
Debugging with gdb

The gnu Source-Level Debugger

Ninth Edition, for gdb version 6.2

Richard Stallman, Roland Pesch, Stan Shebs, et al.

Summary of gdb 1

Summary of gdb

The purpose of a debugger such as gdb is to allow you to see what is going on “inside”
another program while it executes—or what another program was doing at the moment it
crashed.

gdb can do four main kinds of things (plus other things in support of these) to help you
catch bugs in the act:

• Start your program, specifying anything that might affect its behavior.

• Make your program stop on specified conditions.

• Examine what has happened, when your program has stopped.

• Change things in your program, so you can experiment with correcting the effects of
one bug and go on to learn about another.

You can use gdb to debug programs written in C and C++. For more information, see
Section 12.4 [Supported languages], page 113. For more information, see Section 12.4.1 [C
and C++], page 114.

Support for Modula-2 is partial. For information on Modula-2, see Section 12.4.3
[Modula-2], page 120.

Debugging Pascal programs which use sets, subranges, file variables, or nested functions
does not currently work. gdb does not support entering expressions, printing values, or
similar features using Pascal syntax.

gdb can be used to debug programs written in Fortran, although it may be necessary
to refer to some variables with a trailing underscore.

gdb can be used to debug programs written in Objective-C, using either the Ap-
ple/NeXT or the GNU Objective-C runtime.

Free software

gdb is free software, protected by the gnu General Public License (GPL). The GPL
gives you the freedom to copy or adapt a licensed program—but every person getting a
copy also gets with it the freedom to modify that copy (which means that they must get
access to the source code), and the freedom to distribute further copies. Typical software
companies use copyrights to limit your freedoms; the Free Software Foundation uses the
GPL to preserve these freedoms.

Fundamentally, the General Public License is a license which says that you have these
freedoms and that you cannot take these freedoms away from anyone else.

Free Software Needs Free Documentation

The biggest deficiency in the free software community today is not in the software—it is
the lack of good free documentation that we can include with the free software. Many of our
most important programs do not come with free reference manuals and free introductory
texts. Documentation is an essential part of any software package; when an important free
software package does not come with a free manual and a free tutorial, that is a major gap.
We have many such gaps today.

Chapter 3: gdb Commands 17

3 gdb Commands

You can abbreviate a gdb command to the first few letters of the command name, if
that abbreviation is unambiguous; and you can repeat certain gdb commands by typing
just 〈RET〉. You can also use the 〈TAB〉 key to get gdb to fill out the rest of a word in a
command (or to show you the alternatives available, if there is more than one possibility).

3.1 Command syntax

A gdb command is a single line of input. There is no limit on how long it can be.
It starts with a command name, which is followed by arguments whose meaning depends
on the command name. For example, the command step accepts an argument which is
the number of times to step, as in ‘step 5’. You can also use the step command with no
arguments. Some commands do not allow any arguments.

gdb command names may always be truncated if that abbreviation is unambiguous.
Other possible command abbreviations are listed in the documentation for individual com-
mands. In some cases, even ambiguous abbreviations are allowed; for example, s is specially
defined as equivalent to step even though there are other commands whose names start
with s. You can test abbreviations by using them as arguments to the help command.

A blank line as input to gdb (typing just 〈RET〉) means to repeat the previous command.
Certain commands (for example, run) will not repeat this way; these are commands whose
unintentional repetition might cause trouble and which you are unlikely to want to repeat.

The list and x commands, when you repeat them with 〈RET〉, construct new arguments
rather than repeating exactly as typed. This permits easy scanning of source or memory.

gdb can also use 〈RET〉 in another way: to partition lengthy output, in a way similar to
the common utility more (see Section 19.4 [Screen size], page 183). Since it is easy to press
one 〈RET〉 too many in this situation, gdb disables command repetition after any command
that generates this sort of display.

Any text from a # to the end of the line is a comment; it does nothing. This is useful
mainly in command files (see Section 20.3 [Command files], page 191).

The C-o binding is useful for repeating a complex sequence of commands. This command
accepts the current line, like RET, and then fetches the next line relative to the current line
from the history for editing.

3.2 Command completion

gdb can fill in the rest of a word in a command for you, if there is only one possibility;
it can also show you what the valid possibilities are for the next word in a command, at
any time. This works for gdb commands, gdb subcommands, and the names of symbols
in your program.

Press the 〈TAB〉 key whenever you want gdb to fill out the rest of a word. If there is only
one possibility, gdb fills in the word, and waits for you to finish the command (or press
〈RET〉 to enter it). For example, if you type

(gdb) info bre 〈TAB〉

gdb fills in the rest of the word ‘breakpoints’, since that is the only info subcommand
beginning with ‘bre’:

18 Debugging with gdb

(gdb) info breakpoints

You can either press 〈RET〉 at this point, to run the info breakpoints command, or
backspace and enter something else, if ‘breakpoints’ does not look like the command you
expected. (If you were sure you wanted info breakpoints in the first place, you might as
well just type 〈RET〉 immediately after ‘info bre’, to exploit command abbreviations rather
than command completion).

If there is more than one possibility for the next word when you press 〈TAB〉, gdb sounds
a bell. You can either supply more characters and try again, or just press 〈TAB〉 a second
time; gdb displays all the possible completions for that word. For example, you might want
to set a breakpoint on a subroutine whose name begins with ‘make_’, but when you type b

make_〈TAB〉 gdb just sounds the bell. Typing 〈TAB〉 again displays all the function names in
your program that begin with those characters, for example:

(gdb) b make_ 〈TAB〉

gdb sounds bell; press 〈TAB〉 again, to see:
make_a_section_from_file make_environ
make_abs_section make_function_type
make_blockvector make_pointer_type
make_cleanup make_reference_type
make_command make_symbol_completion_list
(gdb) b make_

After displaying the available possibilities, gdb copies your partial input (‘b make_’ in the
example) so you can finish the command.

If you just want to see the list of alternatives in the first place, you can press M-? rather
than pressing 〈TAB〉 twice. M-? means 〈META〉 ?. You can type this either by holding down
a key designated as the 〈META〉 shift on your keyboard (if there is one) while typing ?, or as
〈ESC〉 followed by ?.

Sometimes the string you need, while logically a “word”, may contain parentheses or
other characters that gdb normally excludes from its notion of a word. To permit word
completion to work in this situation, you may enclose words in ’ (single quote marks) in
gdb commands.

The most likely situation where you might need this is in typing the name of a C++
function. This is because C++ allows function overloading (multiple definitions of the same
function, distinguished by argument type). For example, when you want to set a breakpoint
you may need to distinguish whether you mean the version of name that takes an int

parameter, name(int), or the version that takes a float parameter, name(float). To use
the word-completion facilities in this situation, type a single quote ’ at the beginning of the
function name. This alerts gdb that it may need to consider more information than usual
when you press 〈TAB〉 or M-? to request word completion:

(gdb) b ’bubble(M-?

bubble(double,double) bubble(int,int)
(gdb) b ’bubble(

In some cases, gdb can tell that completing a name requires using quotes. When this
happens, gdb inserts the quote for you (while completing as much as it can) if you do not
type the quote in the first place:

(gdb) b bub 〈TAB〉

Chapter 3: gdb Commands 19

gdb alters your input line to the following, and rings a bell:
(gdb) b ’bubble(

In general, gdb can tell that a quote is needed (and inserts it) if you have not yet started
typing the argument list when you ask for completion on an overloaded symbol.

For more information about overloaded functions, see Section 12.4.1.3 [C++ expressions],
page 116. You can use the command set overload-resolution off to disable overload
resolution; see Section 12.4.1.7 [gdb features for C++], page 118.

3.3 Getting help

You can always ask gdb itself for information on its commands, using the command
help.

help

h You can use help (abbreviated h) with no arguments to display a short list of
named classes of commands:

(gdb) help
List of classes of commands:

aliases -- Aliases of other commands
breakpoints -- Making program stop at certain points
data -- Examining data
files -- Specifying and examining files
internals -- Maintenance commands
obscure -- Obscure features
running -- Running the program
stack -- Examining the stack
status -- Status inquiries
support -- Support facilities
tracepoints -- Tracing of program execution without

stopping the program
user-defined -- User-defined commands

Type "help" followed by a class name for a list of
commands in that class.
Type "help" followed by command name for full
documentation.
Command name abbreviations are allowed if unambiguous.
(gdb)

help class Using one of the general help classes as an argument, you can get a list of the
individual commands in that class. For example, here is the help display for
the class status:

(gdb) help status
Status inquiries.

List of commands:

20 Debugging with gdb

info -- Generic command for showing things
about the program being debugged

show -- Generic command for showing things
about the debugger

Type "help" followed by command name for full
documentation.
Command name abbreviations are allowed if unambiguous.
(gdb)

help command

With a command name as help argument, gdb displays a short paragraph on
how to use that command.

apropos args

The apropos args command searches through all of the gdb commands, and
their documentation, for the regular expression specified in args. It prints out
all matches found. For example:

apropos reload

results in:

set symbol-reloading -- Set dynamic symbol table reloading
multiple times in one run

show symbol-reloading -- Show dynamic symbol table reloading
multiple times in one run

complete args

The complete args command lists all the possible completions for the beginning
of a command. Use args to specify the beginning of the command you want
completed. For example:

complete i

results in:

if
ignore
info
inspect

This is intended for use by gnu Emacs.

In addition to help, you can use the gdb commands info and show to inquire about the
state of your program, or the state of gdb itself. Each command supports many topics of
inquiry; this manual introduces each of them in the appropriate context. The listings under
info and under show in the Index point to all the sub-commands. See [Index], page 363.

info This command (abbreviated i) is for describing the state of your program. For
example, you can list the arguments given to your program with info args,
list the registers currently in use with info registers, or list the breakpoints
you have set with info breakpoints. You can get a complete list of the info

sub-commands with help info.

Chapter 3: gdb Commands 21

set You can assign the result of an expression to an environment variable with set.
For example, you can set the gdb prompt to a $-sign with set prompt $.

show In contrast to info, show is for describing the state of gdb itself. You can
change most of the things you can show, by using the related command set;
for example, you can control what number system is used for displays with set

radix, or simply inquire which is currently in use with show radix.

To display all the settable parameters and their current values, you can use
show with no arguments; you may also use info set. Both commands produce
the same display.

