Score:	Name:		

The following RISC assembly language program is executed on a MIPS processor. Fill in the register values that will be present, after execution of this program. A summary of MIPS instructions is included at the bottom of the page – for anyone unfamiliar with the MIPS instruction set. Prior to execution of the program, memory location 0x0200 contains 0x30552030. Note: 0x indicates hexadecimal and all answers must be in hexadecimal. A MIPS memory word or register contains 32-bits.

LW	\$5, 0x0200
ADD	\$3, \$5, \$5
OR	\$4, \$5, \$3
SRL	\$2, \$4, 8
XOR	\$6, \$5, \$2
SUB	\$6, \$5, \$3
BNE	\$5, \$2, LABEL1
SUB	\$6, \$0, \$2
SW	\$6, 0x0200

LABEL1: SW \$6, 0x0200

After execution of the MIPS code sequence above,

$$R2 = 0x$$
 0070 FF60 (in hexadecimal)

$$R3 = 0x 60 AA 4060$$
 (in hexadecimal)

$$R4 = 0x \sqrt{OFF} = 6000$$
 (in hexadecimal)

$$R5 = 0x$$
 30552030 (in hexadecimal)

2 pts./blank -1 off I hex digit

Memory Location 0x0200 contains: 0x CFA ADFDO (in hexadecimal)

The MIPS processor contains thirty-two 32-bit registers, \$0 through \$31. \$0 always contains a zero. By default, all arithmetic operations use two's complement arithmetic.

MIPS Instruction			Meaning	
ADD	Rd, Rs, Rt	-	Rd = Rs + Rt (R - register(\$))	
OR	Rd, Rs, Rt	-	Rd = Rs bitwise logical OR Rt	
BNE	Rs, Rt, address	-	Branch to address, only if Rs not equal to Rt	
LW	Rd, address	-	LOAD - Rd gets contents of memory at address	
SRL	Rd, Rs, count		Shift right logical (use 0 fill) by count bits	
SUB	Rd, Rs, Rt	-	Rd = Rs - Rt	
SW	Rd, address		STORE - memory at address gets contents of Rd	
XOR	Rd, Rs, Rt		Rd = Rs bitwise logical XOR Rt	