SCORE:________

Name:__

ECE 4100/6100 Advanced Computer Architecture

Exam III – Summer 2004
1. (10 points) What limits the size and complexity of the L1 cache and why is an L2 (and even an L3) in common use today?

The L1 cache is in the critical delay path for clock cycle time on most processors. If it gets too large (larger memory is slower) everything else would slow down. Adding larger L2 or L3 cache levels keeps L1 hits as fast as possible and reduces the miss penalty on an L1 miss.

2. (10 points) List the five approaches suggested in the text to reduce the cache miss penalty.

Write Policy

Read Priority over write on a miss

Early Restart – Critical Word First

Non Blocking Caches

Add an additional level of cache

3. (10 points) Other than increasing cache size, associativity or number of levels how can you reduce the bad effects of cache conflicts (in hardware and software)?

Hardware: Victim Cache

Software: compiler optimizations to reduce conflicts

4. (15 points) A computer has three levels of cache. The L1 cache has a 8% local miss rate and the L2 cache has a local miss rate of 30%. The global (L1,L2,L3 combined) cache system hit rate is 98%. Main memory takes 50 clock cycles at 4Ghz, an L3 hit is 20 clock cycles, an L2 hit is 8 clock cycles, and an L1 hit is 2 clock cycles. Compute the average memory access time.

Need L3 hit/miss rate: ML1*ML2*ML3= Global miss rate, .08*.30*ML3 = 100-98, so ML3=.833

AMAT=HTL1+MRL1*(HTL2+MRL2*(HTL3+MRL3*Mem))

AMAT = 2+ .08*(8 + .3 * (20 + .833*50) = 4.12

4.12/4Ghz = 1.03 ns.

Average memory access time = _____4.12______clocks and _____1.03___________ ns.

	Instruction producing result
	Instruction using result
	Latency in clock cycles

	FP. ALU Op
	FP. ALU Op
	3

	FP. ALU Op
	Store Double
	2

	Int. ALU Op
	Any
	1

	Load Double
	FP. ALU Op;
	2

	Load Double
	Store Double
	0

LOOP:

L.D
F2, 0(R1)

SUB.D
F6, F4, F2

ADD.D
F4, F6, F0

S.D
F4, 0(R1)

DADDIU R1, R1, #8

BNE
R1, R3 LOOP

Before loop unrolling a single execution requires ___15_____clocks (original code - do not reschedule)
5. (25 points) Unroll the loop shown above four times and schedule operations to reduce the number of stalls and control overhead. You can assume that the loop executes a multiple of four times. Use extra registers F8..F30, as needed. Indicate any stalls in your answer. Assume 1 branch delay slot is present.

LOOP:L.D

F2, 0(R1)

L.D

F8, 8(R1)

L.D

F14, 16(R1)

L.D

F20, 24(R1)

SUB.D

F6, F4, F2

SUB.D

F12, F10, F8

SUB.D

F18, F16, F14

SUB.D

F24, F16, F14

ADD.D
F4, F6, F0

ADD.D
F10, F12, F0

DADDIU
R1, R1, #32

ADD.D
F16, F18, F0

ADD.D
F22, F24,F0

S.D

F4, -32(R1)

S.D

F10, -24(R1)

S.D

F16, -16(R1)

BNE

R1, R3, LOOP

S.D

F22, -8(R1)

After unrolling, a (single) execution of the original loop’s operations now requires ___4.5____clocks

6. (15 points) Using the previous problem’s code example (with the same number of loop un-rollings as a basis), use software pipelining to minimize stalls. Startup and cleanup code is not required here. Indicate any stalls in your answer. Note: Do not unroll more than 4 times for the basis of the software pipeline code.

LOOP:
S.D

F4,-24(R1)

ADD.D
F4,F6,F0

DADDIU
R1,R1,#8

SUB.D

F6,F4,F0

BNE

R1,R3,LOOP

L.D

F2,-8(R1)

Note that in this solution the subtract actually uses the old value in F4 before add computes the new value for F4. On a processor automatically stalls to resolve all hazards, another approach must be used. You could add another register and a move instruction to handle it (adds another clock). The other option is that since the F6,F4 hazard makes it difficult to schedule the ADD,SUB on different loop iterations just use 3 loops unrollings and keep ADD, SUB on the same loop iteration.

After software pipelining, a (single) execution of the loop requires ____6___clocks

7. (5 points)Write any startup and cleanup code required for the software pipeline code above with the assumptions stated in the original problem. To simplify, assume it executes the original loop a multiple of four times.

Startup Code

Cleanup Code

L.D

S.D

L.D

SUB.D

L.D

ADD.D

SUB.D

SUB.D

SUB.D

S.D

ADD.D

S.D

8. (10 points) Using the your loop (four times) unrolled code from the earlier problem, schedule it on this VLIW machine. Assume the same latencies as the earlier problem and no branch delay. Just like the books example, it can do 2 memory operations (loads and/or stores), two floating point operations, and an integer ALU or Branch operation every clock cycle.

	Memory Ref. 1
	Memory Ref. 2
	FP Operation 1
	FP Operation 2
	Int. Op/Branch

	L.D F2,0(R1)
	L.D F8,8(R1)
	
	
	

	L.D F14,16(R1)
	L.D F20,24(R1)
	
	
	

	Must stall
	
	
	
	

	
	
	SUB.D F6,F4,F2
	SUB.D F12,F10,F8
	

	
	
	SUB.D F18,F16,F14
	SUB.D F24,F22,F20
	

	Must stall
	
	
	
	

	Must stall
	
	
	
	

	
	
	ADD.D F4,F6,F0
	ADD.D F10,F12,F0
	

	
	
	ADD.D F16,F18,F0
	ADD.D F22,F24,F0
	DADDIU R1,R1,#32

	Must stall
	
	
	
	

	S.D F4,-32(R1)
	S.D F10,-24(R1)
	
	
	

	S.D F16,-16(R1)
	S.D F22,-8(R1)
	
	
	BNE R1,R3,LOOP

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

A single loop iteration now takes __12/4 = 3__ clocks. (based on operations in the original loop code)

