Score: Name: 8AM 9AM

ECE 3055 Test 1
Wednesday, February 13
Open Book & Notes - Copy All Short Answers (1-4) to first page!

Lrael. |G ns paz |G ne

"
P—ks 'Part 3. 5 ns. Part4. 3 ns.

2. Complexity of Control Unit _ Total Hardware Used CPI Clock Period

l Single Cycle ')_“_ Single Cycle L Single Cycle _3__ Single Cycle
%P*S') Multi Cycle | Multi Cycle) Multi Cycle Mt Cyele _ R

L Ppipelined D Pipelined 9 Pipelined L pipctined 4

3. Instruction = %C'Ol Doo \ Read Data | = OOGOOGOO

Read Data 2 = G OOO OOOQ. ALUResu]t=OOOOOOO‘B

£
(Data Memory) Read Data = C e ~ g Write Register (Address) = Lf
Write Data (input at register file after mux) = O G @) OO O 6 3
ot 0
ALU control input = 2 RegWrite = I ALUSrc = O
4. Part I Total number of NOPs required [6 Part II: A total of l ‘ clock

cycles is required for execution. 10 > LS | o P+5'

|
i
i
|
|
|
|
\
1 30gpts.
|
\
|
|
|
|
i
|
\
|
|
|

1. (/7 points) Compare the execution time of the program segment below on the three
MIPS hardware models studied in class. Assume the branch is taken.

Iw $3,200(50) 5
sw $2,100(30) 4
or $4,53,87 4
beq $8,$7,Labell 3

Part 1: The single clock cycle I&IPS with a clock frequency of 250 Mhz. would take
k (; ns. to execute the program. L‘LXL" ns = I é Vs

Part 2: The multi clock cycle model of the MIPS with a clock frequency of 1Ghz. would

Gy \ny =16,
5.
take \(D ns. to execute the program. K)

Part 3: The pipelined MIPS model with data forwarding and hazard detection and a cllock
5 % lns?)

frequency of 1Ghz, would require 5 ns. to execute the program. Acléume a reglster

will write and read correctly during the same clock cycle and the branch decision is made

in decode. Include any stalls or flushes, but do not include the time required to initially

fill the pipeline.

Part 4: If the pipelined MIPS model started this program 1mmed1atel after p wering up,
G (G tall)

it would take i ns. before the program ﬁmshed executlon Th1s includes the time

required to fill and flush the pipeline.

2. (8 Points) Rank the three MIPS models 1,2,3 in the following categories.] is least or
smallest and 3 is most or largest. For control unit complexity only consider what is
included in the one hardware block labeled “control unit” in the text. (don’t include
data pipeline registers and forwarding hardware)

Complexity of Control Unit Total Hardware Used CPI Clock Period

_ | Single Cycle) Single Cycle | Single Cycle i Single Cycle

i Multi Cycle | Multi Cycle ; Multi Cycle _L Multi Cycle Z
o

;— Pipelined 3p Pipelined "L Pipelined pX Pipelined {
p

3. (30 points) The following sequence of MIPS instructions is clocked into the pipeline shown on page
472-476. Examine this figure carefully to see exactly where each signal is located (i.e. before or after
pipeline registers). After Clock cycle 5, Indicate the resulting register values in the spaces provided below.
All numbers are in hex. Assume all data memory locations contain the word address of the location. Assume
that each register contains a value equal to the register number prior to execution of this code.

w& add $4,$3,50
'% andi $6,%7,8
add $2,85,%6
D I s21 —Sep=35

= sub $3,$1,%4 : lGO%‘ll 01 00 o\Ol O, 000
c

<) 2. 000
Instruction = gc Ol OOO ,

ReaadDatal1=_ O C0 OO0 Q0

Read Data 2 = Q 00 0(‘) O O‘L

ALUResuIt=O oo O) OOB

(Data Memory) Read Data=C ©000C 0@ 0

Write Register (Address) = L{'

Write Data (input at register file after mux) = Coclc GCQe J
P35 Ldd=CGlO

ALU control input = 2_.

