are given in the description of the
module. Using these templates is somewhat cumbersome,atului software provides a wizard that makes the
instantiation of LPMs easy.

We will use thelpm_add.submodule to simplify our adder/subtractor circuit defined igufes 1 and 2. The
augmented circuitis given in Figure 3. Tipen_add submodule, instantiated under the namegaddsulreplaces
the adder circuit as well as the XOR gates that provide thetiffpto the adder. Since arithmetic overflow is one
of the outputs that the LPM provides, it is not necessary tegate this output with a separate XOR gate.

To implement this adder/subtractor circuit, create a neaoddry namedutorial_lpm, and then create a project
addersubtractor2 Choose the same Cyclone || EP2C35F672C6 device, to alloireatdcomparison of imple-
mented designs.

A= a,_, agy Sel B=1b,_; by AddSub
n-bit register FIF n-bit register FIF
[e)
Areg =| areg,_; areg, Breg =| breg,_4 breg,
} e o o ‘ e o o ‘
n-bit 2-to-1 MUX s
SelR
| |
G= gn_l e o o \ go ' \
dataa datab
megaddsub module add_sul]-e
overflow result ~AddSubR
M= 1M, My
over_flow oo
\ \
FIF n-bit register Zreg
Zreg = zreg,_, zreg,
\ \ /
Overflow Z= 7, 4 Zy

Figure 3. The augmented adder/subtractor circuit.

The new design will include the desired LPM subcircuit spedias a VHDL component that will be instanti-

ated in the top-level VHDL design entity. The VHDL componésttthe LPM subcircuit is generated by using a
wizard as follows:

1. Selecflools > MegaWizard Plug-in Manager, which leads to a sequence of seven pop-up boxes in which
the user can specify the details of the desired LPM.

2. In the box shown in Figure 4 indica@reate a new custom megafunction variation and clickNext.

MegaWlizard Plug-In Manager [page 1]

The MegaWizard Plug-ln Manager helps you create or modify design
\ files that contain custom wvariations of megafunctions.

YWhich action do you want to perfarm?

& Create a new custom meagafunction varistion
" Edit an existing custom megafunction variation

 Copy an existing custom megafunction variation

Copyright € 1991-2004 Altera Corporation

Cancell <Elack| Iext » I Finish |

Figure 4. Choose to define an LPM.

MegaWizard Plug-In Manager [page 2a] @

‘wihich megafunction would you like to customize? Wwhich device family will you be |Eyc:|0ne I ﬂ
: : uzing?
Select a megafunction from the list below

I] Installed Plug-lns -~ ‘which type of output file do you want to create?

- % Altera SOPC Builder £ AHDL

= arithrmetic

e & YHOL
i 4] ALTACCUMULATE :
1] ALTFP_ADD_SUIB £ Meillog HDL
4] ALTFP_MULT :
= 7 B
T ALTMEMMULT Wwhat name do you want for the output file? TOWSE
e ALTMULT_ACCUM [MAL)]D:\tutorial_lpm\megaddsub.vhd
14 ALTMULT_ADD
4] ALTSORT [T Generate clear box netlist file instead of a default wrapper file
4] LPM_ABS [for uge with supported EDA synthesis tools only]
2] LPM_ADD_SUB I Return to this page for anather create operation
4] LPM_COMPARE
4] LPM_COUMNTER Mate: To compile a project successfully in the Quartus || software,
121 LPM DIVIDE your design files must be in the project directory, in the global user
B LPM_MULT Iibraries spe_c_:ifiet_:l in the Dptio_ns t:!ialog bow [Tools me_nu], or & uger
PARALLEL_ADD library specified in the Uzer Libraries page of the Settings dialog

L 1] ; bow [Azsignments menu).
{e1] ARM-Bazed Excalibur
- oates “our current user library directories are:

- 10

|- memory compiler

I é SignalTap Il Logic Analyzer
- storage
=+ (@ IP MegaStore ~

Cancel | < Back | Mewt > | i ‘

Figure 5. Choose an LPM from the available library.

