Georgia Institute of Technology

School of Electrical and Computer Engineering

The Insider's Guide to

CmpE 4500/4510

	

June 1995

By

The Demons Team:

Amer Abufadel

John Elmore

Alan Smith

�
Introduction

Congratulations! You have made it to the CmpE 4500/4510 course sequence! Either

you're ready to graduate soon or you're a graduate student taking this course for credit or fun (yeah, right!). In any case this humble handbook is meant to try to help you live a happier life during this sequence and do a good job on your project.

Why should you read this? We are a group of three students, just like you, who happened to take these courses the second time they were offered. Our design was a 16 bit, 2-way superscalar RISC processor with all logical and integer operations. We ran into LOTS of problems before getting it to work. We thought that we should share our trials and tribulations so you can produce a better design instead of wasting your time just figuring out how to get the basic things working.

Why do you want to do well in 4500 and 4510?

There is really no correct answer to this question. However, there are few broad lines

that everybody seems to agree on:

	(This sequence is a 10 hour sequence! It is about a third of all senior

	level hours you have to take and it would not be very wise to do

	poorly.

	(It is the capstone senior design project. It really shows how much you

	learned in all the other courses. You get to put most what you know of

	digital hardware, software and design skills. So if you make a neat design,

 	it reflects that you are ready to face the world!

	(You might think, "I don't care!" You just want to bail out of here.

	Well, even if you feel this way, for all the effort required for this class you

	might as well do a good job. You never know, a time might come where it

	will come in handy to show that you actually built a cool and original design

	(such as impressing a prospective employer).

Getting started!

a) 	Start early! We emphasize this point as much as we can! Getting started early gives you a better chance to review all the stuff you have forgotten and need to know. If you think that you need to refresh some of the things you had in previous courses (like VHDL) this is the time to do it. Luckily, there is little or no studying required for this course -- just a review of previous knowledge.

b) 	Form a group -- a good group. Look around and see if you can recognize some students from previous classes. After forming a group, get to know each other. You will be spending a lot of time in lab together so you really need to get acquainted. Try to pick partners who will carry their weight because there is a lot of work to do.

c) 	After all the formalities, you'll need to start coming up with ideas for your design. We have a few general comments about that in the next section.

Picking a neat project idea

Don't get too wild! It's very tempting to let your imagination run free. You may want to do a very ambitious project, but you need to be cautious. When you start coming up with ideas, take into consideration the amount of time you need to get it to work before you decide that you are going to implement it. There is a fair chance that you will reach the quarter's end before you get something working. That is one thing you definately want to avoid.

To get a decent grade in these courses you need to show that you actually got something to work. No, we are not doubting your ability to do great designs. We are just trying to warn you. First, you need to get something simulated using the Synopsys simulator. After that, you need to start synthesizing and downloading to hardware. If you start with a huge design, you might end up spending a substantial amount of time trying to whack it down to a reasonable size that allows you to fit it on the hardware emulator. We've been there - trust us! So plan ahead.

Get everyone involved in everything

There is a tendency in groups to split up the project and have each member work on only a certain type of task. While this is generally acceptable, there is a danger of becoming too specialized. Some groups will lose members and therefore get behind schedule if they can't reassign tasks easily to other members. In addition, it helps if members know how do all the different tasks because they can better share ideas and jointly solve problems that arise rather than leaving it up to just one person. When a deadline is approaching and your group is doing time-intensive tasks - such as trying to route your design which can take hours - it helps temendously to have people to share the load. We had many 8 and 12 hour sessions where we would rotate "shifts" in an effort to get our design to route -- one guy would try for a few hours and then go get something to eat or go to class while another took over. This becomes especially important if you are competing for workstation resources with other groups.

Before you start designing

Before you start working on your design, you'll want to make sure that all the setup

files are in your directory. The teacher or the class TA will have a copy of the required

setup files. Make sure that you have the correct version. Since there are several

versions out there, it's easy to get the wrong one. Put all the setup files in your root

directory. After you have the setup files you are ready to start.

One thing to mention here is that you cannot just start typing in your design. You have to have a "work" directory in order to be able to compile your design. This directory should be on the same level of the directory you have your source files in. Therefore, you cannot put your source files in your root directory. You have to make a new directory and put

your source files there.