Here are three miscellaneous show subcommands, all of which are exceptional in lacking
corresponding set commands:

show version

Show what version of gdb is running. You should include this information in
gdb bug-reports. If multiple versions of gdb are in use at your site, you may
need to determine which version of gdb you are running; as gdb evolves, new
commands are introduced, and old ones may wither away. Also, many system
vendors ship variant versions of gdb, and there are variant versions of gdb in
gnu/Linux distributions as well. The version number is the same as the one
announced when you start gdb.

show copying

Display information about permission for copying gdb.

show warranty

Display the gnu “NO WARRANTY” statement, or a warranty, if your version
of gdb comes with one.

Chapter 4: Running Programs Under gdb 23

4 Running Programs Under gdb

When you run a program under gdb, you must first generate debugging information
when you compile it.

You may start gdb with its arguments, if any, in an environment of your choice. If you
are doing native debugging, you may redirect your program’s input and output, debug an
already running process, or kill a child process.

4.1 Compiling for debugging

In order to debug a program effectively, you need to generate debugging information
when you compile it. This debugging information is stored in the object file; it describes
the data type of each variable or function and the correspondence between source line
numbers and addresses in the executable code.

To request debugging information, specify the ‘-g’ option when you run the compiler.

Most compilers do not include information about preprocessor macros in the debugging
information if you specify the ‘-g’ flag alone, because this information is rather large.
Version 3.1 of gcc, the gnu C compiler, provides macro information if you specify the
options ‘-gdwarf-2’ and ‘-g3’; the former option requests debugging information in the
Dwarf 2 format, and the latter requests “extra information”. In the future, we hope to find
more compact ways to represent macro information, so that it can be included with ‘-g’
alone.

Many C compilers are unable to handle the ‘-g’ and ‘-O’ options together. Using those
compilers, you cannot generate optimized executables containing debugging information.

gcc, the gnu C compiler, supports ‘-g’ with or without ‘-O’, making it possible to debug
optimized code. We recommend that you always use ‘-g’ whenever you compile a program.
You may think your program is correct, but there is no sense in pushing your luck.

When you debug a program compiled with ‘-g -O’, remember that the optimizer is
rearranging your code; the debugger shows you what is really there. Do not be too surprised
when the execution path does not exactly match your source file! An extreme example: if
you define a variable, but never use it, gdb never sees that variable—because the compiler
optimizes it out of existence.

Some things do not work as well with ‘-g -O’ as with just ‘-g’, particularly on machines
with instruction scheduling. If in doubt, recompile with ‘-g’ alone, and if this fixes the
problem, please report it to us as a bug (including a test case!).

Older versions of the gnu C compiler permitted a variant option ‘-gg’ for debugging
information. gdb no longer supports this format; if your gnu C compiler has this option,
do not use it.

24 Debugging with gdb

4.2 Starting your program

run

r Use the run command to start your program under gdb. You must first specify
the program name (except on VxWorks) with an argument to gdb (see Chap-
ter 2 [Getting In and Out of gdb], page 11), or by using the file or exec-file
command (see Section 15.1 [Commands to specify files], page 137).

If you are running your program in an execution environment that supports processes,
run creates an inferior process and makes that process run your program. (In environments
without processes, run jumps to the start of your program.)

The execution of a program is affected by certain information it receives from its superior.
gdb provides ways to specify this information, which you must do before starting your
program. (You can change it after starting your program, but such changes only affect your
program the next time you start it.) This information may be divided into four categories:

The arguments.

Specify the arguments to give your program as the arguments of the run com-
mand. If a shell is available on your target, the shell is used to pass the argu-
ments, so that you may use normal conventions (such as wildcard expansion or
variable substitution) in describing the arguments. In Unix systems, you can
control which shell is used with the SHELL environment variable. See Section 4.3
[Your program’s arguments], page 25.

The environment.

Your program normally inherits its environment from gdb, but you can use
the gdb commands set environment and unset environment to change parts
of the environment that affect your program. See Section 4.4 [Your program’s
environment], page 26.

The working directory.

Your program inherits its working directory from gdb. You can set the gdb

working directory with the cd command in gdb. See Section 4.5 [Your pro-
gram’s working directory], page 27.

The standard input and output.

Your program normally uses the same device for standard input and standard
output as gdb is using. You can redirect input and output in the run command
line, or you can use the tty command to set a different device for your program.
See Section 4.6 [Your program’s input and output], page 27.

Warning: While input and output redirection work, you cannot use pipes to
pass the output of the program you are debugging to another program; if you
attempt this, gdb is likely to wind up debugging the wrong program.

When you issue the run command, your program begins to execute immediately. See
Chapter 5 [Stopping and continuing], page 33, for discussion of how to arrange for your
program to stop. Once your program has stopped, you may call functions in your program,
using the print or call commands. See Chapter 8 [Examining Data], page 67.

Chapter 4: Running Programs Under gdb 25

If the modification time of your symbol file has changed since the last time gdb read its
symbols, gdb discards its symbol table, and reads it again. When it does this, gdb tries to
retain your current breakpoints.

start The name of the main procedure can vary from language to language. With
C or C++, the main procedure name is always main, but other languages such
as Ada do not require a specific name for their main procedure. The debugger
provides a convenient way to start the execution of the program and to stop at
the beginning of the main procedure, depending on the language used.

The ‘start’ command does the equivalent of setting a temporary breakpoint
at the beginning of the main procedure and then invoking the ‘run’ command.

Some programs contain an elaboration phase where some startup code is exe-
cuted before the main program is called. This depends on the languages used
to write your program. In C++ for instance, constructors for static and global
objects are executed before main is called. It is therefore possible that the
debugger stops before reaching the main procedure. However, the temporary
breakpoint will remain to halt execution.

Specify the arguments to give to your program as arguments to the ‘start’
command. These arguments will be given verbatim to the underlying ‘run’
command. Note that the same arguments will be reused if no argument is
provided during subsequent calls to ‘start’ or ‘run’.

It is sometimes necessary to debug the program during elaboration. In these
cases, using the start command would stop the execution of your program
too late, as the program would have already completed the elaboration phase.
Under these circumstances, insert breakpoints in your elaboration code before
running your program.

4.3 Your program’s arguments

The arguments to your program can be specified by the arguments of the run command.
They are passed to a shell, which expands wildcard characters and performs redirection of
I/O, and thence to your program. Your SHELL environment variable (if it exists) specifies
what shell gdb uses. If you do not define SHELL, gdb uses the default shell (‘/bin/sh’ on
Unix).

On non-Unix systems, the program is usually invoked directly by gdb, which emulates
I/O redirection via the appropriate system calls, and the wildcard characters are expanded
by the startup code of the program, not by the shell.

run with no arguments uses the same arguments used by the previous run, or those set
by the set args command.

set args Specify the arguments to be used the next time your program is run. If set
args has no arguments, run executes your program with no arguments. Once
you have run your program with arguments, using set args before the next
run is the only way to run it again without arguments.

show args Show the arguments to give your program when it is started.

26 Debugging with gdb

4.4 Your program’s environment

The environment consists of a set of environment variables and their values. Environment
variables conventionally record such things as your user name, your home directory, your
terminal type, and your search path for programs to run. Usually you set up environment
variables with the shell and they are inherited by all the other programs you run. When
debugging, it can be useful to try running your program with a modified environment
without having to start gdb over again.

path directory

Add directory to the front of the PATH environment variable (the search path
for executables) that will be passed to your program. The value of PATH used
by gdb does not change. You may specify several directory names, separated
by whitespace or by a system-dependent separator character (‘:’ on Unix, ‘;’
on MS-DOS and MS-Windows). If directory is already in the path, it is moved
to the front, so it is searched sooner.

You can use the string ‘$cwd’ to refer to whatever is the current working direc-
tory at the time gdb searches the path. If you use ‘.’ instead, it refers to the
directory where you executed the path command. gdb replaces ‘.’ in the di-

rectory argument (with the current path) before adding directory to the search
path.

show paths

Display the list of search paths for executables (the PATH environment variable).

show environment [varname]
Print the value of environment variable varname to be given to your program
when it starts. If you do not supply varname, print the names and values of
all environment variables to be given to your program. You can abbreviate
environment as env.

set environment varname [=value]
Set environment variable varname to value. The value changes for your program
only, not for gdb itself. value may be any string; the values of environment
variables are just strings, and any interpretation is supplied by your program
itself. The value parameter is optional; if it is eliminated, the variable is set to
a null value.

For example, this command:

set env USER = foo

tells the debugged program, when subsequently run, that its user is named
‘foo’. (The spaces around ‘=’ are used for clarity here; they are not actually
required.)

unset environment varname

Remove variable varname from the environment to be passed to your program.
This is different from ‘set env varname =’; unset environment removes the
variable from the environment, rather than assigning it an empty value.

Warning: On Unix systems, gdb runs your program using the shell indicated by your
SHELL environment variable if it exists (or /bin/sh if not). If your SHELL variable names a

Chapter 4: Running Programs Under gdb 27

shell that runs an initialization file—such as ‘.cshrc’ for C-shell, or ‘.bashrc’ for BASH—
any variables you set in that file affect your program. You may wish to move setting of
environment variables to files that are only run when you sign on, such as ‘.login’ or
‘.profile’.

4.5 Your program’s working directory

Each time you start your program with run, it inherits its working directory from the
current working directory of gdb. The gdb working directory is initially whatever it in-
herited from its parent process (typically the shell), but you can specify a new working
directory in gdb with the cd command.

The gdb working directory also serves as a default for the commands that specify files
for gdb to operate on. See Section 15.1 [Commands to specify files], page 137.

cd directory

Set the gdb working directory to directory.

pwd Print the gdb working directory.

4.6 Your program’s input and output

By default, the program you run under gdb does input and output to the same terminal
that gdb uses. gdb switches the terminal to its own terminal modes to interact with you,
but it records the terminal modes your program was using and switches back to them when
you continue running your program.

info terminal

Displays information recorded by gdb about the terminal modes your program
is using.

You can redirect your program’s input and/or output using shell redirection with the
run command. For example,

run > outfile

starts your program, diverting its output to the file ‘outfile’.

Another way to specify where your program should do input and output is with the
tty command. This command accepts a file name as argument, and causes this file to be
the default for future run commands. It also resets the controlling terminal for the child
process, for future run commands. For example,

tty /dev/ttyb

directs that processes started with subsequent run commands default to do input and output
on the terminal ‘/dev/ttyb’ and have that as their controlling terminal.

An explicit redirection in run overrides the tty command’s effect on the input/output
device, but not its effect on the controlling terminal.

When you use the tty command or redirect input in the run command, only the input
for your program is affected. The input for gdb still comes from your terminal.

