Using the SDRAM Memory on Altera’s DE2 Board
with VHDL Design

This tutorial explains how the SDRAM chip on Altera’s DE2 Réwpment and Education board can be used
with a Nios Il system implemented by using the Altera SOPQd&ui The discussion is based on the assumption
that the reader has access to a DE2 board and is familiarlngtmaterial in the tutoridhtroduction to the Altera
SOPC Builder Using VHDL Design

The screen captures in the tutorial were obtained using ﬂwt@ Il version 5.1; if other versions of the
software are used, some of the images may be slightly differe

Contents:

Example Nios Il System

The SDRAM Interface

Using the SOPC Builder to Generate the Nios Il System
Integration of the Nios Il System into the Quartus Il Project
Using a Phase-Locked Loop

The introductory tutorialntroduction to the Altera SOPC Builder Using VHDL Desigrplains how the
memory in the Cyclone Il FPGA chip can be used in the contexa sfmple Nios Il system. For practical
applications it is necessary to have a much larger memorg Altera DE2 board contains an SDRAM chip
that can store 8 Mbytes of data. This memory is organized ax 114 bitsx 4 banks. The SDRAM chip
requires careful timing control. To provide access to thé&8DI chip, the SOPC Builder implements &DRAM
Controllercircuit. This circuit generates the signals needed to déhltive SDRAM chip.

1 ExampleNios|l System

As an illustrative example, we will add the SDRAM to the Nidsystem described in thetroduction to the
Altera SOPC Builder Using VHDL Designtorial. Figure 1 gives the block diagram of our examplaeys

Host computer

USB-Blaster
Reset_n Clock interface

| |

Cyclone II
JTAG Debug JTAG UART FPGA chip

module interface

Nios II processor

Avalon switch fabric

On-chi SDRAM Switches LEDs
memorl})/ controller parallel input parallel output
interface interface
cee N
SDRAM SW7 SWO0 LEDG7 LEDGO
chip

Figure 1. Example Nios Il system implemented on the DE2 hoard

The system realizes a trivial task. Eight toggle switchetherDE2 boardSTW7 — 0, are used to turn on or off
the eight green LEDS, EDG7 — 0. The switches are connected to the Nios Il system by meanparadlel I/O

interface configured to act as an input port. The LEDs areedrby the signals from another parallel I/O interface
configured to act as an output port. To achieve the desirechtipe, the eight-bit pattern corresponding to the
state of the switches has to be sent to the output port toetetitie LEDs. This will be done by having the Nios I
processor execute an application program. Continuoustipeiis required, such that as the switches are toggled
the lights change accordingly.

The introductory tutorial showed how we can use the SOPCdBuio design the hardware needed to imple-
ment this task, assuming that the application program wieells the state of the toggle switches and sets the
green LEDs accordingly is loaded into a memory block in th&RRhip. In this tutorial, we will explain how the
SDRAM chip on the DE2 board can be included in the system inffgid, so that our application program can be
run from the SDRAM rather than from the on-chip memory.

Doing this tutorial, the reader will learn about:

e Using the SOPC Builder to include an SDRAM interface for adNiebased system
e Timing issues with respect to the SDRAM on the DE2 board

e Using a phase-locked loop (PLL) to control the clock timing

2 TheSDRAM Interface

The SDRAM chip on the DE2 board has the capacity of 64 Mbits {8/tds). It is organized as 1M 16 bitsx

4 banks. The signals needed to communicate with this chiplesen in Figure 2. All of the signals, except the
clock, can be provided by the SDRAM Controller that can beegated by using the SOPC Builder. The clock
signal is provided separately. It has to meet the clock-skguirements as explained in section 5. Note that some
signals are active low, which is denoted by the suffix N.

Clock
CLK
Clock Enable
CKE
Address
ADDR[11:0]
Bank Address 1
BAl
Bank Address 0
BAO
Chip Select
SDRAM CS_N SDRAM
controller Column Address Strobe CAS.N chip

Row Address Strobe

RAS_N
Write Enable
WE_N
Data

DQ[15:0]

High-byte Data Mask
UDQM

Low-byte Data Mask
LDQM

Figure 2. The SDRAM signals.

