Adding Terminal I/O hardware on the emulator

1. Include the Uart.vhd code in your computer design. It can be copied from ~hamblen/uart/uart.vhd.

2. Delete the echo process in uart.vhd - your computer’s I/O operations replace it. The echo process is just a test program to demonstrate that the uart codes works. It sends any character read in as input back as output.

3. Add VHDL code to memory map the four Terminal I/O locations. See A-34 through A-36 in the CmpE 2510/3510 text for ideas. Your computer must have hardware features to be able to read the input data byte and the input ready and output ready flags and to write the output data byte. The act of writing the output data must pulse the write signal high in hardware and reading the input data must pulse the read line high in hardware to reset the handshake lines inside the uart. You do not need to use the same memory addresses given in the CmpE 2510/3510 text Any address you chose must not conflict with your program data area. Be careful not to generate data hazards on the read and write lines (i.e. this means don’t gate anything with the clock - use a clock enable on the flip-flop). You can make changes to the uart.vhd read/write interface VHDL code as needed.

4. All terminal I/O is in ASCII format. See ASCII table on page 161 in the CmpE 2510/3510 text.

5. This will add around 890 gates to your design. You may need to route fewer lines to the logic analyzer, if it causes routing problems. The lines sdatain, sdataout, and the baud_clock must be added to your card1.mpp file and must be available to the top level module. A sample card1.mpp file showing the uart pin numbers is in ~hamblen/uart/card1.mpp. Only these three lines are required for terminal operation.

Computer I/O Emulation Demo

Bubble Sort Program

Modify the bubble sort program to add terminal output with the following subroutines (or macros).

putchar - prints out the ASCII character passed to it to the terminal - must wait (i.e. loop) if terminal is not ready and does not return until character is output to the uart. For example, a memory mapped I/O putchar routine would read the ready bit with a load, mask off the other bits with an AND operation, and BEQ if 0 back to the load until the ready bit changes. Then a store would write out the output data byte and strobe the write line high. The putchar routine would then return.

putnumber - converts the number passed to it to ASCII and calls putchar. Add 30H to the number to convert the number(<=9) to a printable ASCII character. Then ouptut a space (i.e. putchar with 20H).

putarray - calls putnumber 8 times and prints out the entire array to be sorted. It then calls putchar two more times to send out return and line feed in ASCII (i.e. ODH and OAH).

add a call (or in-line code) to putarray in the swap procedure.

The goal is to assemble this program and get it to run on the emulator using the terminal with the VHDL generated UART interface. Include an instruction and clock cycle count with your final report. If we get this to work we will try another program with terminal input. Show a working demo to me or Binh when you get it trunning.