3. The box in Figure 5 provides a list of the available LPMs. p&ixd the “arithmetic” sublist and select
LPM_ADD_SUB. ChooseVHDL as the type of output file that should be created. The outmuirfilst be

given a name; choose the namegaddsub.vhand indicate that the file should be placed in the directory
tutorial_Ipmas shown in the figure. Prel&ext.

4. In the box in Figure 6 specify that the width of the data tisga 16 bits. Also, specify the operating mode
in which one of the ports allows performing both addition @udtraction of the input operand, under the
control of theadd subinput. A symbol for the resulting LPM is shown in the top leftrner. Note that if
addsub= 1 thenresult= A + B; otherwiseyesult= A — B. This interpretation of the control input and the
operation performed is different from our original desigrFigures 1 and 2, which we have to account for
in the modified design. Observe that we have included thisgdn the circuit in Figure 3. Clicklext.

MegaWizard Plug-In Manager - LPM_ADD_SUB [page 3 of 7] §|
Currently selected device family: Cyclone || i
megaddsub
add_sub

How wide should the 'datas’ and 'datab’ input buses be? |16 = | bits

dataa[15.0
clatab[15..0

‘which operating mode do you want for the adder/subtractor?

" Addition only
" Subtraction only

+ Create an 'add_sub' input port to allov me to do bath
[1 adds; 0 subtracts)

Resource Estimate

33 It

Documentation... | Cancel | < Back | Mest > | Finizh |

Figure 6. Specify the size of data inputs.

5. In the box in Figure 7, specify that the values of both ispuay vary and clickext.

MegaWizard Plug-In Manager - LPM_ADD_SUB [page 4 of 7] §|

megaddsub

add_sub

dataa[15.0
clatab[15..0 5

|z the 'dataa’ or 'datab’ input bug value a constant?

&+ Mo, both values vary

" Yes, dataa =
" “es, datab =

Resource Estimate

T Documentation... | Cancel | < Back | Mest > | Finizh |

Figure 7. Further specification of inputs.

6. The box in Figure 8 allows the designer to indicate optionauts and outputs that may be specified. Since
we need the overflow signal, make tGecate an overflow output choice and pregdext.

MegaWizard Plug-In Manager - LPM_ADD_SUB [page 5 of 7] g|

megaddsub

averflow,

Resource Estimate

33 It

Do you want any optional inputs or outputs?

add_sub

dataa[15.0 i
clatab[15..0 5

Input:
™ Create a camy/bormaw-out input

Outputs:
™ Create a camy/bormaw-in autput
[v Create an averflow output

Documentation... | Cancel | < Back | Mest > | Finizh |

Figure 8. Specify the Overflow output.

7. In the box in Figure 9 saio to the pipelining option and clicklext.

MegaWizard Plug-In Manager - LPM_ADD_SUB [page 6 of 7] g|

megaddsub
add_sub Do you want ta pipeling the function?
etaa(15.0] - & Mo
resulis " “es, | want an output latency of Clock cycles
clatab[15..0 5
-

averflow, r
Resource Estimate . ™
T Documentation... | Cancel | < Back | Mest > | Finizh |

Figure 9. Refuse the pipelining option.

8. Figure 10 gives a summary which shows the files that therdizdl create. PresEinish to complete the
process.

MegaWizard Plug-In Manager, - LPM_ADD_SUB [page 7 of ...

‘wihen the 'Finish' button iz pressed, the Mega'wizard Plug-n Manager
will create the checked files in the following list. Y'ou may chooge to
include or exclude a file by checking or unchecking itz coresponding
checkbox, respectively. The state of checkboxes will be remembered
for the next Megawizard Plug-In Manager session.

The Mega'wizard Flug-ln Manager will create these files in the directorny:
[r:Mbutorial_lpm'

File | Description

[+ megaddsub. vhd Wariation file

O megaddsub.ine AHDL Include file

O megaddsub.cmp WHOL Component declaratio...

O megaddsub. bsf Quartuz symbol file

O megaddsub_inst.vhd Instantiation template file

B4 megaddsub_waveforms. himl Sample waveforms in summary
L..megaddsub_wave® jpg Sample waveform file(z]

Documentation... Cancel | < Back | | Finizh |

Figure 10. Files created by the wizard.