3 Usingthe SOPC Builder to Generatethe Nios || System

Our starting point will be the Nios Il system discussed inltiteoduction to the Altera SOPC Builder Using VHDL
Designtutorial, which we implemented in a project callégghts. We specified the system shown in Figure 3.

198 pltera SOPC Builder - nios_system

File Module System ‘iew Tools Help
System Contents | Njos 11 More "cpu_ 0" Settings | System Generation |
| ¥4 Atera SOPC Buider Bl g |
!_-g Create Mew Component.. i . Clock Source MHz Fipeline |
Avalon Components Board: |Unspecified Board o |k |External |50.0 | H
Mioz Il Processar - Atera R Y |click ta-add. | \ | |:|
Bridges Drevice Family: 'Cyc\one I arcCopy: Compatibl +
L@ Swalon Tristate Bridg
mmunication e
LRT Use Module MNatme Description Input Clock Baze Enil IR
SPI (3 Wire Serial) | Ecpu_o IMios Il Processor - Atera Corparation clk l
UART [RS-232 serial instruction_master |Master part
O D1B550 UART wvith 1 data_master lMaster port RGO IRG 31i
O DI2CM 12C Bus Interfs | jtan_debug_module Slave port 0x00001000) 000001 'f'FFl
O DI2CSE 12C Bus Inter | onchip_memory_0 On-Chip Memory (Rahd or RO) clk DxDDUDDFFFl
O DSP Serial Periphera . Switches PIC (Parallel 1) iclk 0A00001800(0X0000150F|
O HIBSSOS USRT —Ca ||| LEDs |PIO (Parallel 110) clk 0x00001810 Ox00001E1F| | |
O HE250 -- CAST, Inc. | jtag_uart_0 WTAG LART clk: 0x00001820, 0x00001 82?|| 1] |
O High Performance Git 4
(=] | B
| an swsitakis on b
| & |
l @ i 4 Move Up] l W Move Down
17 cpu_0; defaulting Reset Address, Exception Address to onchip_memory_0
cpu_{: The reset address points to volatile memary, Execution of undefined code may occur upon reset,
0: Th + add ints b {akil E tion of undefined cod; 1 o
|11 Done checking for updates,
Exit [Mext =] [Generate I

Figure 3. The Nios Il system defined in the introductory tiaior

If you saved thdights project, then open this project in the Quartus Il softward dren open the SOPC
Builder. Otherwise, you need to create and implement thgeptoas explained in the introductory tutorial, to
obtain the system shown in the figure.

To add the SDRAM, in the window of Figure 3 seld@otalon Components > Memory > SDRAM Con-
troller and clickAdd. A window depicted in Figure 4 appears. Set the Data Widthmpater to 16 bits and leave
the default values for the rest. Since we will not simulate sigstem in this tutorial, do not select the option
Include a functional memory model in the system testbench. Click Finish. Now, in the window of Figure 3,
there will be arsdram_0 module added to the design. Since there is only one SDRAM@D&R board, change
the name of this module to simpddram. Then, the expanded system is defined as indicated in Fig@b%erve

that the SOPC Builder assigned the base address 0x008DO@$DRAM. Leave the addresses of all modules
as assigned in the figure and regenerate the system.

1% SDRAM Controller - sdram_0

Presets:

Mernary Profile | Timing

Daka Width Architecture
Bits Chip Selects: Banks:
Address Widths

Row Column

Share Pins via Tristate Bridge

[] Contraller shares dgfdamfaddr I}O pins.

Generic Memary Model (Simulation Only)

[] Include a Functional memory model in the system testbench,
Memory size: 8 MBytes

4194304 x 16
64 hEits

Cancel Mext = Finish

Figure 4. Add the SDRAM Controller.