28 Debugging with gdb

4.7 Debugging an already-running process

attach process-id

This command attaches to a running process—one that was started outside
gdb. (info files shows your active targets.) The command takes as argument
a process ID. The usual way to find out the process-id of a Unix process is with
the ps utility, or with the ‘jobs -l’ shell command.

attach does not repeat if you press 〈RET〉 a second time after executing the
command.

To use attach, your program must be running in an environment which supports pro-
cesses; for example, attach does not work for programs on bare-board targets that lack an
operating system. You must also have permission to send the process a signal.

When you use attach, the debugger finds the program running in the process first by
looking in the current working directory, then (if the program is not found) by using the
source file search path (see Section 7.4 [Specifying source directories], page 63). You can
also use the file command to load the program. See Section 15.1 [Commands to Specify
Files], page 137.

The first thing gdb does after arranging to debug the specified process is to stop it. You
can examine and modify an attached process with all the gdb commands that are ordinarily
available when you start processes with run. You can insert breakpoints; you can step and
continue; you can modify storage. If you would rather the process continue running, you
may use the continue command after attaching gdb to the process.

detach When you have finished debugging the attached process, you can use the detach
command to release it from gdb control. Detaching the process continues its
execution. After the detach command, that process and gdb become com-
pletely independent once more, and you are ready to attach another process
or start one with run. detach does not repeat if you press 〈RET〉 again after
executing the command.

If you exit gdb or use the run command while you have an attached process, you kill
that process. By default, gdb asks for confirmation if you try to do either of these things;
you can control whether or not you need to confirm by using the set confirm command
(see Section 19.7 [Optional warnings and messages], page 185).

4.8 Killing the child process

kill Kill the child process in which your program is running under gdb.

This command is useful if you wish to debug a core dump instead of a running process.
gdb ignores any core dump file while your program is running.

On some operating systems, a program cannot be executed outside gdb while you have
breakpoints set on it inside gdb. You can use the kill command in this situation to permit
running your program outside the debugger.

The kill command is also useful if you wish to recompile and relink your program,
since on many systems it is impossible to modify an executable file while it is running in a

Chapter 5: Stopping and Continuing 33

5 Stopping and Continuing

The principal purposes of using a debugger are so that you can stop your program before
it terminates; or so that, if your program runs into trouble, you can investigate and find
out why.

Inside gdb, your program may stop for any of several reasons, such as a signal, a break-
point, or reaching a new line after a gdb command such as step. You may then examine
and change variables, set new breakpoints or remove old ones, and then continue execu-
tion. Usually, the messages shown by gdb provide ample explanation of the status of your
program—but you can also explicitly request this information at any time.

info program

Display information about the status of your program: whether it is running
or not, what process it is, and why it stopped.

5.1 Breakpoints, watchpoints, and catchpoints

A breakpoint makes your program stop whenever a certain point in the program is
reached. For each breakpoint, you can add conditions to control in finer detail whether
your program stops. You can set breakpoints with the break command and its variants
(see Section 5.1.1 [Setting breakpoints], page 34), to specify the place where your program
should stop by line number, function name or exact address in the program.

In HP-UX, SunOS 4.x, SVR4, and Alpha OSF/1 configurations, you can set breakpoints
in shared libraries before the executable is run. There is a minor limitation on HP-UX
systems: you must wait until the executable is run in order to set breakpoints in shared
library routines that are not called directly by the program (for example, routines that are
arguments in a pthread_create call).

A watchpoint is a special breakpoint that stops your program when the value of an
expression changes. You must use a different command to set watchpoints (see Section 5.1.2
[Setting watchpoints], page 37), but aside from that, you can manage a watchpoint like any
other breakpoint: you enable, disable, and delete both breakpoints and watchpoints using
the same commands.

You can arrange to have values from your program displayed automatically whenever
gdb stops at a breakpoint. See Section 8.6 [Automatic display], page 72.

A catchpoint is another special breakpoint that stops your program when a certain kind
of event occurs, such as the throwing of a C++ exception or the loading of a library. As with
watchpoints, you use a different command to set a catchpoint (see Section 5.1.3 [Setting
catchpoints], page 39), but aside from that, you can manage a catchpoint like any other
breakpoint. (To stop when your program receives a signal, use the handle command; see
Section 5.3 [Signals], page 50.)

gdb assigns a number to each breakpoint, watchpoint, or catchpoint when you create
it; these numbers are successive integers starting with one. In many of the commands for
controlling various features of breakpoints you use the breakpoint number to say which
breakpoint you want to change. Each breakpoint may be enabled or disabled; if disabled,
it has no effect on your program until you enable it again.

34 Debugging with gdb

Some gdb commands accept a range of breakpoints on which to operate. A breakpoint
range is either a single breakpoint number, like ‘5’, or two such numbers, in increasing
order, separated by a hyphen, like ‘5-7’. When a breakpoint range is given to a command,
all breakpoint in that range are operated on.

5.1.1 Setting breakpoints

Breakpoints are set with the break command (abbreviated b). The debugger conve-
nience variable ‘$bpnum’ records the number of the breakpoint you’ve set most recently;
see Section 8.9 [Convenience variables], page 79, for a discussion of what you can do with
convenience variables.

You have several ways to say where the breakpoint should go.

break function

Set a breakpoint at entry to function function. When using source languages
that permit overloading of symbols, such as C++, function may refer to more
than one possible place to break. See Section 5.1.8 [Breakpoint menus], page 45,
for a discussion of that situation.

break +offset

break -offset

Set a breakpoint some number of lines forward or back from the position at
which execution stopped in the currently selected stack frame. (See Section 6.1
[Frames], page 55, for a description of stack frames.)

break linenum

Set a breakpoint at line linenum in the current source file. The current source
file is the last file whose source text was printed. The breakpoint will stop your
program just before it executes any of the code on that line.

break filename:linenum

Set a breakpoint at line linenum in source file filename.

break filename:function

Set a breakpoint at entry to function function found in file filename. Specifying
a file name as well as a function name is superfluous except when multiple files
contain similarly named functions.

break *address

Set a breakpoint at address address. You can use this to set breakpoints in
parts of your program which do not have debugging information or source files.

break When called without any arguments, break sets a breakpoint at the next in-
struction to be executed in the selected stack frame (see Chapter 6 [Examining
the Stack], page 55). In any selected frame but the innermost, this makes your
program stop as soon as control returns to that frame. This is similar to the
effect of a finish command in the frame inside the selected frame—except that
finish does not leave an active breakpoint. If you use break without an ar-
gument in the innermost frame, gdb stops the next time it reaches the current
location; this may be useful inside loops.

Chapter 5: Stopping and Continuing 35

gdb normally ignores breakpoints when it resumes execution, until at least one
instruction has been executed. If it did not do this, you would be unable to pro-
ceed past a breakpoint without first disabling the breakpoint. This rule applies
whether or not the breakpoint already existed when your program stopped.

break ... if cond

Set a breakpoint with condition cond; evaluate the expression cond each time
the breakpoint is reached, and stop only if the value is nonzero—that is, if cond

evaluates as true. ‘...’ stands for one of the possible arguments described
above (or no argument) specifying where to break. See Section 5.1.6 [Break
conditions], page 42, for more information on breakpoint conditions.

tbreak args

Set a breakpoint enabled only for one stop. args are the same as for the break

command, and the breakpoint is set in the same way, but the breakpoint is
automatically deleted after the first time your program stops there. See Sec-
tion 5.1.5 [Disabling breakpoints], page 41.

hbreak args

Set a hardware-assisted breakpoint. args are the same as for the break com-
mand and the breakpoint is set in the same way, but the breakpoint requires
hardware support and some target hardware may not have this support. The
main purpose of this is EPROM/ROM code debugging, so you can set a break-
point at an instruction without changing the instruction. This can be used
with the new trap-generation provided by SPARClite DSU and some x86-based
targets. These targets will generate traps when a program accesses some data
or instruction address that is assigned to the debug registers. However the
hardware breakpoint registers can take a limited number of breakpoints. For
example, on the DSU, only two data breakpoints can be set at a time, and
gdb will reject this command if more than two are used. Delete or disable
unused hardware breakpoints before setting new ones (see Section 5.1.5 [Dis-
abling], page 41). See Section 5.1.6 [Break conditions], page 42. See [set remote
hardware-breakpoint-limit], page 156.

thbreak args

Set a hardware-assisted breakpoint enabled only for one stop. args are the
same as for the hbreak command and the breakpoint is set in the same way.
However, like the tbreak command, the breakpoint is automatically deleted
after the first time your program stops there. Also, like the hbreak command,
the breakpoint requires hardware support and some target hardware may not
have this support. See Section 5.1.5 [Disabling breakpoints], page 41. See also
Section 5.1.6 [Break conditions], page 42.

rbreak regex

Set breakpoints on all functions matching the regular expression regex. This
command sets an unconditional breakpoint on all matches, printing a list of all
breakpoints it set. Once these breakpoints are set, they are treated just like the
breakpoints set with the break command. You can delete them, disable them,
or make them conditional the same way as any other breakpoint.

36 Debugging with gdb

The syntax of the regular expression is the standard one used with tools like
‘grep’. Note that this is different from the syntax used by shells, so for instance
foo* matches all functions that include an fo followed by zero or more os. There
is an implicit .* leading and trailing the regular expression you supply, so to
match only functions that begin with foo, use ^foo.

When debugging C++ programs, rbreak is useful for setting breakpoints on
overloaded functions that are not members of any special classes.

info breakpoints [n]
info break [n]
info watchpoints [n]

Print a table of all breakpoints, watchpoints, and catchpoints set and not
deleted, with the following columns for each breakpoint:

Breakpoint Numbers

Type Breakpoint, watchpoint, or catchpoint.

Disposition

Whether the breakpoint is marked to be disabled or deleted when
hit.

Enabled or Disabled

Enabled breakpoints are marked with ‘y’. ‘n’ marks breakpoints
that are not enabled.

Address Where the breakpoint is in your program, as a memory address. If
the breakpoint is pending (see below for details) on a future load
of a shared library, the address will be listed as ‘<PENDING>’.

What Where the breakpoint is in the source for your program, as a file and
line number. For a pending breakpoint, the original string passed
to the breakpoint command will be listed as it cannot be resolved
until the appropriate shared library is loaded in the future.

If a breakpoint is conditional, info break shows the condition on the line fol-
lowing the affected breakpoint; breakpoint commands, if any, are listed after
that. A pending breakpoint is allowed to have a condition specified for it. The
condition is not parsed for validity until a shared library is loaded that allows
the pending breakpoint to resolve to a valid location.

info break with a breakpoint number n as argument lists only that break-
point. The convenience variable $_ and the default examining-address for the
x command are set to the address of the last breakpoint listed (see Section 8.5
[Examining memory], page 71).

info break displays a count of the number of times the breakpoint has been
hit. This is especially useful in conjunction with the ignore command. You
can ignore a large number of breakpoint hits, look at the breakpoint info to see
how many times the breakpoint was hit, and then run again, ignoring one less
than that number. This will get you quickly to the last hit of that breakpoint.