3 Augmented Circuit with an LPM

We will use the filemegaddsub.vhid our modified design. Figure 11 depicts the VHDL code in fikés note that
we have not shown the comments in order to keep the figure.small

I/l Adder/subtractor module created by the MegaWizard
LIBRARY ieee;

USE ieee.stdogic_1164.all;

LIBRARY Ipm;

USE Ipm.Ipmcomponents.all;

ENTITY megaddsub IS
PORT (addsub : IN STDLOGIC;

dataa : IN STDLOGIC_VECTOR (15 DOWNTO 0);
datab : IN STDLOGIC_VECTOR (15 DOWNTO 0);
result : OUT STDLOGIC_VECTOR (15 DOWNTO 0);

overflow : OUT STDLOGIC);
END megaddsub;
ARCHITECTURE SYN OF megaddsub IS
SIGNAL suhwire0 : STDLOGIC;
SIGNAL suhwirel : STDLOGIC_VECTOR (15 DOWNTO 0);

COMPONENT Ipmaddsub

GENERIC (Ipmwidth : NATURAL;
Ipm_direction : STRING;
Ipm_type : STRING;
Ipm_hint : STRING);

PORT (dataa : IN STDLOGIC_VECTOR (15 DOWNTO 0);
addsub : IN STDLOGIC;
datab : IN STDLOGIC_VECTOR (15 DOWNTO 0);
overflow : OUT STDLOGIC;
result : OUT STDLOGIC_VECTOR (15 DOWNTO 0));

END COMPONENT;

BEGIN
overflow <= suhwire0;
result <= subwire1(15 DOWNTO 0);
Ipm_add.suh.component : Ipmadd.sub
GENERIC MAP (Ipmwidth => 16,
Ipm_direction => "UNUSED”,
Ipm_type = "LPM _ADD _SUB”",
Ipm_hint => "ONE_INPUT_IS.CONSTANT=NO,CINUSED=NO")
PORT MAP (dataa > dataa,
addsub => addsub,
datab = datab,
overflow => suhwire0,
result = subwirel);
END SYN;

Figure 11. VHDL code for the ADOSUB LPM.

10

The modified VHDL code for the adder/subtractor design iggiw Figure 12. It incorporates the code in Figure
11 as a component. Put the code in Figure 12 into dutlerial_Ipm\addersubtractor2.vhd=or convenience, the
required fileaddersubtractor2.vhi provided in the director{pE2 tutorials\designfiles which is included on
the CD-ROM that accompanies the DE2 board and can also be fouAltera’s DE2 web pages.

LIBRARY ieee;
USE ieee.stdogic_1164.all ;

—— Top-level entity
ENTITY addersubtractor2 IS
GENERIC (n : INTEGER :=16);

PORT (A, B : IN STDLOGIC.VECTOR(n-1 DOWNTO 0) ;
Clock, Reset, Sel, AddSub : IN STDOGIC;
Z : BUFFER STDLOGIC_VECTOR(n—1 DOWNTO 0) ;
Overflow : OUT STDRLOGIC);

END addersubtractor?2 ;

ARCHITECTURE Behavior OF addersubtractor2 IS
SIGNAL G, M, Areg, Breg, Zreg, : STRLOGIC_VECTOR(n-1 DOWNTO 0) ;
SIGNAL SelR, AddSubR, oveflow : STD_.LOGIC;
COMPONENT mux2tol
GENERIC (k : INTEGER :=8);
PORT (V,W : IN STDLOGICVECTOR(k-1 DOWNTO 0);
Selm : IN STDLOGIC;
F : OUT STDLOGICVECTOR(k-1 DOWNTOO0));
END COMPONENT ;
COMPONENT megaddsub

PORT (addsub . IN STDLOGIC,
dataa, datab : IN STIROGIC_VECTOR(15 DOWNTO 0) ;
result : OUT STDLOGIC_VECTOR(15 DOWNTO 0);

overflow : OUT STDLOGIC);
END COMPONENT ;