1% Altera SOPC Builder - nios_system
File Module System Wiew Tools Help

| System Contents | Nios T More “cpu_0" Settings | System Generation |
I

!?;J---Extra Utilities e Target i
+-Interfaces and Periphe JE— | Clock Source MHZ
egacy Components Board: |Unspecified Board | ok |External |s0.0
|-Math Coprocessors - ; : ohek ra add | |
emory Device Family: | Cyclone IT - w | |
@ Cypress CY7C13 |
. IErCi ;erlal Fla?:h | s Module Mame Description Input Clock Basze End IRG |
ID?'?H \.-'f1r7302|;(,4; Ecpu_d 4 Mios || Processor - Alter.. clk | |
On-Chip Memary (instruction_master Master port |
SDhRAM Cortralled data_taster haster port RGO IRG 31
< AMD 2904800 Fls jtag_debuy_module Slave port 0x000010000 000001 7FF)
¢ DDR SDRAM Cort onchip_memory_0 On-Chip Memaory (RAM or R |clk 0x00000000 0x00000FFF)
0 DDR2 SDRAM Cot I Switches PIC (Parallel 100 clk 0x000018000 000001 S0F)
L IDTTIVO16 SRAM ¥ LEDs PIO (Parallel 110) clk 0x00001810) 000001 31F
IS 3 il jtag_uart_0 JTAG UART clk 0x000018200 0x00001527| [0
— = sdram SDRAM Controller clk 000800000 Ox00FFFFFF)
EATE
Lo [®]#[0]
[Add...] [B check] [A Move Up] [w Move Down

r'_y Dione checking For updates.

(3} epu_0 was generated as plain-text HOL,
| - €pu_0: The reset address points to volatile memary, Execution of undefined code may occur upon reset,

Exit

[Mext =]

[Generate I

Figure 5. The expanded Nios Il system.

The augmented VHDL entity generated by the SOPC Builderikerfile nios_system.vhid the directory of
the project. Figure 6 depicts the portion of the code thandsfthe port signals for the entityos_systemAs
in our initial system that we developed in the introductarptial, the 8-bit vector that is the input to the paral-
lel port Switcheds calledin_port_to_the_SwitchesThe 8-bit output vector is calledut_port_from_the LEDs
The clock and reset signals are callell andreset_n respectively. A new entity, callesdram is included.
It involves the signals indicated in Figure 2. For examphe address lines are referred to as the OUT vector
zs_addr_from_the_sdram[11:0The data lines are referred to as the INOUT veztordg_to_and_from_the_ sdram[15:0]
This is a vector of the INOUT type because the data lines aliedational.

e nios_system.vhd

library ieee;

use ieee.std logic 1164.all;

use ieee.std logic arith.all;
use ieee.std logic unsigned.all;

entity nios system is
port |
-— 1) glokhal signals:
Zignal clk : IN 3TD LOGIC:
signal reset_n : IN 3TD LOGIC:

—-— the LED=s
Zignal out port from the LEDs : OUT 3TD LOGIC VECTOR (7 DOWNTO O):

—-— the Zwitches
Zignal in port to the Switches : IN 3TD LOGIC VECTOR (7 DOWNTO O):

—-— the sdram
Zignal zs addr from the sdram : OUT 3TD LOGIC VECTOR (11 DOWNTO O);
Zignal zs ba from the sdram : OUT 3TD LOGIC VECTOR (1 DOWNTO O):
Zignal z5 cas n from the sdram : OUT 3TD LOGIC:
Zignal zs cke from the sdram : OUT 3TD LOGIC:
Zignal z3 cs n from the sdram : OUT 3TD LOGIC:
Zignal =z dg to and from the sdram : INOUT 3TD LOGIC VECTOR (15 DOWNTO O);
Zignal zs dogm from the sdram : OUT 3TD LOGIC VECTOR (1 DOWNTO O):
Zignal zs ras n from the sdram : OUT 3TD LOGIC:
Zignal zz we n from the sdram : OUT 3TD_LOGIC

Vi

end entity nios system;

Figure 6. A part of the generated VHDL entity.