Oh gosh! Its VHDL again!

Now that you have picked your design of the century, you need to get started as soon as possible. You will need to describe your hardware in VHDL. Yes, you cannot get out of Tech before you get your fair share of VHDL. The better you know VHDL the better off you are. That is why we advise you to start early and review what you learned from previous courses. Writing efficient code is the key to a sucessful design. The better your code is the less problems you will encounter as you go along, especially when you get to the emulator stage. Let's will go over a couple of examples to demonstrate to you some of the problems we ran across.

Example 1:

This is a simple example that implements an 8 bit adder subtracter:

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

-- addsub Entity Description

ENTITY addsub2 is

 PORT(

 A: in std_logic_vector(7 downto 0);

 B: in std_logic_vector(7 downto 0);

 add_sub_result: out std_logic_vector(7 downto 0);

 SUB: in std_logic

);

END addsub2;

-- addsub Architecture Description

ARCHITECTURE rtl OF addsub2 IS

SIGNAL A_signed, B_signed, sum_signed: SIGNED (7 DOWNTO 0);

BEGIN

	A_signed <= SIGNED(A);

	B_signed <= SIGNED(B);

	PROCESS(A_signed, B_signed, SUB)

		BEGIN

			IF (SUB = `0') THEN

		 		sum_signed <= A_signed + b_signed;

			ELSE

		 		sum_signed <= A_signed - b_signed;

			END IF;

		END PROCESS;

	add_sub_result <= std_logic_vector(sum_signed);

END rtl;

At the top you will find all the libraries you need to include. After that you have the

ENTITY interface block. Every group of hardware (like an adder, mux or register

file) is usually described as an ENTITY. The interface block tells which lines are

connected to this piece of hardware. In our case here we have two input buses A and

B, an output bus add_sub_result. There is also a control line that tell when we

should perform an add or a subtract. The hardware is described in the ARCHTIECTURE part. A PROCESS inside the architecture is sensitive only to the signals on

the sensitivity list. In this example we have one architecture "rtl" and one process

which has the signals A_signed and B_signed on the sensitivity list. This means

that whatever is described in the process will NOT run unless A_signed or B_signed

change. If these values do not change, the process remains passive.

It is worth mentioning here is that if an architecture contains more than one process

these processes will run SIMULTANEOUSLY. Unlike sequential programming lan-

guages, VHDL has this feature and it is usually what makes it confusing.

Back to our example, A_signed and B_signed are just a signed representation of the

bit vectors A and B. The result is the sum of the two vectors when SUB is low. It is

the difference when SUB is high. Where do A, B and SUB come from? They are generated in some other module similar to this one.

The above code gave us a decent adder/subtracter circuit. It compiled and simulated and everyone was happy. All went well until we got to the synthesis stage. If you actually synthesize this circuit in Synopsys, the result you will get is one adder and one separate subtracter! Well, that is not completely true. It will do so only if you are using the libraries in your setup files that actually work on the hardware emulator. It will generate two circuits that are almost identical! You will be increasing your gate count needlessly.

If you are wondering why is this a key issue, here is our answer: when you are downloading onto the hardware emulator, you want your design to be as small as possible so that it can fit onto the FPGAs. Second, if there is a competition going on between your group and all the rest, your gate count is a crucial matter! We don't want our design to be bigger for no reason, eh? Accept extra size only if it provides features that gives your design an advantage over the competition.

Well, how do you make it smaller? This is a very good question. You need to know how

to write efficient code, as mentioned before. The best way to learn it is to try playing with the tools you have until you get the feel of how things really work.

Example 2:

AluSource_Process: PROCESS (Immed, rData2, ImmedVal)

 VARIABLE int_aluOut: std_logic_vector(7 downto 0);

 begin

 if (Immed = `1') then

 int_aluOut:= ImmedVal;

 else

 int_aluOut:= rData2;

 end if;

 aluOut <= int_aluOut;

 end process AluSource_Process;

This a simple example of how to implement a 2 to 1 multiplexer. Essentially aluOut

will get either value of ImmedVal or rData2 depending on the value of Immed. Again,

this appears to be like a good piece of code, but it has one drawback. The int_aluOut will try to take rData2 all of those times when Immed is not a 1! What can Immed be? It can be many values, such as tri-state. Even if it is not tristate, Immed needs some time to change and stabilize. In this transient period, no matter how small, int_aluOut can take any value. You do NOT want to have that! When you start getting your design onto hardware, you really want to know exactly what are the value of the various signals you have. Electrons need some time to move around and change value. This "some time" can cost you a week or even more trying to figure out what the problem is. You think: it simulates fine, but why doesn't it work?! Timing is a very critical issue when it comes to hardware.