BEGIN
—— Define flip-flops and registers
PROCESS (Reset, Clock)
BEGIN
IF Reset="1" THEN
Areg <= (OTHERS =>'0’); Breg <= (OTHERS =>'0");
Zreg<=(OTHERS =>'0’); SelR <="0"; AddSubR<="0"; Overflow <="0’;
ELSIF Clock’EVENT AND Clock ='1" THEN
Areg<=A; Breg<=B; Zreg<=M,;
SelR<= Sel; AddSubR<= AddSub; Overflonx= overflow;
END IF;
END PROCESS;

... continued in Parb

Figure 12. VHDL code for the circuit in Figure 3 (Pait

11

—— Define combinational circuit
nbit addsub: megaddsub
PORT MAP (AddSubR, G, Breg, M, ovdiow) ;
multiplexer: mux2tol
GENERIC MAP (k=>n)
PORT MAP (Areg, Z, SelR, G) ;
Z <=17reqg,;
END Behavior;

—— k-bit 2-to-1 multiplexer
LIBRARY ieee;
USE ieee.stdogic_1164.all ;

ENTITY mux2tol IS
GENERIC (k : INTEGER :=8);
PORT (V,W :IN STDLOGIC_VECTOR(k—1 DOWNTO 0) ;
Selm :IN STDLOGIC;
F : OUT STDLOGIC.VECTOR(k—1 DOWNTO 0));
END mux2tol;

ARCHITECTURE Behavior OF mux2tol IS
BEGIN
PROCESS (V, W, Selm)
BEGIN
IF Selm="0" THEN
F<=V;
ELSE
F<=W;
END IF;
END PROCESS;
END Behavior ;

—— 16-bit adder/subtractor LPM created by the MegaWizard
LIBRARY ieee;

USE ieee.stdogic_1164.all;

LIBRARY Ipm;

USE Ipm.Ipmcomponents.all;

ENTITY megaddsub IS
PORT (addsub : IN STDLOGIC;

dataa : IN STDLOGIC_VECTOR (15 DOWNTO 0);
datab : IN STDLOGIC_VECTOR (15 DOWNTO 0);
result : OUT STDLOGIC_VECTOR (15 DOWNTO 0);

overflow : OUT STDLOGIC);
END megaddsub;
ARCHITECTURE SYN OF megaddsub IS
SIGNAL subwire0 : STDLOGIC;
SIGNAL suhwirel : STDLOGIC_VECTOR (15 DOWNTO 0);

... continued in Par¢

Figure 12. VHDL code for the circuit in Figure 3 (Pt

12

COMPONENT Ipmaddsub

GENERIC (Ipmwidth : NATURAL;
Ipm_direction : STRING;
Ipm_type : STRING;
Ipm_hint : STRING);

PORT (dataa : IN STDLOGIC_VECTOR (15 DOWNTO 0);
addsub : IN STDLOGIC;
datab : IN STDLOGIC_VECTOR (15 DOWNTO 0);
overflow : OUT STDLOGIC;
result : OUT STDLOGIC_VECTOR (15 DOWNTO 0));

END COMPONENT,;

BEGIN
overflow <= suhwire0Q;
result <= subwire1(15 DOWNTO 0);

Ipm_add.suh.component : Ipmadd.sub
GENERIC MAP (Ipmwidth => 16,
Ipm_direction => "UNUSED”,
Ipm_type = "LPM _ADD _SUB”,
Ipm_hint => "ONE_INPUT_IS.CONSTANT=NO,CINUSED=NO")
PORT MAP (dataa > dataa,
addsub => addsub,
datab = datab,
overflow => suhwire0,
result = subwirel);
END SYN;

Figure 12. VHDL code for the circuit in Figure 3 (Paijt

The key differences between this code and Figure 2 are:

e The statements that define tbeer flow signal and the XOR gates (along with the signal H) are no longe
needed.

e Theadderkentity, which specifies the adder circuit, is replacedhiiggaddsulentity. Note that thelataa
anddatabinputs shown in Figure 6 are driven by theandBregvectors, respectively.

e AddSubRsignal is specified to be the inverted version of AodSubsignal to conform with the usage of
this control signal in the LPM.