4 Integration of the Nios |l System into the Quartus || Project

Now, we have to instantiate the expanded Nios Il system irtdpdevel VHDL entity, as we have done in the
tutorial Introduction to the Altera SOPC Builder Using VHDL Desigrhe entity is nametights, because this is
the name of the top-level design entity in our Quartus |l @cj

Afirst attempt at creating the new entity is presented in Fégu The input and output ports of the entity use the
pin names for the 50-MHz clock;LOCK_5Q pushbutton switche&EY, toggle switchesSW and green LEDs,
LEDG, as used in our original design. They also use the pin ndR&M_CLK DRAM_CKE DRAM_ADDR
DRAM_BA_ 1 DRAM_BA_Q DRAM_CS_N DRAM_CAS N DRAM_RAS NDRAM_WE_N DRAM_DQ
DRAM_UDQM andDRAM_LDQM which correspond to the SDRAM signals indicated in Figur@dl2of these
names are those specified in the DE2 User Manual, which allsis make the pin assignments by importing
them from the file calle®E2_pin_assignments.civthe directoryDE2_tutorials, design_fileswhich is included
on the CD-ROM that accompanies the DE2 board and can alsaibe fin Altera’s DE2 web pages.

Observe that the tw®ank Addresssignals are treated by the SOPC Builder as a two-bit vecttecca
zs_ba_from_the sdram[1:0hs seen in Figure 6. However, in tlE¥E2_ pin_assignments.céile these sig-
nals are given as separate signBpRAM_BA_ land DRAM_BA_ 0 Therefore, in our VHDL code, we con-
catenated these signals @RAM_BA 1 & DRAM_BA_ 0o form a two-bit vectoBA. Similarly, the vector
zs_dgm_from_the sdram[1:€prresponds to the vectblQM which is formed a$DRAM_UDQM & DRAM_LDQM)

Finally, note that we tried an obvious approach of using é/B1z system clockCLOCK_50Q as the clock
signal, DRAM_CLK for the SDRAM chip. This is specified by the last assignméaiesnent in the code. This
approach leads to a potential timing problem caused by tiekadkew on the DE2 board, which can be fixed as
explained in section 5.

—— Inputs: SW7-0 are parallel port inputs to the Nios Il system.

—— CLOCK_50 is the system clock.

—— KEYO is the active-low system reset.

—— Outputs: LEDGZO0 are parallel port outputs from the Nios Il system.

—— SDRAM ports correspond to the signals in Figure 2; their nmare those
—— used in the DE2 User Manual.

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY lights IS
PORT (SW:IN STD_LOGIC_VECTOR(7 DOWNTO 0);

KEY : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
CLOCK_50:IN STD_LOGIC;
LEDG : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)
DRAM_CLK, DRAM_CKE : OUT STD_LOGIC;
DRAM_ADDR : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
DRAM_BA 1, DRAM_BA 0:BUFFER STD_LOGIC;
DRAM_CS N, DRAM_CAS N, DRAM_RAS N, DRAM_WE_N: OUT STD_L@IC;
DRAM_DQ : INOUT STD_LOGIC_VECTOR(15 DOWNTO 0);
DRAM_UDQM, DRAM_LDQM : BUFFER STD_LOGIC);

END lights;

ARCHITECTURE Structure OF lights IS

COMPONENT nios_system

PORT (clk : IN STD_LOGIC;
reset_n:INSTD_LOGIC;
out_port_from_the_LEDs: OUT STD_LOGIC_VECTOR(7 DOWNTD 0
in_port_to_the_Switches: IN STD_LOGIC_VECTOR(7 DOWNTD 0
zs_addr_from_the_sdram: OUT STD_LOGIC_VECTOR(11 DOWNIO
zs_ba_from_the_sdram: BUFFER STD_LOGIC_VECTOR(1 DOWNI)O
zs_cas_n_from_the_sdram: OUT STD_LOGIC;
zs_cke_from_the sdram: OUT STD_LOGIC;
zs_cs_n_from_the sdram: OUT STD_LOGIC;
zs_dqg_to_and_from_the_sdram: INOUT STD_LOGIC_VECTGRIOWNTO 0);
zs_dgm_from_the_sdram: BUFFER STD_LOGIC_VECTOR(1 DOVOND);
zs_ras_n_from_the_sdram: OUT STD_LOGIC;
zs_we_n_from_the_sdram: OUT STD_LOGIC);

