Score:	Name:		

ECE 3055 A Quiz 1 - Fall 2003

The following RISC assembly language program is executed on a MIPS processor. Fill in the register values that will be present, after execution of this program. A summary of MIPS instructions is included at the bottom of the page – for anyone unfamiliar with the MIPS instruction set. Prior to execution of the program, memory location 0x0500 contains 0x20313055. Note: 0x indicates hexadecimal and all answers must be in hexadecimal. A MIPS memory word or register contains 32-bits.

	LW	\$3, 0x0500
	SRL	\$4, \$3, 4
	ADD	\$2, \$3, \$4
	AND	\$3, \$4, \$3
	LUI	\$5, 0x3055 \$5, \$5, 37 decime!
	ORI	\$5, \$5, 37
	SUB	\$6, \$4, \$3
	BNE	\$3, \$6, LABEL1
	ADDI	\$6, \$0, -2
LABEL1:	· SW	\$6, 0x0500

After execution of the MIPS code sequence above,

$$R2 = 0x 2234435A$$
 (in hexadecimal)

$$R4 = 0x O 203 (in hexadecimal)$$

$$R5 = 0x30550025$$
 (in hexadecimal)

Memory Location 0x0500 contains: 0x 0 20 20 300 (in hexadecimal)

The MIPS processor contains thirty-two 32-bit registers, \$0 through \$31. \$0 always contains a zero. By default, all arithmetic operations use two's complement arithmetic.

MIPS Instruction			Meaning
ADD	Rd, Rs, Rt	<u>-</u>	Rd = Rs + Rt (R - register (\$))
AND	Rd, Rs, Rt	-	Rd = Rs bitwise logical AND Rt $(R - register ($))$
ORI	Rd, Rs, Immed	- 1	Rd = Rs bitwise logical OR <i>Immediate</i> value
LUI	Rd, Immed	/	Rd = Immediate value high 16-bits, 0's low 16-bits
BEQ	Rs, Rt, address	-	Branch to address, only if Rs equal to Rt
LW	Rd, address	-	LOAD - Rd gets contents of memory at address
SRL	Rd, Rs, count		Shift right logical (use 0 fill) by count bits
SUB	Rd, Rs, Rt	-	Rd = Rs - Rt
SW	Rd, address	-	STORE - memory at address gets contents of Rd
XOR	Rd, Rs, Rt		Rd = Rs bitwise logical XOR Rt