
ECE2036 Fall Semester, 2013

Mandelbrot Set

Assigned: Nov 20, 2013 Due: Dec 4-5-6, 2013, Sections B-C-A

Introduction In this assignment we will use the QDisplay graphics API and the gthreads threading library to com-
pute and display a visual image of the Mandelbrot Set. Once the set is displayed, we will use the mouse to select
a square region from the displayed set, and recompute the set using only the selected region of the complex plane.
Details of the math to compute the Mandelbrot Set and how to use multiple threads are all given in the paragraphs
below.

The Mandelbrot Set The Mandelbrot Set is defined as the set of points in the complex plane that satisfy

M = {c ∈ C| limn→∞ Zn 6=∞}

where

M is the set of all complex numbers in the Mandelbrot Set.
C is the set of all complex numbers in the complex plane,
Z0 = c,
Zn+1 = Z2

n + c

From this description it appears we have to iterate n over all values from 0 to∞, which would take quite a bit of
computation. Luckily, we can make two simplifying assumptions.

1. If the magnitude of any Zn is greater than 2.0, then it can be proved that Z will eventually reach infinity, so if
we ever get a Zn for which the magnitude is greater then 2.0 we can stop iterating and claim that the point c is
not in the Mandelbrot Set.

2. If we have iterated 2,000 times and still not found a Zn with a magnitude greater than 2.0, we can again stop
iterating, but this time claim the c is in the Mandelbrot Set.

Displaying the Mandelbrot Set Start by creating a display window of 512 by 512 pixels. Then compute and display
the Mandelbrot Set. Unfortunately, it appears in the above discussion of the math to compute the Mandelbrot Set, that
we have to iterate all possible values of c ∈ C. Again we are lucky that we can limit the possible range of the c value
as follows:

(−2.0,−1.5) < c < (1.0, 1.5)
This still seems to be an infinite number of possible c values. To again avoid infinite processing, simply select 512

discrete c values in both the real and imaginary ranges above, resulting in 512 * 512 total unique c values. For each c,
simply iterate the Z values as shown above. If the c is in the Mandelbrot Set, display a black pixel at the appropriate
point in the display window, otherwise display a colored pixel. The correct color for each of the iteration counts is
given in the skeleton code provided. Your result should be identical to that below.

1



Selecting the pixel colors As discussed above, we iterate each point Z using the equations shown above. If the
magnitude of Zn is greater than 2.0 at any point during the iteration, can immediately claim the point is NOT in the
Mandelbrot Set. The color to use for that point is a function of the iteration count where the Zn > 2.0 was detected.
The skeleton code has a pre-defined array called pixelColors, indexed by the iteration count.

If you iterate 2000 times and still have not found a Zn > 2.0, then paint the pixel black.

The QDisplay Graphics API Using the QDisplay mouse functions (described below) enable the “selection” of a
square region in the displayed image. While the mouse is moving display a red square to indicate the selected region.
When the mouse button is released re-compute the image using the bounds selected with the mouse IMPORTANT.
The selected region should always be square, not rectangular. When outlining the selected region in red, adjust the
mouse x, y location ot make the region square even if it is not.

The QDisplay class has several pure virtual functions as follows:

// Pure virtual functions for subclasses
virtual void MousePressed (int x, int y) = 0;
virtual void MouseMoved (int x, int y) = 0;
virtual void MouseReleased(int x, int y) = 0;

This means you must implement a subclass of QDisplay. You can call this subclass anything you want, but MyDis-
play seems reasonable. The mouse and keyboard functions above are self-explanatory, but note that the MouseMoved
function is only called when the mouse moves with the left button depressed.

The remainder of the QDisplay API has already been posted on the class web page.

Using threads If you simply implement the steps above, you will find it takes way too long to compute and display
the Mandelbrot Set. This is unacceptably long, so we will solve the problem by throwing more hardware at the
problem. To speed up the computation and display of the Mandelbrot Set, simply use 16 threads each of which
calculate the Mandelbrot Set iteration values for a unique part of the image.

2



Copying the Project Skeletons

1. Log into jinx-login.cc using ssh and your prism log-in name.

2. Copy the files from the ECE2036 user account using the following command:

/usr/bin/rsync -avu /nethome/ECE2036/MBSet .

Be sure to notice the period at the end of the above command.

3. Change your working directory to MBSet

cd MBSet

4. Copy the provided MBSet-skeleton.cc to MBSet.cc as follows:

cp MBSet-skeleton.cc MBSet.cc

5. Then edit MBSet.cc to create your code for the project.

6. Don’t forget to copy your complex.cc and complex.h from the earlier complex calculator assignment.

Code included in the skeleton . To simplify the project a bit, the skeleton code has quit a bit of functionality built
in. IN particular it defines several global variables used in the mouse selection code, it creates an opens the QDIsplay
window for this project, it creates the MyDisplay subclass, and implements the selector box discussed above. After
copying the skeleton to MBSet.cc and copying your complex.h and complex.cc from the complex calculator, your
program should build and open a blank white window. The mouse actions will show the selector box. On a mouse
release, function ProcessSelection is called with the parameters of the box coordinates. You must add some
code to this function to zoom in the Mandelbrot set and re-display.

Turning in your Project Turn in your assignment by the due date using the riley-turnin (or davis/hamblen
turning) procedure as always.

3