END COMPONENT;

SIGNAL BA : STD_LOGIC_VECTOR(1 DOWNTO 0);

SIGNAL DQM : STD_LOGIC_VECTOR(1 DOWNTO 0);

BEGIN

BA <= (DRAM_BA_1 & DRAM_BA_0);

DQM <= (DRAM_UDQM & DRAM_LDQM);

—— Instantiate the Nios Il system entity generated by the SORGI&.

Niosll: nios_system PORT MAP (CLOCK_50, KEY(0), LEDG, SW,
DRAM_ADDR, BA, DRAM_CAS_N, DRAM_CKE, DRAM_CS_N,
DRAM_DQ, DQM, DRAM_RAS_N, DRAM_WE_N);

DRAM_CLK <= CLOCK_50;

END Structure;

Figure 7. A first attempt at instantiating the expanded Nigys$tem.

As an experiment, you can enter the code in Figure 7 into adiledlights.vhd Add this file and all the *.vhd
files produced by the SOPC Builder to your Quartus Il proj&ile the code and download the design into
the Cyclone Il FPGA on the DE2 board. Use the application mogfrom the tutorialntroduction to the Altera
SOPC Builder Using VHDL Desigmvhich is shown in Figure 8.

.include "nios_macros.s"
.equ Switches, 0x00001800
.equ LEDs, 0x00001810

.global _start
_start:
movia r2, Switches
movia r3, LEDs
loop: Idbio r4,0(r2)
stbio r4,0(r3)
br loop

Figure 8. Assembly language code to control the lights.

Use the Altera Debug Client, which is described in the tatokitera Debug Clientto assemble, download,
and run this application program. If successful, the ligitghe DE2 board will respond to the operation of the
toggle switches.

Due to the clock skew problem mentioned above, the Nios Itgseor may be unable to properly access the
SDRAM chip. A possible indication of this may be given by thiéefa Debug Client, which may display the
message depicted in Figure 9. To solve the problem, it isgsarg to modify the design as indicated in the next
section.

Info & Errors - X

Using cable "U5E-Elaster [USE-0]", dewvice 1, instance 0x00
Resetting and pausing target processor: 0E

Initializing CPU cache (if present)

)4

Dowmloading 00000000 | 0%)
Dovmloaded ZKE in 0.0s

Verifying 00000000 { 0%)
Verify failed between address 0x0 and OxG6F
Leaving target processor paused

Figure 9. Error message in the Altera Debug Client that maguwseto the SDRAM clock skew problem.

5 Using a Phase-L ocked L oop

The clock skew depends on physical characteristics of th2 ixfard. For proper operation of the SDRAM chip,
it is necessary that its clock sign@®IRAM_CLK leads the Nios Il system clockLOCK_5Q by 3 nanoseconds.
This can be accomplished by usingphase-locked loop (PLLjircuit. There exists a Quartus Il Megafunction,
calledALTPLL, which can be used to generate the desired circuit. Theitaan be created, by using the Quartus
Il MegaWizard Plug-In Manager, as follows:

1. Selecflools > MegaWizard Plug-In Manager. This leads to the window in Figure 10. Choose the action
Create a new custom megafunction variation and clickNext.

MegaWizard Plug-In Manager [page 1] §|

The Mega'wizard Flug-In Manager helps you create or modify
design files that contain custom variations of megafunctions.

\ ‘which action do you want to perform?

+ Create a new custom megafunction variation
" Edit an existing custom megafunction variation
" Copy an existing custom megafunction variation

Copyright € 1991-2005 Alkera Corporation

Cancel | | Mest > | |

Figure 10. The MegaWizard.