If you copied the fileaddersubtractor2.vhffom the qdesigngirectory, you have to include this file in the
project. To do so, sele@®roject > Add/Remove Files in Project to reach the window in Figure 13. Browse
for the available files by clicking the buttdfile name: ... to reach the window in Figure 14. Select the file
addersubtractor2.vhdnd clickOpen, which returns to the window in Figure 13. Cliékdd to include the file
and then clickOK. Now, the modified design can be compiled and simulated imsal way.

13

Settings - addersubtracto

Category:
- Files
- Usger Libraries [Current Project] Select the design files you want ta include in the project. Click Add Al to add all desian files in the
. Device project directary to the project.

- Timing Requirements & Options
- EDA Tool Settings

& File name: |addersubtractor2. vhd Add
[+ Compilation Process Settings
[+ Analysiz & Synthesiz Settings File name | Type Add Al
[+- Fitter Settings

- Timing Analyzer Femove

- Design Assistant

- SignalT ap Il Logic Analyzer

- SignalProbe Settings

- Simulator

- PowerPlay Power Analyzer Settings
- Software Build Settings

- HardCopy Settings

Dovn

el
[+

L

Froperties

el
[+

(] 8 | Cancel

Figure 13. Inclusion of the new file in the project.

Select File

Look in: IE} tutarial_lpm ;I - £k B

1] regaddsub.vhd

File name: Iaddersubtractor2.vhd Open I
Files of type: IDesign Files [".tdf;".vhd;".vhdl;".v;".vlg;".vh;:;l Cancel |

Figure 14. Specify thaddersubtractor.vhélle.

14

4 Resultsfor the Augmented Design

Compile the design and look at the summary, which is depict&dgure 15. Observe that the modified design is
implemented in 52 logic elements, which is the same as whieig tise code in Figure 2. In very small circuits,
which is the case with our example, it is unlikely that usiriRMLs will result in a significant advantage. However,
in more complex designs the advantage of using LPMs is likelye significant. The reason is that the LPMs
implement the required logic more efficiently than what thewpiler can do from simple VHDL code, such as the
code in Figure 2. The user should consider using an LPM whargesuitable one exists.

© Compilation Report - Flow Summary

@ Compilation Report Flow Summary

& B Legal Notice
@E Flow Summary Flows Status Successful - Mon Sep 12 16:18:59 2005
&8 Flow Settings Quartusz Il Yersion 5.0 Build 168 06/22/2005 5P 1 SJ Full Wersion
&SR Flow Elapsed Time Revision Mame addersubtractor2
@ Flow Log Top-level Entity Mame addersubtractor?
+-&(1 snalysis & Synthesis Family Cyclone |l
+ & Fitter Device EP2C35FET2CE
. @D sssemblar Timing Models Preliminary
. @D Timing Analyzer Met timing requirements es
Total logic elements B2/33216(<1 %)
Total registers A1
Total pins 53/478(11%)
Total wirtual ping 1]
Total memory bits 0/483840(0%)
Embedded Multiplier 3-bit elements 0/ 70[0%
Total PLLs 0/4(0%)

Figure 15. Compilation Results for the Augmented Circuit.

Copyright(©2005 Altera Corporation. All rights reserved. Altera, Th®grammable Solutions Company, the
stylized Altera logo, specific device designations, anatider words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, thentrartks and service marks of Altera Corporation in the
U.S. and other countries. All other product or service naaregshe property of their respective holders. Altera
products are protected under numerous U.S. and foreigntsatad pending applications, mask work rights, and
copyrights. Altera warrants performance of its semicomoluproducts to current specifications in accordance
with Altera’s standard warranty, but reserves the right aikenchanges to any products and services at any time
without notice. Altera assumes no responsibility or lipiarising out of the application or use of any informa-
tion, product, or service described herein except as esiyragreed to in writing by Altera Corporation. Altera
customers are advised to obtain the latest version of depieeifications before relying on any published infor-
mation and before placing orders for products or services.

This document is being provided on an “as-is” basis and aseonamodation and therefore all warranties, rep-

resentations or guarantees of any kind (whether expregdignor statutory) including, without limitation, war-
ranties of merchantability, non-infringement, or fitnessd particular purpose, are specifically disclaimed.

15