RegWrite = l

ALUSrc = @)

4. (25 points) The program below is executed on the 5 stage pipelined MIPS described in chapter 6.
Answer the following questions about this program.

loop: sw $2,100($0)
sub $2,$5,%3
Iw $7,200(%2)
and $8,33.54
andi $6,37.8
beq $6,38,then
add $5,$5,98

then: or $8,53,58
SW $5,100($6)
beq $8,50,lo0p

Part I (/0 points) Assume the control unit does not have any hazard detection, forwarding, a new branch
compare circuit, or automatic branch flushing. That register file will not write and then read a new register
value in one clock cycle. Rewrite the code sequence by adding the minimum number of NOP instructions to
climinate all potential data and branch hazards — do not change the order of the instructions. Assume other
non-NOP instructions follow the last branch in the original code sequence above.

Total number of NOPs required l QD
S W :

S u b bt’_C(J
noe No P
no P nop
N op Ne P
lw add
Q nol On
nop S W
No o nop

QV\CE"\I V’\OP
ne e lOQCL
Ne P no p
mc;:l;} f\GP

No P

Part II (/5 points) Assume the control unit is improved by adding the hazard and forwarding unit as
outlined in the text, adding a branch compare unit to the decode stage, and the register file writes then reads
a new value in a single clock cycle. Determine the number of clock cycles required to complete the first
loop execution (i.e. executes code in loop and branches back to top of loop and is just ready to fetch sw

again) of the original code sequence. Assume the inner branch is taken. \% S k " P s O\-Ol o{

If there were no hazards or branch flushing, the original program would require clock

cycles for execution. ‘OﬁCL'L bi«% s4a “ ho | w g‘{'q‘ \ I

But the program stalls and/or flushes the pipeline PN clock cycles so a total of l l
clock cycles is required for execution (do not include time to fill pipeline).

—

5.. (20 points) Write a complete VHDL synthesis model for the digital hardware shown in the block
diagram. Use a positive edge clock with a synchronous reset. Put all VHDL code inside a single Process

block. The signal, Bin may or may not be required in your code. Contrd 32
Daﬁniﬂ Biﬂ Ccun¥
AlUop Operation '
LLI‘Q{‘\/ A 00 add 3 3Ly
6“*'*7 2 01 subtract
L\ 02 OR
aypc 03 Shift left 1-bjt
bn Muy 2 (Lero Fill) ALV ALUoP
ouk L . p— Ouvt -
Proces s 3 D 32
ALY Cos & ; e ;
Op¢s P
pLv =F Resat — Register [—Clk
. * ~ 3
R&,S:S <
Res<t 3 3%
EX‘\'I"C\ Pzg lsl-e/rs‘ -—2 ﬂQC.-\’\ 0U+ '|n1.
NO‘\' N Froeess — 5
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD LOGIC_SIGNED.ALL;
ENTITY testlc IS
PORT (Datain, Count : IN STDHLOGIC_VECTOR(31 DOWNTO 0);
ALU Op : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
Control, clk, reset : IN STD_LOGIC;
ouT : OUT STD_LOGIC_VECTOR(31 DOWNTO 0 V)
END testlc;
ARCHITECTURE behavior OF testlc IS
SIGNAL Bin, OUT int : STD_LOGIC_VECTOR(31 DOWNTO 0);
BEGIN

Bin <= OUT_int WHEN Control='0' ELSE Count;
OUT <= OUT_int;
PROCESS
BEGIN
WAIT UNTIL clk'EVENT AND clk='1l"';
IF reset='1' THEN Outp_int <= "00000000000000000000000000000000";

ELSE
CASE ALU op IS
WHEN "00" => Out_int <= Datain + Bin;
WHEN "01" => Out_int <= Datain - Bin;
WHEN "10" => Out_int <= Datain OR Bin;
WHEN "11" => Out_int <= Datain(30 Downto 0) & "QO";
WHEN OTHERS => Out_int <= "00000000000000000000000000000000";
END CASE;
END IF;

END PROCESS;
END behavior;

