Score:______ Section:____________ Date:__________
Name:______________________________

ECE 3055 Laboratory Assignment 5
Due Date: Wednesday, December 3
In this lab, you will use C/C++ and the Windows OS to compare the performance of a program with and without threads. The program will count the number of primes found that are less than 250,000. Two versions will be timed and compared. One will use a standard application without any thread creation. The second version will use four created threads each searching different numbers for primes in parallel to count the number of primes. The global data variable count will be shared among the threads and a mutex lock, critical section, or semaphore will need to be used for synchronization. Each time a thread finds a prime in it’s assigned search area, it increments count. The main application will also need to wait for all of the threads to complete using an OS synchronization primitive and then print the final count value before exiting. I used a Boolean flag in my prime search algorithm whenever I found a divisor with no remainder and used the “break” statement in C to exit the inner “for” loop early. You can use an improved algorithm to find primes (not start at 1, 2 or 3, skip even numbers, only try to divide up to n/2, etc), but be sure to use the same algorithm on the threaded version so that the timing and speedup comparison makes more sense.
On processors with multiple cores such as the newest PCs in the ECE Klaus PC labs that have two cores you should be able to demonstrate close to a linear speedup, since this CPU bound problem has the ideal properties needed. So you should see close to a 2X speedup on a dual core processor. It can be split up evenly among processors, does very minimal I/O, and only has minimal shared data.

A very similar example program that searches for perfect numbers is attached along with additional information on the various synchronization APIs available in the Windows OS. The example program shows how to create threads, time execution, and use semaphores.
Here is a C example with and without threads that searches for Perfect numbers. According to the ancient Greeks, a perfect number is an integer equal to the sum of it’s integer divisors with no remainders. 6 for example is evenly divisible by 3,2, and 1, and 1+2+3=6.

[image: image1.png]J6_is a perfect nunber
8 is a perfect number

496 is a perfect number
8128 is a perfect number

33872 milliseconds elapsed time

[Thread 3: 8128 is a perfect number

8362 nilliseconds elapsed time
[Press any key to continue . -

Timed results above are from one thread version and then four threads searching for perfect numbers. Note that a near linear speedup of 4X is obtained using four threads on a four core processor.
[image: image2.png]

Here is a display of how busy the cores are in Vista on a Quad core processor. Without threads, only one core is totally busy cranking through numbers. Some other OS tasks appear to be running some of the time on the other cores.
[image: image3.png]Corel 100%m——=
[P —
[P —
[P r—

5386 /131408 / 3326V

When running four threads, all cores are busy on a Quad Core Processor.

The code for this example follows. It shows how to create threads and synchronize them using the Windows OS APIs and semaphore synchronization primitives. The GetTickCount API reads a millisecond timer and this value used to compute the code execution time.
// Perfect.cpp : Defines the entry point for the console application.

#include "stdafx.h"

#include "Windows.h"

#include "LIMITS.h"

static HANDLE Thread_semaphore;

int _tmain(int argc, _TCHAR* argv[])

{

HANDLE hThread1;

DWORD dwThread1ID = 0;

HANDLE hThread2;

DWORD dwThread2ID = 0;

HANDLE hThread3;

DWORD dwThread3ID = 0;

HANDLE hThread4;

DWORD dwThread4ID = 0;

INT nParameter = 1;

DWORD WINAPI PerfectThread (LPVOID lpArg);

DWORD time_count;

unsigned long i, j, sum;

printf("\n");

time_count = GetTickCount();

for (j=2; j<=100000; j++)

{

sum = 0;

for (i=1; i<j; i++)

{

if ((j % i) == 0) sum = sum + i;

}

if (sum == j) printf("%d is a perfect number\n", j);

}

time_count = GetTickCount() - time_count;

printf("\n\n %d milliseconds elapsed time\n\n\r", time_count);

Sleep(4000);