Chapter 5: Stopping and Continuing 37

gdb allows you to set any number of breakpoints at the same place in your program.
There is nothing silly or meaningless about this. When the breakpoints are conditional,
this is even useful (see Section 5.1.6 [Break conditions], page 42).

If a specified breakpoint location cannot be found, it may be due to the fact that the
location is in a shared library that is yet to be loaded. In such a case, you may want gdb

to create a special breakpoint (known as a pending breakpoint) that attempts to resolve
itself in the future when an appropriate shared library gets loaded.

Pending breakpoints are useful to set at the start of your gdb session for locations that
you know will be dynamically loaded later by the program being debugged. When shared
libraries are loaded, a check is made to see if the load resolves any pending breakpoint
locations. If a pending breakpoint location gets resolved, a regular breakpoint is created
and the original pending breakpoint is removed.

gdb provides some additional commands for controlling pending breakpoint support:

set breakpoint pending auto

This is the default behavior. When gdb cannot find the breakpoint location,
it queries you whether a pending breakpoint should be created.

set breakpoint pending on

This indicates that an unrecognized breakpoint location should automatically
result in a pending breakpoint being created.

set breakpoint pending off

This indicates that pending breakpoints are not to be created. Any unrecog-
nized breakpoint location results in an error. This setting does not affect any
pending breakpoints previously created.

show breakpoint pending

Show the current behavior setting for creating pending breakpoints.

Normal breakpoint operations apply to pending breakpoints as well. You may specify a
condition for a pending breakpoint and/or commands to run when the breakpoint is reached.
You can also enable or disable the pending breakpoint. When you specify a condition for
a pending breakpoint, the parsing of the condition will be deferred until the point where
the pending breakpoint location is resolved. Disabling a pending breakpoint tells gdb to
not attempt to resolve the breakpoint on any subsequent shared library load. When a
pending breakpoint is re-enabled, gdb checks to see if the location is already resolved. This
is done because any number of shared library loads could have occurred since the time the
breakpoint was disabled and one or more of these loads could resolve the location.

gdb itself sometimes sets breakpoints in your program for special purposes, such as
proper handling of longjmp (in C programs). These internal breakpoints are assigned
negative numbers, starting with -1; ‘info breakpoints’ does not display them. You can
see these breakpoints with the gdb maintenance command ‘maint info breakpoints’ (see
[maint info breakpoints], page 303).

5.1.2 Setting watchpoints

You can use a watchpoint to stop execution whenever the value of an expression changes,
without having to predict a particular place where this may happen.

38 Debugging with gdb

Depending on your system, watchpoints may be implemented in software or hardware.
gdb does software watchpointing by single-stepping your program and testing the variable’s
value each time, which is hundreds of times slower than normal execution. (But this may
still be worth it, to catch errors where you have no clue what part of your program is the
culprit.)

On some systems, such as HP-UX, gnu/Linux and some other x86-based targets, gdb

includes support for hardware watchpoints, which do not slow down the running of your
program.

watch expr

Set a watchpoint for an expression. gdb will break when expr is written into
by the program and its value changes.

rwatch expr

Set a watchpoint that will break when watch expr is read by the program.

awatch expr

Set a watchpoint that will break when expr is either read or written into by
the program.

info watchpoints

This command prints a list of watchpoints, breakpoints, and catchpoints; it is
the same as info break.

gdb sets a hardware watchpoint if possible. Hardware watchpoints execute very quickly,
and the debugger reports a change in value at the exact instruction where the change occurs.
If gdb cannot set a hardware watchpoint, it sets a software watchpoint, which executes more
slowly and reports the change in value at the next statement, not the instruction, after the
change occurs.

When you issue the watch command, gdb reports

Hardware watchpoint num: expr

if it was able to set a hardware watchpoint.

Currently, the awatch and rwatch commands can only set hardware watchpoints, be-
cause accesses to data that don’t change the value of the watched expression cannot be
detected without examining every instruction as it is being executed, and gdb does not do
that currently. If gdb finds that it is unable to set a hardware breakpoint with the awatch

or rwatch command, it will print a message like this:

Expression cannot be implemented with read/access watchpoint.

Sometimes, gdb cannot set a hardware watchpoint because the data type of the watched
expression is wider than what a hardware watchpoint on the target machine can handle.
For example, some systems can only watch regions that are up to 4 bytes wide; on such sys-
tems you cannot set hardware watchpoints for an expression that yields a double-precision
floating-point number (which is typically 8 bytes wide). As a work-around, it might be pos-
sible to break the large region into a series of smaller ones and watch them with separate
watchpoints.

If you set too many hardware watchpoints, gdb might be unable to insert all of them
when you resume the execution of your program. Since the precise number of active watch-
points is unknown until such time as the program is about to be resumed, gdb might not be

Chapter 5: Stopping and Continuing 39

able to warn you about this when you set the watchpoints, and the warning will be printed
only when the program is resumed:

Hardware watchpoint num: Could not insert watchpoint

If this happens, delete or disable some of the watchpoints.

The SPARClite DSU will generate traps when a program accesses some data or instruc-
tion address that is assigned to the debug registers. For the data addresses, DSU facilitates
the watch command. However the hardware breakpoint registers can only take two data
watchpoints, and both watchpoints must be the same kind. For example, you can set two
watchpoints with watch commands, two with rwatch commands, or two with awatch com-
mands, but you cannot set one watchpoint with one command and the other with a different
command. gdb will reject the command if you try to mix watchpoints. Delete or disable
unused watchpoint commands before setting new ones.

If you call a function interactively using print or call, any watchpoints you have set
will be inactive until gdb reaches another kind of breakpoint or the call completes.

gdb automatically deletes watchpoints that watch local (automatic) variables, or expres-
sions that involve such variables, when they go out of scope, that is, when the execution
leaves the block in which these variables were defined. In particular, when the program
being debugged terminates, all local variables go out of scope, and so only watchpoints
that watch global variables remain set. If you rerun the program, you will need to set all
such watchpoints again. One way of doing that would be to set a code breakpoint at the
entry to the main function and when it breaks, set all the watchpoints.

Warning: In multi-thread programs, watchpoints have only limited usefulness.
With the current watchpoint implementation, gdb can only watch the value of
an expression in a single thread. If you are confident that the expression can
only change due to the current thread’s activity (and if you are also confident
that no other thread can become current), then you can use watchpoints as
usual. However, gdb may not notice when a non-current thread’s activity
changes the expression.

HP-UX Warning: In multi-thread programs, software watchpoints have only
limited usefulness. If gdb creates a software watchpoint, it can only watch
the value of an expression in a single thread. If you are confident that the
expression can only change due to the current thread’s activity (and if you
are also confident that no other thread can become current), then you can use
software watchpoints as usual. However, gdb may not notice when a non-
current thread’s activity changes the expression. (Hardware watchpoints, in
contrast, watch an expression in all threads.)

See [set remote hardware-watchpoint-limit], page 156.

5.1.3 Setting catchpoints

You can use catchpoints to cause the debugger to stop for certain kinds of program
events, such as C++ exceptions or the loading of a shared library. Use the catch command
to set a catchpoint.

catch event

Stop when event occurs. event can be any of the following:

40 Debugging with gdb

throw The throwing of a C++ exception.

catch The catching of a C++ exception.

exec A call to exec. This is currently only available for HP-UX.

fork A call to fork. This is currently only available for HP-UX.

vfork A call to vfork. This is currently only available for HP-UX.

load

load libname

The dynamic loading of any shared library, or the loading of the
library libname. This is currently only available for HP-UX.

unload

unload libname

The unloading of any dynamically loaded shared library, or the
unloading of the library libname. This is currently only available
for HP-UX.

tcatch event

Set a catchpoint that is enabled only for one stop. The catchpoint is automat-
ically deleted after the first time the event is caught.

Use the info break command to list the current catchpoints.

There are currently some limitations to C++ exception handling (catch throw and catch

catch) in gdb:

• If you call a function interactively, gdb normally returns control to you when the
function has finished executing. If the call raises an exception, however, the call may
bypass the mechanism that returns control to you and cause your program either to
abort or to simply continue running until it hits a breakpoint, catches a signal that gdb

is listening for, or exits. This is the case even if you set a catchpoint for the exception;
catchpoints on exceptions are disabled within interactive calls.

• You cannot raise an exception interactively.

• You cannot install an exception handler interactively.

Sometimes catch is not the best way to debug exception handling: if you need to know
exactly where an exception is raised, it is better to stop before the exception handler is
called, since that way you can see the stack before any unwinding takes place. If you set
a breakpoint in an exception handler instead, it may not be easy to find out where the
exception was raised.

To stop just before an exception handler is called, you need some knowledge of the
implementation. In the case of gnu C++, exceptions are raised by calling a library function
named __raise_exception which has the following ANSI C interface:

/* addr is where the exception identifier is stored.
id is the exception identifier. */

void __raise_exception (void **addr, void *id);

To make the debugger catch all exceptions before any stack unwinding takes place, set a
breakpoint on __raise_exception (see Section 5.1 [Breakpoints; watchpoints; and excep-
tions], page 33).

Chapter 5: Stopping and Continuing 41

With a conditional breakpoint (see Section 5.1.6 [Break conditions], page 42) that de-
pends on the value of id, you can stop your program when a specific exception is raised.
You can use multiple conditional breakpoints to stop your program when any of a number
of exceptions are raised.

5.1.4 Deleting breakpoints

It is often necessary to eliminate a breakpoint, watchpoint, or catchpoint once it has
done its job and you no longer want your program to stop there. This is called deleting the
breakpoint. A breakpoint that has been deleted no longer exists; it is forgotten.

With the clear command you can delete breakpoints according to where they are in your
program. With the delete command you can delete individual breakpoints, watchpoints,
or catchpoints by specifying their breakpoint numbers.

