Score:_______ Date:_____ Name:__________________________ Section: ________

Lab Partner: _______________________________________

TA Signoff:_______________________________________

ECE 3055 Laboratory Assignment 1

Due Date: Thursday, September 7
Write a MIPS assembly language program that computes the parity of a number you type in. Your program should prompt the user to “enter an integer n for a parity check”, and then calculate and print the result stating the “The number n has even parity” or “The number n has odd parity”. You can assume that n is a positive integer such that it is small enough to be represented by a 32-bit 2’s complement number. The program code that calculates the parity must be in a subroutine (i.e., JAL to Call from main program, JR $31 to Return). Pass and return values to the subroutine in registers. $a0 is the number to compute the parity of, and $a1 returns a flag to the main program. The flag value is 0 for even parity and 1 for odd parity. Keep all I/O operations in the main program and you must save the value of n in data memory prior to calling the subroutine and when returning from the subroutine you must read the value of n back from data memory. (Note: This will force your short program to have a LW and SW instruction example using memory even though there are enough registers to avoid it.)
To compute the parity (number of 1’s in the 32-bit binary number) of the number in $a0 use a loop (32 times for 32-bits) in the parity subroutine that checks one bit at a time using single right bit shifts, and a mask operation with an logical AND to throw away all of the other bits, and then a test for 1 or 0 in the bit. If it’s 1, increment a register that counts number of 1’s encountered. After the loop exits, if the low bit of this count register is 0 (i.e. a mod 2 operation), you have an even number of 1’s or even parity and can set $a1 to 0, otherwise it is a 1 for odd. If you need any extra registers other than $a0 or $a1 in the parity subroutine, you must save these registers on the stack at the start of the subroutine and restore them at the end of the subroutine using stack operations. (Note: this is a somewhat artificial requirement to use this algorithm, but it forces you to include and understand some basic assembly language operations even in a short program that would not run out of registers, need a loop, a subroutine, or stack ops. There are even some parity algorithms using shifts and xors that don’t even need a loop, but do not use these algorithms. The point of this lab is to write and understand the basic MIPS assembly language instructions, stacks, loops, subroutines, and control structures.)
Use the MARS MIPS simulator running on the lab PCs or your home PC to implement the program. The program must be demonstrated and fully explained in the Klaus PC labs to one of the 3055 TAs for credit. See the Lab hour web page for TA lab check off times. For students with home PCs, the free MARS simulator (Java-based) can be downloaded from a link on the lab’s Web page (http://www.ece.gatech.edu/~hamblen/3055). Some lab PCs may still have only the older SPIM simulator as described in the textbook installed, but the MARS simulator has a nicer user interface.
Recall that Appendix B of the Patterson and Hennessy text contains information on SPIM and SPIM’s I/O function calls. Chapter 2 contains MIPS assembly language program examples. See the example program from class for some I/O and loop examples on the web at http://users.ece.gatech.edu/~hamblen/3055/course/hwk10.s - you may find it useful to use it as an initial template or starting point. It has the additional assembler directives that are needed for a complete SPIM program. MARS follows the SPIM assembly and I/O function call syntax.
#

ECE 3055 Lab 1 (put your name here)

Version for MARS software

reserve space for data and variables after .data directive

.data

string contants – terminated will a null character (i.e. all Os)
title:
.asciiz
"Program computes the sum of first N integers"

prompt:
.asciiz
"Input an integer? "

o_title:
.asciiz
"The answer is "

ASCII string with carriage return and line feed (a newline)

newline:
.byte
10,13,00,00

force address to next word boundary after putting bytes in memory

.align 2

integer variables

n:
.word
0

sum:
.word
0

#

#instructions appear after .text directive

.text

main:

Print out program description

#
puts
title

li
$v0,4

la
$a0,title

syscall

Print out carriage return and line feed

#
putc
'\n'

li
$v0,4

la
$a0,newline

syscall

Print out carriage return and line feed

#
putc
'\n'

li
$v0,4

la
$a0,newline

syscall

Prompt user for input

#
puts
prompt

li
$v0,4

la
$a0,prompt

syscall

Read in an integer, N

#
geti
$a0

li
$v0,5

syscall

add
$a0,$v0,$zero

#

Program to compute Sum

#

count = 0;

xor
$a1,$a1,$a1

sum = 0;

xor
$a2,$a2,$a2

loop: sum = sum + count

loop:
add
$a2,$a2,$a1

count = count + 1

addi
$a1,$a1,1

if count <= N then goto loop

ble
$a1,$a0,loop

save result (some registers will be destroyed by puts call)

sw
$a2,sum

Print out carriage return and line feed

#
putc
'\n'

li
$v0,4

la
$a0,newline

syscall

Print out output title string

#
puts
o_title

li
$v0,4

la
$a0,o_title

syscall

Load result

lw
$a0,sum

Print out result

#
puti $a0

li
$v0,1

syscall

Print out carriage return and line feed

#
putc
'\n'

li
$v0,4

la
$a0,newline

syscall

End program and return to simulator

#
done

li
$v0,10

syscall