// do it with threads

Thread_semaphore = CreateSemaphore(NULL, 0, 4, TEXT("Thread_Done"));

time_count = GetTickCount();

hThread1 = CreateThread(NULL, 0, PerfectThread, (LPVOID)nParameter, 0, &dwThread1ID);

nParameter++;

hThread2 = CreateThread(NULL, 0, PerfectThread, (LPVOID)nParameter, 0, &dwThread1ID);

nParameter++;

hThread3 = CreateThread(NULL, 0, PerfectThread, (LPVOID)nParameter, 0, &dwThread1ID);

nParameter++;

hThread4 = CreateThread(NULL, 0, PerfectThread, (LPVOID)nParameter, 0, &dwThread1ID);

WaitForSingleObject(Thread_semaphore, INFINITE);

WaitForSingleObject(Thread_semaphore, INFINITE);

WaitForSingleObject(Thread_semaphore, INFINITE);

WaitForSingleObject(Thread_semaphore, INFINITE);

time_count = GetTickCount() - time_count;

printf("\n\n %d milliseconds elapsed time\n\r", time_count);

Sleep(4000);

CloseHandle(hThread1);

CloseHandle(hThread2);

CloseHandle(hThread3);

CloseHandle(hThread4);

return 0;

}

DWORD WINAPI PerfectThread (LPVOID lpArg) {

INT threadnumber = (INT) lpArg;

unsigned long i, j, sum;

for (j=1 + threadnumber; j<=100000; j=j+4)

{

sum = 0;

for (i=1; i<j; i++)

{

if ((j % i) == 0) sum = sum + i;

}

if (sum == j) printf("Thread %d: %d is a perfect number\n\r", threadnumber, j);

}

ReleaseSemaphore(Thread_semaphore, 1, NULL);

return 0;

}
The Windows OS offers several synchronization primitives, sometimes called waitable objects. These are mutexes, semaphores, events, and critical sections. With the exception of the user mode critical section, the others are all kernel objects and each can be used to synchronize threads. However, for the purpose of the last lab, we are going to focus on critical sections, mutexes, and events. The previous code example contained a semaphore.

Critical sections
Critical sections are user mode synchronization objects provided by the system. Because they operate in user mode, they are fast. Unfortunately, user-mode objects can't cross process boundaries, so critical sections won't work for synchronization tasks that run across processes. Although critical sections can't be used across process boundaries, they are very useful for in-process synchronization needs and are able to handle most simple synchronization tasks. Critical sections are handy to protect data shared among threads.
Mutexes

Mutexes are kernel mode synchronization objects. As such, they are slower than critical sections because it takes time to travel from user mode to kernel mode, but have the advantage to operate across process boundaries. They offer an additional advantage over Critical sections in that they can be 'named objects' whereby the mutex can be accessed by its handle or by its name. This 'named' ability is extremely handy when using the same mutex from different processes (and not threads only). An alternate to using a named mutex is to create the mutex in one process and then use the DuplicateHandle function to allow its use in another process. This approach can incur additional overhead because it requires the handle value and process id from the first process to be passed to the second process.
Events

Events are not really used to protect shared data per se, but are used to signal when an action has occurred. For example, if T1 changes some data, it is useful for T1 to signal T2 when the data has changed. Because of events' signaling ability, they are very useful. A common mistake with developers new to multithreaded programming is to use a 'time based' operation rather than event to wait. Use CreateEvent to initialize and SetEvent to signal an event. These events are frequently used with the WaitFor family of functions: WaitForSingleObject, WaitForMultipleObjects, and MsgWaitForMultipleObjects. Events are very important when performing multithreaded programming.

	Table 1: MS Windows OS Critical Section, Mutex, and Semaphore Functions

	Operation
	Synchronization Object APIs

	
	Critical Section
	Mutex
	Semaphore
	Event

	Initialize
	InitializeCriticalSection
	CreateMutex
	CreateSemaphore
	CreateEvent

	Lock or Wait
	EnterCriticalSection
	WaitForSingleObject or WaitForMultipleObjects

	Unlock or Signal
	LeaveCriticalSection
	ReleaseMutex
	ReleaseSemaphore
	SetEvent

	Close
	DeleteCriticalSection
	 CloseHandle

For more information on these APIs, their arguments, and example code, search using the function name in the VS on-line help or search for “synchronization functions”.