It is not necessary to delete a breakpoint to proceed past it. gdb automatically ignores
breakpoints on the first instruction to be executed when you continue execution without
changing the execution address.

clear Delete any breakpoints at the next instruction to be executed in the selected
stack frame (see Section 6.3 [Selecting a frame], page 57). When the innermost
frame is selected, this is a good way to delete a breakpoint where your program
just stopped.

clear function

clear filename:function

Delete any breakpoints set at entry to the function function.

clear linenum

clear filename:linenum

Delete any breakpoints set at or within the code of the specified line.

delete [breakpoints] [range...]
Delete the breakpoints, watchpoints, or catchpoints of the breakpoint ranges
specified as arguments. If no argument is specified, delete all breakpoints (gdb

asks confirmation, unless you have set confirm off). You can abbreviate this
command as d.

5.1.5 Disabling breakpoints

Rather than deleting a breakpoint, watchpoint, or catchpoint, you might prefer to disable

it. This makes the breakpoint inoperative as if it had been deleted, but remembers the
information on the breakpoint so that you can enable it again later.

You disable and enable breakpoints, watchpoints, and catchpoints with the enable and
disable commands, optionally specifying one or more breakpoint numbers as arguments.
Use info break or info watch to print a list of breakpoints, watchpoints, and catchpoints
if you do not know which numbers to use.

A breakpoint, watchpoint, or catchpoint can have any of four different states of enable-
ment:

42 Debugging with gdb

• Enabled. The breakpoint stops your program. A breakpoint set with the break com-
mand starts out in this state.

• Disabled. The breakpoint has no effect on your program.

• Enabled once. The breakpoint stops your program, but then becomes disabled.

• Enabled for deletion. The breakpoint stops your program, but immediately after it
does so it is deleted permanently. A breakpoint set with the tbreak command starts
out in this state.

You can use the following commands to enable or disable breakpoints, watchpoints, and
catchpoints:

disable [breakpoints] [range...]
Disable the specified breakpoints—or all breakpoints, if none are listed. A
disabled breakpoint has no effect but is not forgotten. All options such as
ignore-counts, conditions and commands are remembered in case the breakpoint
is enabled again later. You may abbreviate disable as dis.

enable [breakpoints] [range...]
Enable the specified breakpoints (or all defined breakpoints). They become
effective once again in stopping your program.

enable [breakpoints] once range...

Enable the specified breakpoints temporarily. gdb disables any of these break-
points immediately after stopping your program.

enable [breakpoints] delete range...

Enable the specified breakpoints to work once, then die. gdb deletes any of
these breakpoints as soon as your program stops there.

Except for a breakpoint set with tbreak (see Section 5.1.1 [Setting breakpoints],
page 34), breakpoints that you set are initially enabled; subsequently, they become
disabled or enabled only when you use one of the commands above. (The command until

can set and delete a breakpoint of its own, but it does not change the state of your other
breakpoints; see Section 5.2 [Continuing and stepping], page 47.)

5.1.6 Break conditions

The simplest sort of breakpoint breaks every time your program reaches a specified place.
You can also specify a condition for a breakpoint. A condition is just a Boolean expression
in your programming language (see Section 8.1 [Expressions], page 67). A breakpoint with
a condition evaluates the expression each time your program reaches it, and your program
stops only if the condition is true.

This is the converse of using assertions for program validation; in that situation, you
want to stop when the assertion is violated—that is, when the condition is false. In C, if
you want to test an assertion expressed by the condition assert, you should set the condition
‘! assert’ on the appropriate breakpoint.

Conditions are also accepted for watchpoints; you may not need them, since a watchpoint
is inspecting the value of an expression anyhow—but it might be simpler, say, to just set a

Chapter 5: Stopping and Continuing 43

watchpoint on a variable name, and specify a condition that tests whether the new value is
an interesting one.

Break conditions can have side effects, and may even call functions in your program. This
can be useful, for example, to activate functions that log program progress, or to use your
own print functions to format special data structures. The effects are completely predictable
unless there is another enabled breakpoint at the same address. (In that case, gdb might
see the other breakpoint first and stop your program without checking the condition of
this one.) Note that breakpoint commands are usually more convenient and flexible than
break conditions for the purpose of performing side effects when a breakpoint is reached
(see Section 5.1.7 [Breakpoint command lists], page 44).

Break conditions can be specified when a breakpoint is set, by using ‘if’ in the arguments
to the break command. See Section 5.1.1 [Setting breakpoints], page 34. They can also be
changed at any time with the condition command.

You can also use the if keyword with the watch command. The catch command does
not recognize the if keyword; condition is the only way to impose a further condition on
a catchpoint.

condition bnum expression

Specify expression as the break condition for breakpoint, watchpoint, or catch-
point number bnum. After you set a condition, breakpoint bnum stops your
program only if the value of expression is true (nonzero, in C). When you
use condition, gdb checks expression immediately for syntactic correctness,
and to determine whether symbols in it have referents in the context of your
breakpoint. If expression uses symbols not referenced in the context of the
breakpoint, gdb prints an error message:

No symbol "foo" in current context.

gdb does not actually evaluate expression at the time the condition command
(or a command that sets a breakpoint with a condition, like break if ...) is
given, however. See Section 8.1 [Expressions], page 67.

condition bnum

Remove the condition from breakpoint number bnum. It becomes an ordinary
unconditional breakpoint.

A special case of a breakpoint condition is to stop only when the breakpoint has been
reached a certain number of times. This is so useful that there is a special way to do it,
using the ignore count of the breakpoint. Every breakpoint has an ignore count, which is
an integer. Most of the time, the ignore count is zero, and therefore has no effect. But if
your program reaches a breakpoint whose ignore count is positive, then instead of stopping,
it just decrements the ignore count by one and continues. As a result, if the ignore count
value is n, the breakpoint does not stop the next n times your program reaches it.

ignore bnum count

Set the ignore count of breakpoint number bnum to count. The next count

times the breakpoint is reached, your program’s execution does not stop; other
than to decrement the ignore count, gdb takes no action.

To make the breakpoint stop the next time it is reached, specify a count of zero.

44 Debugging with gdb

When you use continue to resume execution of your program from a break-
point, you can specify an ignore count directly as an argument to continue,
rather than using ignore. See Section 5.2 [Continuing and stepping], page 47.

If a breakpoint has a positive ignore count and a condition, the condition is
not checked. Once the ignore count reaches zero, gdb resumes checking the
condition.

You could achieve the effect of the ignore count with a condition such as
‘$foo-- <= 0’ using a debugger convenience variable that is decremented each
time. See Section 8.9 [Convenience variables], page 79.

Ignore counts apply to breakpoints, watchpoints, and catchpoints.

5.1.7 Breakpoint command lists

You can give any breakpoint (or watchpoint or catchpoint) a series of commands to
execute when your program stops due to that breakpoint. For example, you might want to
print the values of certain expressions, or enable other breakpoints.

commands [bnum]
... command-list ...

end Specify a list of commands for breakpoint number bnum. The commands them-
selves appear on the following lines. Type a line containing just end to terminate
the commands.

To remove all commands from a breakpoint, type commands and follow it im-
mediately with end; that is, give no commands.

With no bnum argument, commands refers to the last breakpoint, watchpoint,
or catchpoint set (not to the breakpoint most recently encountered).

Pressing 〈RET〉 as a means of repeating the last gdb command is disabled within a
command-list.

You can use breakpoint commands to start your program up again. Simply use the
continue command, or step, or any other command that resumes execution.

Any other commands in the command list, after a command that resumes execution, are
ignored. This is because any time you resume execution (even with a simple next or step),
you may encounter another breakpoint—which could have its own command list, leading
to ambiguities about which list to execute.

If the first command you specify in a command list is silent, the usual message about
stopping at a breakpoint is not printed. This may be desirable for breakpoints that are
to print a specific message and then continue. If none of the remaining commands print
anything, you see no sign that the breakpoint was reached. silent is meaningful only at
the beginning of a breakpoint command list.

The commands echo, output, and printf allow you to print precisely controlled output,
and are often useful in silent breakpoints. See Section 20.4 [Commands for controlled
output], page 192.

For example, here is how you could use breakpoint commands to print the value of x at
entry to foo whenever x is positive.

Chapter 5: Stopping and Continuing 45

break foo if x>0
commands
silent
printf "x is %d\n",x
cont
end

One application for breakpoint commands is to compensate for one bug so you can test
for another. Put a breakpoint just after the erroneous line of code, give it a condition
to detect the case in which something erroneous has been done, and give it commands to
assign correct values to any variables that need them. End with the continue command so
that your program does not stop, and start with the silent command so that no output
is produced. Here is an example:

break 403
commands
silent
set x = y + 4
cont
end

5.1.8 Breakpoint menus

Some programming languages (notably C++ and Objective-C) permit a single function
name to be defined several times, for application in different contexts. This is called over-

loading. When a function name is overloaded, ‘break function’ is not enough to tell gdb

where you want a breakpoint. If you realize this is a problem, you can use something like
‘break function(types)’ to specify which particular version of the function you want. Oth-
erwise, gdb offers you a menu of numbered choices for different possible breakpoints, and
waits for your selection with the prompt ‘>’. The first two options are always ‘[0] cancel’
and ‘[1] all’. Typing 1 sets a breakpoint at each definition of function, and typing 0

aborts the break command without setting any new breakpoints.

For example, the following session excerpt shows an attempt to set a breakpoint at the
overloaded symbol String::after. We choose three particular definitions of that function
name:

46 Debugging with gdb

(gdb) b String::after
[0] cancel
[1] all
[2] file:String.cc; line number:867
[3] file:String.cc; line number:860
[4] file:String.cc; line number:875
[5] file:String.cc; line number:853
[6] file:String.cc; line number:846
[7] file:String.cc; line number:735
> 2 4 6
Breakpoint 1 at 0xb26c: file String.cc, line 867.
Breakpoint 2 at 0xb344: file String.cc, line 875.
Breakpoint 3 at 0xafcc: file String.cc, line 846.
Multiple breakpoints were set.
Use the "delete" command to delete unwanted
breakpoints.

(gdb)

5.1.9 “Cannot insert breakpoints”

Under some operating systems, breakpoints cannot be used in a program if any other
process is running that program. In this situation, attempting to run or continue a program
with a breakpoint causes gdb to print an error message:

Cannot insert breakpoints.
The same program may be running in another process.

When this happens, you have three ways to proceed:

1. Remove or disable the breakpoints, then continue.

2. Suspend gdb, and copy the file containing your program to a new name. Resume gdb

and use the exec-file command to specify that gdb should run your program under
that name. Then start your program again.

3. Relink your program so that the text segment is nonsharable, using the linker option
‘-N’. The operating system limitation may not apply to nonsharable executables.

A similar message can be printed if you request too many active hardware-assisted
breakpoints and watchpoints:

Stopped; cannot insert breakpoints.
You may have requested too many hardware breakpoints and watchpoints.

