= © 00 ~NO O WNPOOO~NOODURARWNPOOONOUPRRWNREPOOONOOOUODMWNE

GRER

g1 g1 o1 o1 A

/'l Several exanples of pointer dereferencing and increnmenting
/]l George F. Riley, Ceorgia Tech, Spring 2012

#i ncl ude <i ostreanr
usi ng nanmespace std;

/1l First a global array for illustration

#define ASI ZE 8

/1 Array a is the array used in nost of the exanples bel ow
int afASIZE] ={ 0, 1, 2, 3, 4, 5, 6, 7};

/1 Array b is used for the array copying | oop bel ow

int b[ASIZE] = { 10, 20, 30, 40, 50, 60, 70, 80};

int ¢ =100; // A global variable

int d = 200;

int main()
{
intx pA=a; // pAis a pointer, pointing to array "a", elenent O
/1 See bel ow showi ng that the pointer, pA, can be dereferenced
/1 with the '+’ operator, or with the indexing '[]’ operator.
cout << "pAis " << pA << " x*xpAis " << xpA
<< " pA[0] is " << pA[0] << endl;
/1 Note that the incrementing operator ’'++ has precedence over
/1 the dereferencing operator '*'. But keep in nmind that the
/1 VALUE of the expression pA++ is the value of pA BEFORE the
/1 increnment takes place. Thus the below should result in the
/1 value 0 stored in jO and 1 in j1;
int jO = xpAt++;
int j1l = xpAt++;
/1 jO should be zero and j1 should be one
cout << "jO0is " << jO << " jlis " << jl1 << endl;
/1 At this point, pA points to the '2" in array a. Try using
/1 the pre-increnment operator to see the difference.
int j2 = x++pA;
/1 THis is tricky...what should j2 be here? The VALUE of the expression
/1 ++pA is the | NCREMENTED val ue of pA (which will then point to the
/1 3 in array a, so we expect j2 to be 3.
cout << "j2is " << j2 << endl;
/1 Another try using parens. At this point pA points to the 3 in array a
int j3 = (*xpA) ++;
/1 Again tricky. Using parens, we said to evaluate "+*pA" and then
/1 post-increnent the results. Evaluating *pA results in the
/1 value 3 (what is pointed to by pA). The post-increnent operator
/1 evaluates to the value before the increment, so (*pA)++ eval uates
// to 3. But, two inportant things. First, pA is UNCHANGED. Second,
/! the 3 in array a is changed to a 4.
/1 This is illustrated |later.
int j4 = (*xpA) ++;
/1 j4 should be four, but pA still points to the address where the
/1 original 3 was.
cout << "j3is " << j3 << " j4is " << j4 << endl;
/1 One nmore try. What shold j5 be bel ow?
int j5 = ++(*pA);
cout << "j5is " << jb5 << endl;
/1 Illustrate array copying using pointers
/1 Reset pA back to beginning of array a

Program pointer-dereferencing.cc



57
58
59
60
61
62
63

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

85

pA = a;
int+ pB
cout <<
<<
<<
<<
for (int

= b;

"gc "
" &d
" pB
" pA

/1 pB points to the b array
<< &cC

<< &d

<< pB

<< pA << endl

0;

< ASI ZE; ++i)

{ /! copy atob
*pB++ = *pA++

}
/1l Print

for (int

{

out

b
0;

< ASI ZE; ++i)

cout << b[i] << " ";

}

cout <<
/1 \hat
cout <<

/1 This
pA = a;
cout <<
<<
<<

end|

woul d we get if we dereferenced pB here?
"xpBis " << xpB << endl

last one is tricky...think about what should be printed here

/1 reset pA

" first " << xpA++ << " second " << *pA++
" third " << xpA+t+ << " fourth " << xpA++
endl ;

Program pointer-dereferencing.cc (continued)



