ECE 3055 Quiz - December 1, 2010

There are a total of 3A, 12 B, 14 C, and 12 D resources in a system. Compute need and available when the following states are in effect (assume this initial state is safe):

Process	Allocation	Max	Need	<u>Available</u>
	ABCD	ABCD	ABCD	ABCD
P1	0 2 2 0	0320	0100	1137)
P2	0631	2652	2021	,
P3	1 3 5 4	3 4 5 6	2102	1at
P4	0010	0310	0300	14,
P5	1000	1351	0351	

Next, process P2 issues a request for (1,0,2,1). Can the request be granted? Y or N Justify your answer by showing your work below and show a safe execution sequence, if one exists. Prove it, if one does not exist. Scan through processes in strict sequential order (i.e. low to high and then back to low) when searching for a safe sequence. No credit for answer without showing a safe sequence, or showing that no safe sequence exists along with which processes can finish and which processes face possible deadlock waiting for resources allocated to other deadlocked processes.

1pt

Process	Allocation	Max	Need	Available
	ABCD	ABCD	ABCD	ABCD
P1	0 2 2 0	0320	0100	2110
P2	1652	2652	1000	
P3	i 3 5 4	3 4 5 6	5105	
P4	0010	0310	0300	CL_{α}
P5	1000	1351	0351	Lapis'
	•		-	

Where and how would this algorithm potentially be used in a new OS design?

2 pts.
Used during resource allocation
to prevent deadlocks