2. In the window in Figure 11, specify that Cyclone Il is thevide family used and that the circuit should
be defined in VHDL. Also, specify that the generated outplHIDL) file should be calleddram_pll.vhd
From the list of megafunctions in the left box sel#@ > ALTPLL. Click Next.

MegaWizard Plug-In Manager [page 2a]

Wwhich megafunction would you like to customize™? W_hicr; device family will you be Cyclone |1 -
Select a megafunction from the list below usIng:
=[] Installed Plug-lns A ‘which type of output file do you want to create?
Altera SOPC Builder ~ AHDL

+- @ arithmetic

r + WVHDL
ARM-Based Excalibur)
+ & gates " Werilog HOL
=& -l-'le ‘what name do you want for the output file? Browse...
] ALTASMI_PARALLEL D:ADEZ_sdram_tutorialysdram_pll.vhd

| ALTCLKCTRL

i ALTDDIO_BIDIR
A ALTDDIO_IN

| ALTDDIO_OUT Mate: To compile a project successfully in the Quartus || software,
] ALTDO your design files must be in the project directory, in the global user
N ALTDES libraries specified in the Dptions dialog box [Tools menu), or a uzer

library specified in the User Libraries page of the Settings dialog
bow [Assignments menu).

™ Retumn to this page for anather create operation

] ALTLVDS
WA TRLL “rour current user library directonies are:

+ memory compiler

&
ﬁ SignalT ap Il Logic Analyzer b

Cancel | < Back | Mest > | |

Figure 11. Select the megafunction and name the output file.

3. In Figure 12, specify that the frequency of tihelockOinput is 50 MHz. Leave the other parameters as
given by default. ClicNext to reach the window in Figure 13.

d Plug-In Manager - ALTPLL [page 3 of 9]

Able to implement the requested FLL

-General -

Wwhich device Family will you be uzing?

inclkQ

sdram_pll

areset

inclki frag : 60.000 hiHz

Operation hdode: Hormal

Cyelone 1|

‘Which device speed grade will you be using?

‘what iz the frequency of the inclockD input?

I Getup Fl

i~ PLL type
‘which PLL type will vou be using?
" FastRLL
& Enhance

* Select the PLL type automatically

1~ Operation mode
Hows will the PLL outputs be generated?
* |se the feedback path inside the PLL
* In Nomal Mode
€ S auree-Sonckronous Compet
" InZero Delay Buffer Made
™ with no compenzation

‘which output clock. will be compenzated for?

Jump to page for: 1General.-"Modes -

1 Cyclone || -

Cocumnentation ‘

Cancel ‘ <BackJ Mest > I Finizh]

Figure 12. Define the clock frequency.

MegaWizard Plug-In Manager - ALTPLL [page 4 of 9]

inclk0

sdram_pll

inclkil freg © 60,000 hiHz

Operation hdade: Normal

Cyelone 11

Able to implement the requested FLL

-

Optional inputs

Lock output
™ Create locked' output
-

T

Advanced PLL Parameters

Using theze parameters iz recommended for advanced uzers only
™ Create output filefs] using the ‘Advanced' PLL parameters
- Configurations with output clock(z] that use cascade counters are not supported

™ Create an 'plliena’ input to selectively enable the PLL
™ Create an ‘areset’ input to asynchronously reset the PLL

[” Create an 'pfdena’ input to selectively enable the phaze/freq. detector

Jump to page for:

Scan/Lock -

D ocumentation |

Cancel | < Back | Mest > | Finizh |

Figure 13. Remove unnecessary signals.

10

4. We are interested only in the input sigmatlockOand the output signal0. Remove the other two signals
shown in the block diagram in the figure by de-selecting thiioopl inputareset as well as thdocked

output, as indicated in the figure. Clickext on this page as well as on page 5, until you reach page 6
which is shown in Figure 14.

