ECE 3055 – Spring 2010

The following RISC assembly language program is executed on a 32-bit MIPS processor. Fill in the register values that will be present, after execution of this program. A summary of MIPS instructions is included at the bottom of the page – for anyone unfamiliar with the MIPS instruction set. Prior to execution of the program, memory location 0x02000 contains 0x30552031. *Note:* 0x indicates hexadecimal and all answers must be in hexadecimal, default is decimal in the MIPS assembly language source file. A MIPS memory word or register contains 32-bits. Use XXXXXXXX for an undefined value.

lw	\$3, 0x02000
sll	\$4, \$3, 10
sub	\$2, \$4, \$3
xor	\$3, \$4, \$2
lui	\$5,0
ori	\$5, \$5, 12373
sub	\$6, \$4, \$3
bne	\$3, \$6, LABEL1
addi	\$6, \$0, -25
sw	\$6, 0x02000

After execution of the MIPS code sequence above,

LABEL1:

$$R2 = 0x$$
 $242bq3CF$ (in hexadecimal)

$$R3 = 0x$$
 $\frac{1}{2}$ $\frac{1$

$$R4 = 0x \frac{5}{4} \frac{4}{8} \frac{0}{0} \frac{4}{0} \frac{0}{0} \frac{0}$$

$$R5 = 0x \underline{00003055}$$
 (in hexadecimal)

Memory Location 0x02000 contains: 0x E3 D55C3 (in hexadecimal)

The MIPS processor contains thirty-two 32-bit registers, \$0 through \$31. \$0 always contains a zero. By default, all arithmetic operations use two's complement arithmetic. Assume no branch delay slot is present.

MIPS In	nstruction		Meaning
ADDI	Rd, Rs, Immed	-	Rd = Rs + Immediate value
ADD	Rd, Rs, Rt	•	Rd = Rs + Rt
ORI	Rd, Rs, Immed	-	Rd = Rs low 16-bits bitwise logical OR Immediate value
LUI	Rd, Immed	-	Rd = 16-bit <i>Immediate</i> value high 16-bits, 0's low 16-bits
BNE	Rs, Rt, address	-	Branch to address, only if Rs not equal to Rt
LW	Rd, address	-	LOAD - Rd gets contents of memory at address
SLL	Rd, Rs, count	-	Shift left logical (use 0 fill) by count bits
SUB	Rd, Rs, Rt	-	Rd = Rs - Rt
SW	Rd, address	-	STORE - memory at address gets contents of Rd
XOR	Rd, Rs, Rt	-	Rd = Rs bitwise logical XOR Rt