= © 00 ~NO O WNPOOO~NOODURARWNPOOWONOUPRWNREPOOONOOOUODMWNE

GRER

g1 g1 o1 o1 a1

/1 Denobnstrate various high-level syntax for the C | anguage
/| ECE2036
/] George F. Riley, Ceorgia Tech, Fall 2012

/1 Conmments in C and C++ can be entered using the "slash-slash" double
/1 character as done here. In this type of comment, the coment is
/1 only to the end of the current line.

[+ Another way to include comments is to open a coment block with the
sl ash-star double character, and ternmnate it with the star-slash
doubl e character as done here

*/

/1 Nearly all C and C++ programs start with "includes" which tell the
/1 conpiler to find some other file (in this exanple it is stdio.h)

/1 and insert all of the text found in that file into this conpilation
[/ unit. Normally, the contents of the ".h" (header) file only contain
/1 function prototypes, not the actual inplenentation. Mre on this
Il later.

#i ncl ude <stdi o. h>

/1 In C and C++ variabl es must be "decl ared" before they can be used.
/1 Declaring a variable is sinple, just say the "type" of the variable
/1 followed by the variabl e nane. Bel ow defines three vari abl es each

/1 of a different type. The three types used below (int, char, double)
[/ are part of the "built-in" types defined by the | anguage. There

/1 are many built-in types, but for nowwe will concentrate on just

/1 these three. There are al so ways to define new types.

/1 In the exanple below, we assigned an initial value to intVariable

/1 and left the others "uninitialized"

i nt intVariable = 10; // Define an integer variable (32 or 64 bit)
char byt eVari abl e; /1 Define a singe 8-bit byte variable
doubl e fl oat Vari abl e; /1 Define an 8-byte "floating point" variable

/1 A "function prototype" is a way to tell the conpiler of the existence
/1 of a particular "function" (some | anguages call this a "subroutine")
/1 without actually providing the inplenentation of the function.

/1 Cand C++ differ on the requirenents for this. The C |anguage

/1 allows functions to be called w thout prototypes, but C++ does not.
/1 In 2036 we will always use the C++ conpiler, so we need to

/1 include prototypes. Actually, this is not conpletely true as will

/1 be explained |ater.

/1 Below we provide a function prototype for a function called "funcl"
/1 that accepts two argunents (an integer and a double) and returns
/1 a conputed value of type double. Note the trailing sem colon bel ow.

doubl e funcl(int argl, double arg2);

/1 Belowis the inplenmentation of a function called func2 that accepts
/1 two arguments and returns an integer. Notice the difference here

/1 as conpared to funcl; here the function is actually inplenented.

/1l Here is a case where a prototype is not necessary, as the function
/1 is not actually called prior to the function being defined.

Program csyntax.cc



57 // Note the use of the "open curly"” and "close curly", as well as

58 // "return" statenment. "return" is a reserved word in C and C++ and
59 // cannot be used for sonething else.
60

61 int func2(int argl, int arg2)
62 { // Conpute argl tines arg2 and return the product
63 return argl * arg2;

64 }
65
66 // Below defines and inplenents "func3", which illustrates the use

67 // of a "pointer" in CC+t+. A pointer is a variable just like any

68 // other C/C++ variable, but the difference is the the VALUE of the

69 // pointer is the address of sone other variable somewhere in nenory.

70 // func3 also illustrates "de-referencing" the variable using the "star"
71 // operator. Finally, func3 illustrates the "void" return type, which
72 |/ indicates the function does not actually conpute a return val ue.

73

74 wvoid func3(intx plntl, // plntl is a "pointer"

75 int int2) // int2 is a normal integer

76 { // The open-curly starts the inplenentation of the func3 function

77 /1 The next line says to take the value found in int2 and store it

78 /1 in whatever address is found in plntl. Pointers are used extensively

79 // in C and C++
80 *plntl = int2;

81 }
82
83 // C and C++ allow "defined" constants, as illustrated bel ow.