MegaWizard Plug-In Manager, - ALTPLL [page 6 of 9] %X
cl - Core/External Output Clock Jump to page for: B Clock c0 -

Able to implement the requested FLL

Jv Use thiz clock

Clock Tap Settings
sdram_pll Requested settings Actual settings
+ Enter output clock frequency: 50 MHz - 50.000000
inclk0 inclkd freg . 50,000 MHz cl " Enter output clock parameters:
Operation hiode: Normal Clock multiplication factar :I 1
<< G
[tk JRatia] Ph cdgo] D)] Clock. division factor :I oy 1
Leo | 11 J-s400] 5000 |
i - = - -3.00
Tyetone I Clock phase shift 3 ZI hs
Clock duty cycle (%] 50.00 il 50.00

More Details >

Quick Mavigation

Ch 1 c2

D ocumentation Cancel | < Back | Mest > | Finizh |

Figure 14. Specify the phase shift.

5. The shifted clock signal is called). Specify that the output clock frequency is 50 MHz. Also,@fethat
a phase shift of-3 ns is required, as indicated in the figure. Cligikish, which advances to page 9.

6. Inthe summary window in Figure 15 cliéknish to complete the process.

11

MegaWizard Plug-In Manager, - ALTPLL [page 9 of 9] -- Summary

‘wihen the 'Finish' button iz pressed, the Megawizard Plug-In Manager will
create the checked files in the following list. Y'ou may chooze to include or
exclude a file by checking or unchecking its comesponding checkbox,
respectively. The state of checkboxes will be remembered

for the next Megawizard Plug-In Manager session.
sdram_pll
The Mega'wizard Flug-ln Manager will create these files in the directorny:
) D:ADEZ_sdram_tutorial
ekt inzlkD freg 60000 hiHz c File | Desenale
Pperstion i Homal [+ sdram_pll.vhd Y ariation file
[Cik [Ratio] Ph cago[oc ¢ O sdram_pll.inc AHDL Include file
m O sdram_pll.cmp WHOL Component declaration file
O sdram_pll.bsf Quartuz symbol file
Foine Il O sdram_pll_inst.vhd Inztantiation templat_e file
elene B4 sdram_pll_waveforms html - Sample waveforms in summary

o gdram_pll_wave®jpa Sample waveform filefs)

D ocumentation | Cancel | < Back | | Finizh |

Figure 15. The summary page.

The desired PLL circuit is now defined as a VHDL entity in the §tiram_pll.vhdwhich is placed in the
project directory. Add this file to thights project. Figure 16 shows the entity ports, consisting ofigiginclkO
andcO.

e sdram_pll.vhd

ENTITY sdram pll I3
FPORT
{
inclk0 : IN 3TD_LOGIC = '0';
0 OUT 3TD_LOGIC
Vi
END sdram_pll;

ARCHITECTURE 3YN OF sdram pll I3

SIGNAL sub_wireld 1 3TD_LOGIC _VECTOR (5 DOWNTO 0);
SIGNAL sub_wirel : 3TD_LOGIC ;
SIGNAL sub wirez : 3TD_LOGIC ;

| £

S
| »

Figure 16. The generated PLL entity.

Next, we have to fix the top-level VHDL entity, given in Figufeto include the PLL circuit. The desired code
is shown in Figure 17. The PLL circuit connects the shiftextkloutputcOto the pinDRAM_CLK

12

—— Implements a simple Nios Il system for the DE2 board.

—— Inputs: SW7Z-0 are parallel port inputs to the Nios Il system.

—— CLOCK_50 is the system clock.

—— KEYO is the active-low system reset.

—— Outputs: LEDG70 are parallel port outputs from the Nios Il system.

—— SDRAM ports correspond to the signals in Figure 2; their nmare those
—— used in the DE2 User Manual.