The following sample code is a fix to the above problem. Try to understand why.

AluSource_Process: PROCESS (Immed, rData2, ImmedVal)

 VARIABLE int_aluOut: std_logic_vector(7 downto 0);

 begin

 if (Immed = `1') then

 int_aluOut:= ImmedVal;

 elsif (Immed = `0') then

 int_aluOut:= rData2;

 end if;

 aluOut <= int_aluOut;

 end process AluSource_Process;

Example 3: Latches are Dangerous!

Here is what we originally had for our register file write process:

 WriteData_process: PROCESS (Wdata1, Waddr1, Wdata2, Waddr2

 RegWrite1, RegWrite2)

 variable iwadr1: integer range 0 to 63;

 variable iwadr2: integer range 0 to 63;

 begin

 	 if (RegWrite1 = `1') then

 	iwadr1:= conv_Integer(Waddr1(2 downto 0));

 	ram(iwadr1) <= Wdata1;

 end if;

 if (RegWrite2 = `1') then

 		iwadr2:= conv_Integer(Waddr2(2 downto 0));

 		ram(iwadr2) <= Wdata2;

 	 end if;

 end process WriteData_process;

This process is responsive to all the signals on the sensitivity list. Whenever

RegWrite1 or RegWrite2 is high, the data on Wdata1 or Wdata2 or both will get

written to the locations pointed to by Waddr1 and Waddr2. Do you see any problem

here? If you do, then you really understand what is going on.

Suppose that all the input data were valid at the same time. However, this "same time" is not our everyday notion of same time. Any of the above signals can arrive a few nanoseconds ahead or after the rest. In fact, none of them is guaranteed to be valid at the

same time. There is always a margin of time, no matter how small, where the signals are not quite stable. The point is that even as things seem to simulate correctly, they might not be as well behaved as they seem to be. If any of the address lines change while any RegWrite signal is asserted, any address location can get affected. The data in other registers will eventually change without us wanting to do so.

The reason for this quirky behavior is because we were using level sensitive signals instead of an edge sensitive signals. That is, we used latches instead of flip-flops. You do not want to use latches unless you really know what you are doing. Latches are transparent devices. As long as they are enabled, the data they hold is susceptible to change. You will be in a much safer position if you use only flip-flops. This way you will know the exact time your data will be buffered, and you can make sure that the data is stable before that time.

This is how we fixed this timing issue:

 WriteData_process: process

 variable iwadr1: integer range 0 to 63;

 variable iwadr2: integer range 0 to 63;

 begin

 WAIT UNTIL (clk2'EVENT and clk2 = `0');

 iwadr1:= conv_Integer(Waddr1(2 downto 0));

 iwadr2:= conv_Integer(Waddr2(2 downto 0));

 if(RegWrite1 = `1') then

 ram(iwadr1) <= Wdata1;

 end if;

 if(RegWrite2 = `1') then

 	ram(iwadr2) <= Wdata2;

 end if;

 end process WriteData_process;

Now the process waits on a negative clock edge before is executes the writes. This

means that Synopsys will infer flip-flops, and you are safe.

Keep your design small

Having a small design makes it much easier to you when you reach the hardware

stage. If you have a large design, you will have problems routing and compiling your

design. Try to write small modules. The reason is that if you have a big module, like a 32 bit multiplier, it will not fit on one Xilinx FGPA chip. The download software will then try and break it into two or more chunks that individually will each fit on a chip. Doing this will add more I/O lines to your design (linking those chunks together) making it even harder to route.