This message is printed when you attempt to resume the program, since only then gdb

knows exactly how many hardware breakpoints and watchpoints it needs to insert.

When this message is printed, you need to disable or remove some of the hardware-
assisted breakpoints and watchpoints, and then continue.

5.1.10 “Breakpoint address adjusted...”

Some processor architectures place constraints on the addresses at which breakpoints
may be placed. For architectures thus constrained, gdb will attempt to adjust the break-
point’s address to comply with the constraints dictated by the architecture.

Chapter 5: Stopping and Continuing 47

One example of such an architecture is the Fujitsu FR-V. The FR-V is a VLIW archi-
tecture in which a number of RISC-like instructions may be bundled together for parallel
execution. The FR-V architecture constrains the location of a breakpoint instruction within
such a bundle to the instruction with the lowest address. gdb honors this constraint by
adjusting a breakpoint’s address to the first in the bundle.

It is not uncommon for optimized code to have bundles which contain instructions from
different source statements, thus it may happen that a breakpoint’s address will be adjusted
from one source statement to another. Since this adjustment may significantly alter gdb’s
breakpoint related behavior from what the user expects, a warning is printed when the
breakpoint is first set and also when the breakpoint is hit.

A warning like the one below is printed when setting a breakpoint that’s been subject
to address adjustment:

warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.

Such warnings are printed both for user settable and gdb’s internal breakpoints. If you
see one of these warnings, you should verify that a breakpoint set at the adjusted address
will have the desired affect. If not, the breakpoint in question may be removed and other
breakpoints may be set which will have the desired behavior. E.g., it may be sufficient to
place the breakpoint at a later instruction. A conditional breakpoint may also be useful in
some cases to prevent the breakpoint from triggering too often.

gdb will also issue a warning when stopping at one of these adjusted breakpoints:

warning: Breakpoint 1 address previously adjusted from 0x00010414
to 0x00010410.

When this warning is encountered, it may be too late to take remedial action except in
cases where the breakpoint is hit earlier or more frequently than expected.

5.2 Continuing and stepping

Continuing means resuming program execution until your program completes normally.
In contrast, stepping means executing just one more “step” of your program, where “step”
may mean either one line of source code, or one machine instruction (depending on what
particular command you use). Either when continuing or when stepping, your program may
stop even sooner, due to a breakpoint or a signal. (If it stops due to a signal, you may want
to use handle, or use ‘signal 0’ to resume execution. See Section 5.3 [Signals], page 50.)

continue [ignore-count]
c [ignore-count]
fg [ignore-count]

Resume program execution, at the address where your program last stopped;
any breakpoints set at that address are bypassed. The optional argument
ignore-count allows you to specify a further number of times to ignore a break-
point at this location; its effect is like that of ignore (see Section 5.1.6 [Break
conditions], page 42).

The argument ignore-count is meaningful only when your program stopped due
to a breakpoint. At other times, the argument to continue is ignored.

48 Debugging with gdb

The synonyms c and fg (for foreground, as the debugged program is deemed
to be the foreground program) are provided purely for convenience, and have
exactly the same behavior as continue.

To resume execution at a different place, you can use return (see Section 14.4 [Returning
from a function], page 135) to go back to the calling function; or jump (see Section 14.2
[Continuing at a different address], page 134) to go to an arbitrary location in your program.

A typical technique for using stepping is to set a breakpoint (see Section 5.1 [Breakpoints;
watchpoints; and catchpoints], page 33) at the beginning of the function or the section
of your program where a problem is believed to lie, run your program until it stops at
that breakpoint, and then step through the suspect area, examining the variables that are
interesting, until you see the problem happen.

step Continue running your program until control reaches a different source line,
then stop it and return control to gdb. This command is abbreviated s.

Warning: If you use the step command while control is within
a function that was compiled without debugging information, ex-
ecution proceeds until control reaches a function that does have
debugging information. Likewise, it will not step into a function
which is compiled without debugging information. To step through
functions without debugging information, use the stepi command,
described below.

The step command only stops at the first instruction of a source line. This pre-
vents the multiple stops that could otherwise occur in switch statements, for
loops, etc. step continues to stop if a function that has debugging information
is called within the line. In other words, step steps inside any functions called
within the line.

Also, the step command only enters a function if there is line number infor-
mation for the function. Otherwise it acts like the next command. This avoids
problems when using cc -gl on MIPS machines. Previously, step entered sub-
routines if there was any debugging information about the routine.

step count

Continue running as in step, but do so count times. If a breakpoint is reached,
or a signal not related to stepping occurs before count steps, stepping stops
right away.

next [count]
Continue to the next source line in the current (innermost) stack frame. This
is similar to step, but function calls that appear within the line of code are
executed without stopping. Execution stops when control reaches a different
line of code at the original stack level that was executing when you gave the
next command. This command is abbreviated n.

An argument count is a repeat count, as for step.

The next command only stops at the first instruction of a source line. This
prevents multiple stops that could otherwise occur in switch statements, for
loops, etc.

Chapter 5: Stopping and Continuing 49

set step-mode

set step-mode on

The set step-mode on command causes the step command to stop at the first
instruction of a function which contains no debug line information rather than
stepping over it.

This is useful in cases where you may be interested in inspecting the machine
instructions of a function which has no symbolic info and do not want gdb to
automatically skip over this function.

set step-mode off

Causes the step command to step over any functions which contains no debug
information. This is the default.

finish Continue running until just after function in the selected stack frame returns.
Print the returned value (if any).

Contrast this with the return command (see Section 14.4 [Returning from a
function], page 135).

until

u Continue running until a source line past the current line, in the current stack
frame, is reached. This command is used to avoid single stepping through a loop
more than once. It is like the next command, except that when until encoun-
ters a jump, it automatically continues execution until the program counter is
greater than the address of the jump.

This means that when you reach the end of a loop after single stepping though
it, until makes your program continue execution until it exits the loop. In con-
trast, a next command at the end of a loop simply steps back to the beginning
of the loop, which forces you to step through the next iteration.

until always stops your program if it attempts to exit the current stack frame.

until may produce somewhat counterintuitive results if the order of machine
code does not match the order of the source lines. For example, in the following
excerpt from a debugging session, the f (frame) command shows that execution
is stopped at line 206; yet when we use until, we get to line 195:

(gdb) f
#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
206 expand_input();
(gdb) until
195 for (; argc > 0; NEXTARG) {

This happened because, for execution efficiency, the compiler had generated
code for the loop closure test at the end, rather than the start, of the loop—
even though the test in a C for-loop is written before the body of the loop.
The until command appeared to step back to the beginning of the loop when
it advanced to this expression; however, it has not really gone to an earlier
statement—not in terms of the actual machine code.

until with no argument works by means of single instruction stepping, and
hence is slower than until with an argument.

50 Debugging with gdb

until location

u location Continue running your program until either the specified location is reached,
or the current stack frame returns. location is any of the forms of argument
acceptable to break (see Section 5.1.1 [Setting breakpoints], page 34). This form
of the command uses breakpoints, and hence is quicker than until without an
argument. The specified location is actually reached only if it is in the current
frame. This implies that until can be used to skip over recursive function
invocations. For instance in the code below, if the current location is line 96,
issuing until 99 will execute the program up to line 99 in the same invocation
of factorial, i.e. after the inner invocations have returned.

94 int factorial (int value)
95 {
96 if (value > 1) {
97 value *= factorial (value - 1);
98 }
99 return (value);
100 }

advance location

Continue running the program up to the given location. An argument is re-
quired, anything of the same form as arguments for the break command. Ex-
ecution will also stop upon exit from the current stack frame. This command
is similar to until, but advance will not skip over recursive function calls, and
the target location doesn’t have to be in the same frame as the current one.

stepi

stepi arg

si Execute one machine instruction, then stop and return to the debugger.

It is often useful to do ‘display/i $pc’ when stepping by machine instructions.
This makes gdb automatically display the next instruction to be executed, each
time your program stops. See Section 8.6 [Automatic display], page 72.

An argument is a repeat count, as in step.

nexti

nexti arg

ni Execute one machine instruction, but if it is a function call, proceed until the
function returns.

An argument is a repeat count, as in next.

5.3 Signals

A signal is an asynchronous event that can happen in a program. The operating system
defines the possible kinds of signals, and gives each kind a name and a number. For example,
in Unix SIGINT is the signal a program gets when you type an interrupt character (often C-

c); SIGSEGV is the signal a program gets from referencing a place in memory far away from
all the areas in use; SIGALRM occurs when the alarm clock timer goes off (which happens
only if your program has requested an alarm).

Some signals, including SIGALRM, are a normal part of the functioning of your program.
Others, such as SIGSEGV, indicate errors; these signals are fatal (they kill your program

Chapter 7: Examining Source Files 61

7 Examining Source Files

gdb can print parts of your program’s source, since the debugging information recorded
in the program tells gdb what source files were used to build it. When your program stops,
gdb spontaneously prints the line where it stopped. Likewise, when you select a stack frame
(see Section 6.3 [Selecting a frame], page 57), gdb prints the line where execution in that
frame has stopped. You can print other portions of source files by explicit command.

If you use gdb through its gnu Emacs interface, you may prefer to use Emacs facilities
to view source; see Chapter 23 [Using gdb under gnu Emacs], page 203.

7.1 Printing source lines

To print lines from a source file, use the list command (abbreviated l). By default, ten
lines are printed. There are several ways to specify what part of the file you want to print.

Here are the forms of the list command most commonly used:

list linenum

Print lines centered around line number linenum in the current source file.

list function

Print lines centered around the beginning of function function.

list Print more lines. If the last lines printed were printed with a list command,
this prints lines following the last lines printed; however, if the last line printed
was a solitary line printed as part of displaying a stack frame (see Chapter 6
[Examining the Stack], page 55), this prints lines centered around that line.

list - Print lines just before the lines last printed.

By default, gdb prints ten source lines with any of these forms of the list command.
You can change this using set listsize:

set listsize count

Make the list command display count source lines (unless the list argument
explicitly specifies some other number).

show listsize

Display the number of lines that list prints.

Repeating a list command with 〈RET〉 discards the argument, so it is equivalent to
typing just list. This is more useful than listing the same lines again. An exception is
made for an argument of ‘-’; that argument is preserved in repetition so that each repetition
moves up in the source file.

In general, the list command expects you to supply zero, one or two linespecs. Linespecs
specify source lines; there are several ways of writing them, but the effect is always to specify
some source line. Here is a complete description of the possible arguments for list:

list linespec

Print lines centered around the line specified by linespec.

list first,last

Print lines from first to last. Both arguments are linespecs.