84 // K2Length is defined as 20 and will be used later in the nain.
85
86 #define K2Length 20

87

88 // Belowillustrates the definition of a ¢ C++ "structure".
89 // A structure is a way to state that a single variable has
9 // multiple "sub-variables". |In the exanple bel ow we have

91 // a structure called "nmyStruct" with subvariables a, b, and c.

92 // It is inportant to note that the typedef DOES NOT define a variable.
93 // It sinply defines a type (analagous to int, char, etc); variables
94 // of that type must later be declared as is shown below in the

95 // main function

96

97 typedef struct

98 { // nyStruct has three subvariabl es (or conponents).

99 /1 Note the conponents can be different types, but don’t have to be
100 int a;

101 char b;

102 doubl e c;

103 } nyStruct;

104

105 // Al C and C++ progranms start with a function called "nmain" that
106 // returns an integer (generally ignored) and accepts two argunents.
107 // The two argunents "argc" and "argv" are the count of the command
108 // line argunents entered when the programwas started, and an array

109 // containing the actual argunents. W will discuss this in nore
110 // detail later in the class.
111

112 int main(int argc, charxx argv)

Program csyntax.cc (continued)



113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

/1 Functions often declare "local variables" that exist only while

/1 the function is being executed. Here we define severa

/1 local variables including an integer array.

/1 Note the open-close square braces indicating

/1 an array variable. The size of the array (using this syntax) nust
/1 be known at conmpile time. The array will be accessed a few

/1 lines later.

int i =5; [// declare local variable i and initialize to

int j; /1 declare local varialbe j and | eave uninitialized

int k[10]; // k is an array of 10 integer values, uninitialized

int k2[ K2Length]; // k2 is an array of 20 integer values, uninitialized
double d = 1.5; /1 dis a single 8-byte floating point value

/1 Declare a variable of type nmyStruct.

/1l THis is referenced |ater.

myStruct nySt;

/1 Initialize the sub-variables in nySt

nySt.a = 1;

nySt.b ="'C; // Note the character constant with single quotes
mySt.c 2.0;

/1 Both C and C++ nmake extensive use of "for |oops".
/1 In this exanple, we initialize the k array to known val ues.
/1 W also use a local variable "i1" as the | oop variable, which
/1 has alifetine only within the loop. This is comopn and good practice.
/1 Finally note the use of the "++" operator, which in this case
/! essentially says to set variable il to il + 1.
for (int i1 =0; i1l < 10; i1l++4)
{ Il the open curly brace indicates the start of the code repeated
/1 by the for |oop
k[il] =1i1; // Note the array reference with square brackets
[l printf is one way to print things to the consol e wi ndow.
/1 In C++ we generally use a different way using "cout"
/1 discussed later in class.
printf("Initialized k[ %] to %\n", k[il], i1l);
}
/1 lllustrate another for loop iterating over k2; this loop is slightly
/1 different, but nuch better (Wy?)
for (int i2 =0; i2 < K2Length; i2++)
{ Il the open curly brace indicates the start of the code repeated
/1 by the for |oop
k2[i2] =i2;
printf("Initialized k2[%] to %\n", k2[i2], i2);

}
/1 Note the below line of code won't conple. Wy?
Iy =iz
/1 Illustrate "calling" a function, in this case func3. Note use of the
/1 "address of" operator "&'. The value of the first argunent to func3
/1l is not the value "j" but the address in nmenory of j.
func3(&, i);

printf("j is %\n", j); // What do you think is printed here
/1 Illustrate calling a function in an expression.

Program csyntax.cc (continued)



169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

}

i =i + func2(10, 20);
printf("i is %\n", i); // What do you think is printed here

/11l lustrate calling funcl even though funcl has not yet been
/1 1nplenented.

d = k2[1] + funcl(20, 10);

printf("dis %\n", d); // What do you think is printed here

/1 Since the "main" function is declared to return an integer

// we return 0. For main this is often omitted.

return O;

/1 Notice you can legally put nore code after a return statement
/1 but of course that code is never executed

printf("Should not be printed\n");

/1 Now provide the inplenentation of funcl
doubl e funcl(int argl, double arg2)

{
}

/1 just return the quotient
return argl / arg2;

Program csyntax.cc (continued)