Another tip in making it small is using tri-state buffers instead of multiplexers. If you have more than one signal driving a common bus at different times, you may be better off using a tri-state buffer than a mux. One good place to use tri-state buffers would be at the output of an ALU. Here is sample code showing how we got our ALU's smaller by using tri-state buffers instead of a mux:

	 CASE log_opcode IS

	 	-- AND

	 	WHEN "000100" => log_result <=Ain AND Bin;

	 	-- OR

	 	WHEN "000101" => log_result <=Ain OR Bin;

	 	-- XOR

	 	WHEN "000110" => log_result <=Ain XOR Bin;

	 	-- NOT

	 	WHEN "000111" => log_result <=NOT Ain;

	 	-- OTHERS ARE DON'T CARES

	 	WHEN OTHERS => log_result <="ZZZZZZZZ";

	 END CASE;

The output of the logical unit is connected to the output bus only when the opcode is

a logical opcode. It is tri-state otherwise. This obviates the mux at the output of the ALU. Furthermore, your design will be faster! The delays through a tri-state buffer are much less than a huge multiplexer.

Beware of extra I/O lines!

Although your design may be small, if you have a large number of lines connecting different modules, you will have a problem routing it. This is because the Xilinx FGPA chips in the Zycad box run out of available pins. They can accommodate the gate count of your design, but the number of pins they have is not enough; therefore, you have to make sure that the number of I/O lines is not very large. When writing VHDL you can easily

generate up to 100 I/O lines without much effort or much of a design. Look at the following example of a 32 bit adder. We will only present the entity interface:

entity adder is

port (A: in std_logic_vector (31 downto 0);

 B: in std_logic_vector (31 downto 0);

 Sum: out std_logic_vector (31 downto 0));

end adder;

Three lines of text produced 96 signals! If you have few of these components under

one architecture you can easily come close to 500 I/O lines or even more! Just make

sure that you don't add more than you really need.

Synthesizing your design

Now that you have made sure your design simulates correctly, you're probably anxious to get it onto the hardware emulator! Well, not so fast. Unfortunately, this is the slowest part of your design process. Synthesis takes a long time so you want to make sure that you have everything working to best of your knowledge. The first time we synthesized our design it took more than 8 hours! That's untypical, of course, but do expect several hours.

It is better for you to run your synthesis in batch mode. The graphical interface takes up memory and takes longer to synthesis your design because you have to tell it to start the next module when it gets done with the current one. The best thing to do is to make a batch file that tells Synopsys to synthesize your design. After it gets done, you may want to save it as a "db" file. Then you can start Design Analyzer and read in your design as a "db" file and not directly from VHDL. The "db" file has all the information about your synthesized design. This means that reading becomes faster. After you have read in your design, you may want to view and print out your schematics because you will be asked to hand them in with your report. Here is a sample batch file that you might want to look at. You should type at the UNIX prompt fpgs_shell -f <filename> to start synthesis:

designer="DEMONS"

company="Georgia Tech"

xnfout_library_version="2.0.0"

analyze -format vhdl addsub.vhd

elaborate addsub

analyze -format vhdl de_ex1.vhd

elaborate DE_EX_buffer1

analyze -format vhdl de_ex2.vhd

elaborate DE_EX_buffer2

analyze -format vhdl decode1.vhd

elaborate Decode1

analyze -format vhdl decode2.vhd

elaborate Decode2

analyze -format vhdl ex_mem.vhd

elaborate EX_MEM_buffer

analyze -format vhdl multiplexer1.vhd

elaborate alu1_multiplexer

analyze -format vhdl logical.vhd

elaborate dp_logical_unit

analyze -format vhdl addsub.vhd

elaborate addsub

analyze -format vhdl alu1.vhd

elaborate alu1

analyze -format vhdl dp1.vhd

elaborate dp1

uniquify

current_design dp1

set_port_is_pad "*"

set_pad_type -slewrate HIGH all_outputs()

insert_pads

remove_constraint -all

set_min_fault_coverage 95 -area_critical

compile -map_effort med

write -format db -hier -output dp1 +".db"

replace_fpga

set_attribute find(design,"*") "xnfout_write_map_symbols" -type boolean 	FALSE

	

set_attribute find(design,"*") "xnfout_use_blknames" -type boolean FALSE

write -format xnf -hier -output dp1 +".sxnf"

exit

The module in italics is the top module. You first analyze and elaborate all the sub-

modules you have and then you analyze and elaborate the top level. This applies to

all submodules which are dependent on other modules. For example alu1 is depen-

dent on addsub, dp_logical_unit and alu1_multiplexer1. All these submodules have

to appear in the synthesis file before alu1.

