 Score:______ Section:____________ Date:__________
Name:______________________________
ECE 3055 Laboratory Assignment 4
Due Date: Wednesday, November 9
In this lab, you will use C/C++ to write a program that will compute instruction frequencies and evaluate the cache hit rates for several cache architectures. Given a particular cache memory organization, the program will read a file containing a memory trace (a sequence of memory addresses) and determine which of the memory references will cause cache hits. The program should keep track of the total number of hits and misses generated by each cache over the entire trace. The hit rate should be plotted for different cache memory sizes and architectures (as detailed below). You only need to keep track of hits and misses and do not need to save all of the data values. The trace file is available from the Lab Web page:

http://www.ece.gatech.edu/~hamblen/3055/gcc_trace2.zip
There are 1,000,000 memory references in the trace file stored one per line. These were collected from the gcc C compiler while it was running on a MIPS processor. Each line has three fields. The address is the second field on the line. The first field gives the type of the memory reference (2 for instruction fetch, 1 for a store’s data memory write, and 0 for a load’s data memory read). The third field gives the instruction value for a fetch and is always 0 for loads and stores. Keep track of miss rate for instructions and data. To help you get started on the lab, a simple program that reads the trace file, extracts the address, and performs some simple bit-wise operations similar to what is needed to extract bit fields from the address to determine the cache address is available at the URL below in C and setup as a complete Visual Studio 2005 Project Win32 API Console Application (no complex GUI – text only window for output).
http://www.ece.gatech.edu/~hamblen/3055/read_trace.zip
Use File-> Open ->Project/Solution to open a VS project. Use Build ->Build Solution to compile, and then Debug -> Start Debugging to run. Use File->Open->File to view and edit source code
(30%) Part 1: Compute the relative percentages of register format (i.e. three register operands), conditional branch instructions (i.e., include all Bxx’s), load instructions, and store instructions encountered in the instruction trace. The percentages should be based on instruction fetch counts only and not total memory cycles. Count all loads and stores in the percentages regardless of the data operand size (i.e., byte, half word, or word). On conditional branch instructions, also compute the overall percentage of branches taken vs. not taken, and then also taken vs. not taken but for forward and reverse conditional branches only. Check the PC relative offset field to determine forward (+) or reverse (-) and assume a -1 offset and smaller is a reverse branch (i.e., -1 is a Bxx to the instruction itself, if you encounter one), and O and greater is forward. This MIPS processor has a branch delay slot (see page 381). It always executes the instruction after the branch before jumping (to reduce branch stalls). If it cannot place a useful instruction after the branch, a NOP is used.
(50%) Part 2: On a single page, plot the cache miss rates versus cache memory size for a processor with two direct-mapped caches. The I cache is used for Instruction fetches only and the D cache is used only for data (load and store memory data operands). The separate Instruction and Data cache architecture is used in most modern processors. The size of each cache is the same. The simulation should output data points for cache memory sizes starting at 16 to 16K in powers of two. 1K means 1K cached data locations in each cache. Do not count writes in the hit rate calculation. Assume byte addressing and the block size is one 32-bit word. Generate a plot of miss rate vs. cache size, with one curve for instructions and one curve for data. You do not have to write code to plot the data, only to calculate it. The plotting can be done with any available plotting program such as MS Excel. Include an electronic copy of the plot when you turn in the assignment.
 (20%) Part 3- Repeat part 2 for a set associative cache with a set size of 1, 2, 4 and 8 sets in the cache with the same total number of cache data locations as in part 2. Generate two plots (one for instructions and one for data) where the total data locations held in the cache are constant while the number of sets varies – like Figure 5.30 in the text. Use true LRU replacement, so design a data structure that allows you to determine LRU. (Extra Credit 5%) Compute data points in parts 2 and 3 for all additional power of two cache sizes from 8 up to 2M. Dynamic memory allocation may be required for the large data arrays needed.
NOTE: You can run this program on any of the ECE lab PCs or your own computer. For your home computer, Visual Studio is available free for ECE students at:

http://msdn02.e-academy.com/elms/Storefront/Storefront.aspx?campus=git_ece
Example C/C++ code to read a trace data file
// read_trace.cpp : Defines the entry point for the console application.

//

#include "stdafx.h"

#include "Windows.h"

int _tmain(int argc, _TCHAR* argv[])

{

FILE *fp;

 int i, type;

 unsigned int address, instr;

 unsigned int masked_addr;

 // open trace file for reading – will need to change the path for your setup
fp = fopen("c:\\Users\\Hamblen\\Documents\\3055OS\\gcc_trace2.txt", "r");

 if (fp == NULL) printf("data file open error");

 // read first 100 lines of trace file;

 // address holds mem address in unsigned int format;

 // Note - your program must read all 1,000,000 lines but

 // you might want to test it on the first 100 lines

 // or so before running it on the entire trace file!

for (i=0; i<100; ++i) {

 // read 1 line of trace file

 fscanf_s(fp, "%d %x %x", &type, &address, &instr);

 // example of bit-wise operation in C;

 // mask off all but the 2nd least significant hex digit,

 // shift right by 4 bits, and print address in hex and

 // masked shifted address in decimal

 masked_addr = (address & 0x000000f0) >> 4;

 printf("%8x %2d\n", address, masked_addr);

 }

// Delay a bit to see output

Sleep(5000);

return 0;

}