62 Debugging with gdb

list ,last Print lines ending with last.

list first,

Print lines starting with first.

list + Print lines just after the lines last printed.

list - Print lines just before the lines last printed.

list As described in the preceding table.

Here are the ways of specifying a single source line—all the kinds of linespec.

number Specifies line number of the current source file. When a list command has
two linespecs, this refers to the same source file as the first linespec.

+offset Specifies the line offset lines after the last line printed. When used as the second
linespec in a list command that has two, this specifies the line offset lines down
from the first linespec.

-offset Specifies the line offset lines before the last line printed.

filename:number

Specifies line number in the source file filename.

function Specifies the line that begins the body of the function function. For example:
in C, this is the line with the open brace.

filename:function

Specifies the line of the open-brace that begins the body of the function function

in the file filename. You only need the file name with a function name to avoid
ambiguity when there are identically named functions in different source files.

*address Specifies the line containing the program address address. address may be any
expression.

7.2 Editing source files

To edit the lines in a source file, use the edit command. The editing program of your
choice is invoked with the current line set to the active line in the program. Alternatively,
there are several ways to specify what part of the file you want to print if you want to see
other parts of the program.

Here are the forms of the edit command most commonly used:

edit Edit the current source file at the active line number in the program.

edit number

Edit the current source file with number as the active line number.

edit function

Edit the file containing function at the beginning of its definition.

edit filename:number

Specifies line number in the source file filename.

Chapter 7: Examining Source Files 63

edit filename:function

Specifies the line that begins the body of the function function in the file file-

name. You only need the file name with a function name to avoid ambiguity
when there are identically named functions in different source files.

edit *address

Specifies the line containing the program address address. address may be any
expression.

7.2.1 Choosing your editor

You can customize gdb to use any editor you want1. By default, it is /bin/ex, but you
can change this by setting the environment variable EDITOR before using gdb. For example,
to configure gdb to use the vi editor, you could use these commands with the sh shell:

EDITOR=/usr/bin/vi
export EDITOR
gdb ...

or in the csh shell,

setenv EDITOR /usr/bin/vi
gdb ...

7.3 Searching source files

There are two commands for searching through the current source file for a regular
expression.

forward-search regexp

search regexp

The command ‘forward-search regexp’ checks each line, starting with the one
following the last line listed, for a match for regexp. It lists the line that is found.
You can use the synonym ‘search regexp’ or abbreviate the command name as
fo.

reverse-search regexp

The command ‘reverse-search regexp’ checks each line, starting with the one
before the last line listed and going backward, for a match for regexp. It lists
the line that is found. You can abbreviate this command as rev.

7.4 Specifying source directories

Executable programs sometimes do not record the directories of the source files from
which they were compiled, just the names. Even when they do, the directories could be
moved between the compilation and your debugging session. gdb has a list of directories to
search for source files; this is called the source path. Each time gdb wants a source file, it

1 The only restriction is that your editor (say ex), recognizes the following command-line syntax:

ex +number file

The optional numeric value +number designates the active line in the file.

64 Debugging with gdb

tries all the directories in the list, in the order they are present in the list, until it finds a file
with the desired name. Note that the executable search path is not used for this purpose.
Neither is the current working directory, unless it happens to be in the source path.

If gdb cannot find a source file in the source path, and the object program records a
directory, gdb tries that directory too. If the source path is empty, and there is no record
of the compilation directory, gdb looks in the current directory as a last resort.

Whenever you reset or rearrange the source path, gdb clears out any information it has
cached about where source files are found and where each line is in the file.

When you start gdb, its source path includes only ‘cdir’ and ‘cwd’, in that order. To
add other directories, use the directory command.

directory dirname ...

dir dirname ...

Add directory dirname to the front of the source path. Several directory names
may be given to this command, separated by ‘:’ (‘;’ on MS-DOS and MS-
Windows, where ‘:’ usually appears as part of absolute file names) or white-
space. You may specify a directory that is already in the source path; this
moves it forward, so gdb searches it sooner.

You can use the string ‘$cdir’ to refer to the compilation directory (if one is
recorded), and ‘$cwd’ to refer to the current working directory. ‘$cwd’ is not
the same as ‘.’—the former tracks the current working directory as it changes
during your gdb session, while the latter is immediately expanded to the current
directory at the time you add an entry to the source path.

directory

Reset the source path to empty again. This requires confirmation.

show directories

Print the source path: show which directories it contains.

If your source path is cluttered with directories that are no longer of interest, gdb may
sometimes cause confusion by finding the wrong versions of source. You can correct the
situation as follows:

1. Use directory with no argument to reset the source path to empty.

2. Use directory with suitable arguments to reinstall the directories you want in the
source path. You can add all the directories in one command.

7.5 Source and machine code

You can use the command info line to map source lines to program addresses (and
vice versa), and the command disassemble to display a range of addresses as machine
instructions. When run under gnu Emacs mode, the info line command causes the arrow
to point to the line specified. Also, info line prints addresses in symbolic form as well as
hex.

info line linespec

Print the starting and ending addresses of the compiled code for source line
linespec. You can specify source lines in any of the ways understood by the
list command (see Section 7.1 [Printing source lines], page 61).

Chapter 7: Examining Source Files 65

For example, we can use info line to discover the location of the object code for the
first line of function m4_changequote:

(gdb) info line m4_changequote
Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.

We can also inquire (using *addr as the form for linespec) what source line covers a par-
ticular address:

(gdb) info line *0x63ff
Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.

After info line, the default address for the x command is changed to the starting
address of the line, so that ‘x/i’ is sufficient to begin examining the machine code (see
Section 8.5 [Examining memory], page 71). Also, this address is saved as the value of the
convenience variable $_ (see Section 8.9 [Convenience variables], page 79).

disassemble

This specialized command dumps a range of memory as machine instructions.
The default memory range is the function surrounding the program counter of
the selected frame. A single argument to this command is a program counter
value; gdb dumps the function surrounding this value. Two arguments specify
a range of addresses (first inclusive, second exclusive) to dump.

The following example shows the disassembly of a range of addresses of HP PA-RISC
2.0 code:

(gdb) disas 0x32c4 0x32e4
Dump of assembler code from 0x32c4 to 0x32e4:
0x32c4 <main+204>: addil 0,dp
0x32c8 <main+208>: ldw 0x22c(sr0,r1),r26
0x32cc <main+212>: ldil 0x3000,r31
0x32d0 <main+216>: ble 0x3f8(sr4,r31)
0x32d4 <main+220>: ldo 0(r31),rp
0x32d8 <main+224>: addil -0x800,dp
0x32dc <main+228>: ldo 0x588(r1),r26
0x32e0 <main+232>: ldil 0x3000,r31
End of assembler dump.

Some architectures have more than one commonly-used set of instruction mnemonics or
other syntax.

set disassembly-flavor instruction-set

Select the instruction set to use when disassembling the program via the
disassemble or x/i commands.

Currently this command is only defined for the Intel x86 family. You can set
instruction-set to either intel or att. The default is att, the AT&T flavor
used by default by Unix assemblers for x86-based targets.

Chapter 8: Examining Data 67

8 Examining Data

The usual way to examine data in your program is with the print command (abbreviated
p), or its synonym inspect. It evaluates and prints the value of an expression of the
language your program is written in (see Chapter 12 [Using gdb with Different Languages],
page 109).

print expr

print /f expr

expr is an expression (in the source language). By default the value of expr is
printed in a format appropriate to its data type; you can choose a different for-
mat by specifying ‘/f ’, where f is a letter specifying the format; see Section 8.4
[Output formats], page 70.

print

print /f If you omit expr, gdb displays the last value again (from the value history ; see
Section 8.8 [Value history], page 78). This allows you to conveniently inspect
the same value in an alternative format.

A more low-level way of examining data is with the x command. It examines data in
memory at a specified address and prints it in a specified format. See Section 8.5 [Examining
memory], page 71.

If you are interested in information about types, or about how the fields of a struct
or a class are declared, use the ptype exp command rather than print. See Chapter 13
[Examining the Symbol Table], page 127.

8.1 Expressions

print and many other gdb commands accept an expression and compute its value. Any
kind of constant, variable or operator defined by the programming language you are using
is valid in an expression in gdb. This includes conditional expressions, function calls, casts,
and string constants. It also includes preprocessor macros, if you compiled your program
to include this information; see Section 4.1 [Compilation], page 23.

gdb supports array constants in expressions input by the user. The syntax is {element,
element. . .}. For example, you can use the command print {1, 2, 3} to build up an array
in memory that is malloced in the target program.

Because C is so widespread, most of the expressions shown in examples in this manual
are in C. See Chapter 12 [Using gdb with Different Languages], page 109, for information
on how to use expressions in other languages.

In this section, we discuss operators that you can use in gdb expressions regardless of
your programming language.

Casts are supported in all languages, not just in C, because it is so useful to cast a
number into a pointer in order to examine a structure at that address in memory.

gdb supports these operators, in addition to those common to programming languages:

@ ‘@’ is a binary operator for treating parts of memory as arrays. See Section 8.3
[Artificial arrays], page 69, for more information.

68 Debugging with gdb

:: ‘::’ allows you to specify a variable in terms of the file or function where it is
defined. See Section 8.2 [Program variables], page 68.

{type} addr

Refers to an object of type type stored at address addr in memory. addr may
be any expression whose value is an integer or pointer (but parentheses are
required around binary operators, just as in a cast). This construct is allowed
regardless of what kind of data is normally supposed to reside at addr.

8.2 Program variables

The most common kind of expression to use is the name of a variable in your program.

Variables in expressions are understood in the selected stack frame (see Section 6.3
[Selecting a frame], page 57); they must be either:

• global (or file-static)

or

• visible according to the scope rules of the programming language from the point of
execution in that frame

This means that in the function

foo (a)
int a;

{
bar (a);
{

int b = test ();
bar (b);

}
}

you can examine and use the variable a whenever your program is executing within the
function foo, but you can only use or examine the variable b while your program is executing
inside the block where b is declared.

There is an exception: you can refer to a variable or function whose scope is a single
source file even if the current execution point is not in this file. But it is possible to have
more than one such variable or function with the same name (in different source files). If
that happens, referring to that name has unpredictable effects. If you wish, you can specify
a static variable in a particular function or file, using the colon-colon notation:

file::variable

function::variable

Here file or function is the name of the context for the static variable. In the case of file
names, you can use quotes to make sure gdb parses the file name as a single word—for
example, to print a global value of x defined in ‘f2.c’:

(gdb) p ’f2.c’::x

This use of ‘::’ is very rarely in conflict with the very similar use of the same notation
in C++. gdb also supports use of the C++ scope resolution operator in gdb expressions.