Look at Warning Messages!

Now that you've written your wonderful design in VHDL, and you've verified that

it simulates, you need to synthesize and then download to the Zycad box. During

synthesis, you will get lots and lots of information about your design. The information

you get can be simple messages, warning messages or error messages. We are used to looking at error messages and nothing else. But warning messages or even simple information messages can reveal major defects in your design. One example is

from one of the other groups in our class. They had something like this (this is not

exactly what they had, but it is good enough to make the point):

 output_selector_process: process (a, b, c, d, e, f,

 g, h, i, j, sel)

 begin

 if (sel = `1') then

 writereg <= a;

 out1 <= b;

 out2 <= c;

 readreg <= g;

 data_out <= j;

 else

 writereg <= d;

 out2 <= e;

 out3 <= f;

 readreg <= d;

 end if;

 end process;

When you are writing code and happen to be tired, you tend to miss little things. However, Synopsys does not sleep! At a first quick glance, nothing seems to be wrong in the code. It has correct syntax and semantics; it compiles fine. However, while they

were synthesizing their design, a latch was discovered in the circuit. Yet a

multiplexer is a purely combinational device! How come there was a latch there?

Take a closer look at the code. In the 'else' part of the loop, data_out is not assigned a

value. Apparently, data_out was an `out' signal. Therefore, Synopsys knows that

you expect a value whatever the condition is. Because there was no second assign-

ment in the second half of the if statement, Synopsys had to put a latch there! It had

to remember something just in case set = `1' arrived! At two o'clock in the morning, you

tend to miss such errors.

Warnings are really your friends. Usually, warnings are not of trivial nature. Most of

the time a warning message comes up, it is due to a serious reason. For example you

might be checking a signal in a process and you do not have that signal in the sensi-

tivity list. Checking values for equalities and other things is really the same as read-

ing the signal. If the signal is going to change, you better have it on the sensitivity

list. Warnings catch these slips. Paying closer attention to warnings can save you

hours of work.

Getting it onto Hardware

This stage is the real challenge and can be the most time consuming if things don't go smoothly. If you are able to get your design to work on hardware, then you've done a good job. Normally, it takes about 2-4 hours for your design to be processed and ready to for downloaded for hardware emulation. The design has to prepartitioned, partitioned, placed on hardware (NOT downloaded - the software allocates Xilinx chips to your design according to a best fit basis). Then your design has to be routed, compiled and, finally, the download files are generated. If you were lucky, your design will work the first time. If not, then you have to find out what went wrong by using the logic analyzer and then go back and fix it. It can be long and repetitive process. This is why you have to work efficiently and responsibly. Spending a long time in lab is not a very nice thing to do, but you may have to do it.

Make a good report and presentation

Leave yourself plenty of time at the end of the course to put together a good written report and presentation. All your work will be wasted if you fail to convey it effectively to the rest of the class and to the professor. We tried to budget the final two weeks of the quarter, but actually ended up with only 5 days due to some final debugging efforts. This may seem like plenty of time, but it is not. There is a surprising amount of information that needs to be organized including simulation printouts, source code, performance results, etc.

Here are a few tips:

	(keep a binder throughout the course and continuously compile information in it 	as you do the work, rather than waiting to the end to put it together

	

	(write about each task as you complete it, so your report will get written as you 		go along through the stages of the project

	

	(comment your source code -- remember, other people will want to learn from 	your design in the future

	

	(plan your presentation and rehearse it -- it is suprising how many groups tried to 	"feel their way" through a presentation and it cost them in terms of their grade

	

	(use visual aids to get your points across -- our group went so far as to use a PC 	with an overhead projector to create a professional presentation

Finally, you're done!

Once you have completed a working design, you deserve the greatest applause and

reward! GO PARTY! You have survived one of the marathon courses at Tech. You're ready for anything now!

�PAGE �

�PAGE �14�

