 Score:______ Section:____________ Date:__________
Name:______________________________

ECE 3055 Laboratory Assignment 3

Due Date: Wednesday, February 20

Part I: Forwarding

Once the MIPS is pipelined as in Lab 2, data hazards can occur between the five instructions present in the pipeline. As an example consider the following program:

Sub
$2,$1,$3

Add
$4,$2,$5

The subtract instruction stores a result in register 2 and the following add instruction uses register 2 as a source operand. The new value of register 2 is written into the register file by SUB $2,$1,$3 in the write-back stage after the old value of register 2 was read out by ADD $4,$2,$5 in the decode stage. This problem is fixed by adding two forwarding muxes to each ALU input in the execute stage. In addition to the existing values feeding in the two ALU inputs, the forwarding multiplexers can also select the last ALU result or the last value in the data memory stage. These muxes are controlled by comparing the rd, rt, and rs register address fields of instructions in the decode, execute, or data memory stages. Instruction rd fields will need to be added to the pipelines in the execute, data memory, and write-back stages for the forwarding compare operations. Since register 0 is always zero, do not forward register 0 values.

The forwarding muxes in the EX stage handle dependences on instructions in the EX and MEM stages. Dependence from an instruction in the WB stage to one in the ID stage must also be considered. You can handle this dependence in one of 2 ways. The first method is to ensure that the assumption used in Patterson and Hennessy holds, i.e. that the register file write in one cycle occurs before the register file read in the same cycle. This can be accomplished by writing to the register file on the falling edge (instead of the rising edge as done currently) of each clock cycle. A register file read from the same register will then have its value clocked into the ID/EX pipeline register at the next rising edge, ensuring that the just-written value is passed to the EX stage. The second method to handle this type of dependence is to add two forwarding multiplexers to the Idecode module so that the register file is bypassed in this situation. If the register file write address equals one of the two read addresses, the register file write data value should be forwarded to the ID/EX pipeline register instead of the normal register file data value.

Add forwarding to your pipelined datapath from Lab 2 and test it with the following program:

And
$4,$1,$3

Sub
$2,$1,$4

Or
$3,$4,$4

And
$5,$4,$3

Add
$1,$6,$7

Sections 6.4 and 6.5 of Computer Organization and Design The Hardware/Software Interface contain additional background information on forwarding.

Part II: Stalling & Flushing

Forwarding does not resolve all hazards. Still to be resolved are the load word hazard (see Patterson and Hennessy, Sec. 6.5) and the branch hazard. In this part of the lab, you will implement a stall unit that will stall or flush the pipeline to handle these two types of hazards. For the load word hazard, your solution should match the one described in the text. On a branch, assume not taken. You may put the branch evaluation in any pipeline stage but you must stall the pipeline, accordingly. I.e., if you leave the branch as shown in Fig. 6.30 in the text, you must stall the pipe for 3 cycles but if you modify the branch evaluation as shown in Fig. 6.51, you need to stall for only 1 cycle. Note also that for the branch stall, you should force ‘0’s into the control signals only after the branch has moved to the EX stage. This differs from the load word hazard in which the instruction dependent on the load remains in the ID stage and ‘0’s are forced into the control signals immediately upon detecting the dependence. Also, be aware that if you implement the Fig. 6.51 solution for branch condition evaluation, your forwarding muxes should be placed in the ID stage rather than the EX stage so that the comparison unit can use forwarded values for branch instructions that are dependent on preceding instructions.

Add this stalling hardware to your pipelined datapath and test it with the following program:

Lw
$3,0($2)
;loads $3 with a 0

Beq
$0,$3,label1

Add
$1,$6,$1

Add
$5,$5,$2

label1:
Beq
$1,$5,label2

Sub
$1,$1,$1

label2:
Beq
$5,$1,label2

label3:
Beq
$0,$0,label3

Grading Criteria Correct simulation for Part I – 4 pts. Correct simulation for Part II – 4 pts. Demonstration of simulations – 2 pts. For Part II, if you correctly handle only one of the hazard types in hardware, you will receive 2 points. In that case, you still must handle the other hazard by NOP insertion, i.e. you must demonstrate a fully working program to receive any credit for that part. If you move the branch decision to decode, 1 pt. of extra credit is possible.