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY lights IS
PORT (SW:IN STD_LOGIC_VECTOR(7 DOWNTO 0);

KEY : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
CLOCK_50:IN STD_LOGIC;
LEDG : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)
DRAM_CLK, DRAM_CKE : OUT STD_LOGIC;
DRAM_ADDR : OUT STD_LOGIC_VECTOR(11 DOWNTO 0);
DRAM_BA_1, DRAM_BA_0: BUFFER STD_LOGIC;
DRAM_CS_N, DRAM_CAS_N, DRAM_RAS_N, DRAM_WE_N : OUT STD_L®IC;
DRAM_DQ : INOUT STD_LOGIC_VECTOR(15 DOWNTO 0);
DRAM_UDQM, DRAM_LDQM : BUFFER STD_LOGIC);

END lights;

ARCHITECTURE Structure OF lights IS
COMPONENT nios_system
PORT (clk : IN STD_LOGIC;

reset_ n:INSTD_LOGIC;
out_port_from_the_LEDs: OUT STD_LOGIC_VECTOR(7 DOWNTD 0
in_port_to_the_Switches: IN STD_LOGIC_VECTOR(7 DOWNTD 0
zs_addr_from_the_sdram: OUT STD_LOGIC_VECTOR(11 DOWNIO
zs_ba_from_the_sdram: BUFFER STD_LOGIC_VECTOR(1 DOWNI)O
zs_cas_n_from_the sdram: OUT STD_LOGIC;
zs_cke from_the sdram: OUT STD_LOGIC;
zs_cs_n_from_the sdram: OUT STD_LOGIC;
zs_dq_to_and_from_the_sdram: INOUT STD_LOGIC_VECTGRIOWNTO 0);
zs_dgm_from_the_sdram: BUFFER STD_LOGIC_VECTOR(1 DOVOND);
zs_ras_n_from_the_sdram: OUT STD_LOGIC;
zs_we_n_from_the_sdram: OUT STD_LOGIC);

END COMPONENT;

COMPONENT sdram_pll
PORT (inclkO: IN STD_LOGIC;
c0: OUT STD_LOGIC);
END COMPONENT

SIGNAL BA : STD_LOGIC_VECTOR(1 DOWNTO 0);
SIGNAL DQM : STD_LOGIC_VECTOR(1 DOWNTO 0);

...continued in Pari

Figure 17. Proper instantiation of the expanded Nios llaystParta).

13

BEGIN
BA <= (DRAM_BA_1 & DRAM_BA_0);
DQM <= (DRAM_UDQM & DRAM_LDQM);

—— Instantiate the Nios Il system entity generated by the SOBIGI&.
Niosll: nios_system PORT MAP (CLOCK_50, KEY(0), LEDG, SW,
DRAM_ADDR, BA, DRAM_CAS_N, DRAM_CKE, DRAM_CS_N,
DRAM_DQ, DQM, DRAM_RAS N, DRAM_WE_N);

—— Instantiate the entity sdram_pll (inclkO, c0).
neg_3ns: sdram_pll PORT MAP (CLOCK_50, DRAM_CLK);

END Structure;

Figure 17. Proper instantiation of the expanded Nios llaystParb).

Compile the code and download the design into the Cyclon®G A& on the DE2 board. Use the application
program in Figure 8 to test the circuit.

Copyright(©2006 Altera Corporation. All rights reserved. Altera, Thedtammable Solutions Company, the
stylized Altera logo, specific device designations, anatider words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, thenradts and service marks of Altera Corporation in
the U.S. and other countries. All other product or servicmes are the property of their respective holders.
Altera products are protected under numerous U.S. andgiongatents and pending applications, mask work
rights, and copyrights. Altera warrants performance oksémiconductor products to current specifications in
accordance with Altera’s standard warranty, but resefvesight to make changes to any products and services at
any time without notice. Altera assumes no responsibilitifability arising out of the application or use of any
information, product, or service described herein excepbgressly agreed to in writing by Altera Corporation.
Altera customers are advised to obtain the latest versialewate specifications before relying on any published
information and before placing orders for products or sswi
This document is being provided on an “as-is” basis and aseonamodation and therefore all warranties, rep-
resentations or guarantees of any kind (whether expregdiguinor statutory) including, without limitation, war-
ranties of merchantability, non-infringement, or fitnesssd particular purpose, are specifically disclaimed.

14