Chapter 8: Examining Data 69

Warning: Occasionally, a local variable may appear to have the wrong value
at certain points in a function—just after entry to a new scope, and just before
exit.

You may see this problem when you are stepping by machine instructions. This is
because, on most machines, it takes more than one instruction to set up a stack frame
(including local variable definitions); if you are stepping by machine instructions, variables
may appear to have the wrong values until the stack frame is completely built. On exit, it
usually also takes more than one machine instruction to destroy a stack frame; after you
begin stepping through that group of instructions, local variable definitions may be gone.

This may also happen when the compiler does significant optimizations. To be sure of
always seeing accurate values, turn off all optimization when compiling.

Another possible effect of compiler optimizations is to optimize unused variables out of
existence, or assign variables to registers (as opposed to memory addresses). Depending
on the support for such cases offered by the debug info format used by the compiler, gdb

might not be able to display values for such local variables. If that happens, gdb will print
a message like this:

No symbol "foo" in current context.

To solve such problems, either recompile without optimizations, or use a different debug
info format, if the compiler supports several such formats. For example, gcc, the gnu

C/C++ compiler usually supports the ‘-gstabs+’ option. ‘-gstabs+’ produces debug info
in a format that is superior to formats such as COFF. You may be able to use DWARF
2 (‘-gdwarf-2’), which is also an effective form for debug info. See section “Options for
Debugging Your Program or gnu CC” in Using gnu CC .

8.3 Artificial arrays

It is often useful to print out several successive objects of the same type in memory; a
section of an array, or an array of dynamically determined size for which only a pointer
exists in the program.

You can do this by referring to a contiguous span of memory as an artificial array, using
the binary operator ‘@’. The left operand of ‘@’ should be the first element of the desired
array and be an individual object. The right operand should be the desired length of the
array. The result is an array value whose elements are all of the type of the left argument.
The first element is actually the left argument; the second element comes from bytes of
memory immediately following those that hold the first element, and so on. Here is an
example. If a program says

int *array = (int *) malloc (len * sizeof (int));

you can print the contents of array with

p *array@len

The left operand of ‘@’ must reside in memory. Array values made with ‘@’ in this way
behave just like other arrays in terms of subscripting, and are coerced to pointers when
used in expressions. Artificial arrays most often appear in expressions via the value history
(see Section 8.8 [Value history], page 78), after printing one out.

Another way to create an artificial array is to use a cast. This re-interprets a value as if
it were an array. The value need not be in memory:

70 Debugging with gdb

(gdb) p/x (short[2])0x12345678
$1 = {0x1234, 0x5678}

As a convenience, if you leave the array length out (as in ‘(type[])value’) gdb calculates
the size to fill the value (as ‘sizeof(value)/sizeof(type)’:

(gdb) p/x (short[])0x12345678
$2 = {0x1234, 0x5678}

Sometimes the artificial array mechanism is not quite enough; in moderately complex
data structures, the elements of interest may not actually be adjacent—for example, if
you are interested in the values of pointers in an array. One useful work-around in this
situation is to use a convenience variable (see Section 8.9 [Convenience variables], page 79)
as a counter in an expression that prints the first interesting value, and then repeat that
expression via 〈RET〉. For instance, suppose you have an array dtab of pointers to structures,
and you are interested in the values of a field fv in each structure. Here is an example of
what you might type:

set $i = 0
p dtab[$i++]->fv
〈RET〉

〈RET〉

...

8.4 Output formats

By default, gdb prints a value according to its data type. Sometimes this is not what
you want. For example, you might want to print a number in hex, or a pointer in decimal.
Or you might want to view data in memory at a certain address as a character string or as
an instruction. To do these things, specify an output format when you print a value.

The simplest use of output formats is to say how to print a value already computed.
This is done by starting the arguments of the print command with a slash and a format
letter. The format letters supported are:

x Regard the bits of the value as an integer, and print the integer in hexadecimal.

d Print as integer in signed decimal.

u Print as integer in unsigned decimal.

o Print as integer in octal.

t Print as integer in binary. The letter ‘t’ stands for “two”.1

a Print as an address, both absolute in hexadecimal and as an offset from the
nearest preceding symbol. You can use this format used to discover where (in
what function) an unknown address is located:

(gdb) p/a 0x54320
$3 = 0x54320 <_initialize_vx+396>

The command info symbol 0x54320 yields similar results. See Chapter 13
[Symbols], page 127.

1 ‘b’ cannot be used because these format letters are also used with the x command, where ‘b’ stands for
“byte”; see Section 8.5 [Examining memory], page 71.

Chapter 8: Examining Data 71

c Regard as an integer and print it as a character constant.

f Regard the bits of the value as a floating point number and print using typical
floating point syntax.

For example, to print the program counter in hex (see Section 8.10 [Registers], page 80),
type

p/x $pc

Note that no space is required before the slash; this is because command names in gdb

cannot contain a slash.

To reprint the last value in the value history with a different format, you can use the
print command with just a format and no expression. For example, ‘p/x’ reprints the last
value in hex.

8.5 Examining memory

You can use the command x (for “examine”) to examine memory in any of several
formats, independently of your program’s data types.

x/nfu addr

x addr

x Use the x command to examine memory.

n, f, and u are all optional parameters that specify how much memory to display and how
to format it; addr is an expression giving the address where you want to start displaying
memory. If you use defaults for nfu, you need not type the slash ‘/’. Several commands set
convenient defaults for addr.

n, the repeat count
The repeat count is a decimal integer; the default is 1. It specifies how much
memory (counting by units u) to display.

f, the display format
The display format is one of the formats used by print, ‘s’ (null-terminated
string), or ‘i’ (machine instruction). The default is ‘x’ (hexadecimal) initially.
The default changes each time you use either x or print.

u, the unit size
The unit size is any of

b Bytes.

h Halfwords (two bytes).

w Words (four bytes). This is the initial default.

g Giant words (eight bytes).

Each time you specify a unit size with x, that size becomes the default unit the
next time you use x. (For the ‘s’ and ‘i’ formats, the unit size is ignored and
is normally not written.)

72 Debugging with gdb

addr, starting display address
addr is the address where you want gdb to begin displaying memory. The
expression need not have a pointer value (though it may); it is always inter-
preted as an integer address of a byte of memory. See Section 8.1 [Expressions],
page 67, for more information on expressions. The default for addr is usu-
ally just after the last address examined—but several other commands also set
the default address: info breakpoints (to the address of the last breakpoint
listed), info line (to the starting address of a line), and print (if you use it
to display a value from memory).

For example, ‘x/3uh 0x54320’ is a request to display three halfwords (h) of memory,
formatted as unsigned decimal integers (‘u’), starting at address 0x54320. ‘x/4xw $sp’
prints the four words (‘w’) of memory above the stack pointer (here, ‘$sp’; see Section 8.10
[Registers], page 80) in hexadecimal (‘x’).

Since the letters indicating unit sizes are all distinct from the letters specifying output
formats, you do not have to remember whether unit size or format comes first; either order
works. The output specifications ‘4xw’ and ‘4wx’ mean exactly the same thing. (However,
the count n must come first; ‘wx4’ does not work.)

Even though the unit size u is ignored for the formats ‘s’ and ‘i’, you might still want to
use a count n; for example, ‘3i’ specifies that you want to see three machine instructions,
including any operands. The command disassemble gives an alternative way of inspecting
machine instructions; see Section 7.5 [Source and machine code], page 64.

All the defaults for the arguments to x are designed to make it easy to continue scanning
memory with minimal specifications each time you use x. For example, after you have
inspected three machine instructions with ‘x/3i addr’, you can inspect the next seven with
just ‘x/7’. If you use 〈RET〉 to repeat the x command, the repeat count n is used again; the
other arguments default as for successive uses of x.

The addresses and contents printed by the x command are not saved in the value history
because there is often too much of them and they would get in the way. Instead, gdb

makes these values available for subsequent use in expressions as values of the convenience
variables $_ and $__. After an x command, the last address examined is available for use
in expressions in the convenience variable $_. The contents of that address, as examined,
are available in the convenience variable $__.

If the x command has a repeat count, the address and contents saved are from the last
memory unit printed; this is not the same as the last address printed if several units were
printed on the last line of output.

8.6 Automatic display

If you find that you want to print the value of an expression frequently (to see how it
changes), you might want to add it to the automatic display list so that gdb prints its
value each time your program stops. Each expression added to the list is given a number to
identify it; to remove an expression from the list, you specify that number. The automatic
display looks like this:

2: foo = 38
3: bar[5] = (struct hack *) 0x3804

Chapter 8: Examining Data 73

This display shows item numbers, expressions and their current values. As with displays
you request manually using x or print, you can specify the output format you prefer; in
fact, display decides whether to use print or x depending on how elaborate your format
specification is—it uses x if you specify a unit size, or one of the two formats (‘i’ and ‘s’)
that are only supported by x; otherwise it uses print.

display expr

Add the expression expr to the list of expressions to display each time your
program stops. See Section 8.1 [Expressions], page 67.

display does not repeat if you press 〈RET〉 again after using it.

display/fmt expr

For fmt specifying only a display format and not a size or count, add the
expression expr to the auto-display list but arrange to display it each time in
the specified format fmt. See Section 8.4 [Output formats], page 70.

display/fmt addr

For fmt ‘i’ or ‘s’, or including a unit-size or a number of units, add the expres-
sion addr as a memory address to be examined each time your program stops.
Examining means in effect doing ‘x/fmt addr’. See Section 8.5 [Examining
memory], page 71.

For example, ‘display/i $pc’ can be helpful, to see the machine instruction about to
be executed each time execution stops (‘$pc’ is a common name for the program counter;
see Section 8.10 [Registers], page 80).

undisplay dnums...

delete display dnums...

Remove item numbers dnums from the list of expressions to display.

undisplay does not repeat if you press 〈RET〉 after using it. (Otherwise you
would just get the error ‘No display number ...’.)

disable display dnums...

Disable the display of item numbers dnums. A disabled display item is not
printed automatically, but is not forgotten. It may be enabled again later.

enable display dnums...

Enable display of item numbers dnums. It becomes effective once again in auto
display of its expression, until you specify otherwise.

display Display the current values of the expressions on the list, just as is done when
your program stops.

info display

Print the list of expressions previously set up to display automatically, each
one with its item number, but without showing the values. This includes dis-
abled expressions, which are marked as such. It also includes expressions which
would not be displayed right now because they refer to automatic variables not
currently available.

