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/1 Denobnstrate various high-level syntax for the C | anguage
/| ECE2036
/] George F. Riley, Ceorgia Tech, Fall 2012

/1 Conmments in C and C++ can be entered using the "slash-slash" double
/1 character as done here. In this type of comment, the coment is
/1 only to the end of the current line.

[+ Another way to include comments is to open a coment block with the
sl ash-star double character, and ternmnate it with the star-slash
doubl e character as done here

*/

/1 Nearly all C and C++ programs start with "includes" which tell the
/1 conpiler to find some other file (in this exanple it is stdio.h)

/1 and insert all of the text found in that file into this conpilation
[/ unit. Normally, the contents of the ".h" (header) file only contain
/1 function prototypes, not the actual inplenentation. Mre on this
Il later.

#i ncl ude <stdi o. h>

/1 In C and C++ variabl es must be "decl ared" before they can be used.
/1 Declaring a variable is sinple, just say the "type" of the variable
/1 followed by the variabl e nane. Bel ow defines three vari abl es each

/1 of a different type. The three types used below (int, char, double)
[/ are part of the "built-in" types defined by the | anguage. There

/1 are many built-in types, but for nowwe will concentrate on just

/1 these three. There are al so ways to define new types.

/1 In the exanple below, we assigned an initial value to intVariable

/1 and left the others "uninitialized"

i nt intVariable = 10; // Define an integer variable (32 or 64 bit)
char byt eVari abl e; /1 Define a singe 8-bit byte variable
doubl e fl oat Vari abl e; /1 Define an 8-byte "floating point" variable

/1 A "function prototype" is a way to tell the conpiler of the existence
/1 of a particular "function" (some | anguages call this a "subroutine")
/1 without actually providing the inplenentation of the function.

/1 Cand C++ differ on the requirenents for this. The C |anguage

/1 allows functions to be called w thout prototypes, but C++ does not.
/1 In 2036 we will always use the C++ conpiler, so we need to

/1 include prototypes. Actually, this is not conpletely true as will

/1 be explained |ater.

/1 Below we provide a function prototype for a function called "funcl"
/1 that accepts two argunents (an integer and a double) and returns
/1 a conputed value of type double. Note the trailing sem colon bel ow.

doubl e funcl(int argl, double arg2);

/1 Belowis the inplenmentation of a function called func2 that accepts
/1 two arguments and returns an integer. Notice the difference here

/1 as conpared to funcl; here the function is actually inplenented.

/1l Here is a case where a prototype is not necessary, as the function
/1 is not actually called prior to the function being defined.
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57 // Note the use of the "open curly"” and "close curly", as well as

58 // "return" statenment. "return" is a reserved word in C and C++ and
59 // cannot be used for sonething else.
60

61 int func2(int argl, int arg2)
62 { // Conpute argl tines arg2 and return the product
63 return argl * arg2;

64 }
65
66 // Below defines and inplenents "func3", which illustrates the use

67 // of a "pointer" in CC+t+. A pointer is a variable just like any

68 // other C/C++ variable, but the difference is the the VALUE of the

69 // pointer is the address of sone other variable somewhere in nenory.

70 // func3 also illustrates "de-referencing" the variable using the "star"
71 // operator. Finally, func3 illustrates the "void" return type, which
72 |/ indicates the function does not actually conpute a return val ue.

73

74 wvoid func3(intx plntl, // plntl is a "pointer"

75 int int2) // int2 is a normal integer

76 { // The open-curly starts the inplenentation of the func3 function

77 /1 The next line says to take the value found in int2 and store it

78 /1 in whatever address is found in plntl. Pointers are used extensively

79 // in C and C++
80 *plntl = int2;

81 }
82
83 // C and C++ allow "defined" constants, as illustrated bel ow.

84 // K2Length is defined as 20 and will be used later in the nain.
85
86 #define K2Length 20

87

88 // Belowillustrates the definition of a ¢ C++ "structure".
89 // A structure is a way to state that a single variable has
9 // multiple "sub-variables". |In the exanple bel ow we have

91 // a structure called "nmyStruct" with subvariables a, b, and c.

92 // It is inportant to note that the typedef DOES NOT define a variable.
93 // It sinply defines a type (analagous to int, char, etc); variables
94 // of that type must later be declared as is shown below in the

95 // main function

96

97 typedef struct

98 { // nyStruct has three subvariabl es (or conponents).

99 /1 Note the conponents can be different types, but don’t have to be
100 int a;

101 char b;

102 doubl e c;

103 } nyStruct;

104

105 // Al C and C++ progranms start with a function called "nmain" that
106 // returns an integer (generally ignored) and accepts two argunents.
107 // The two argunents "argc" and "argv" are the count of the command
108 // line argunents entered when the programwas started, and an array

109 // containing the actual argunents. W will discuss this in nore
110 // detail later in the class.
111

112 int main(int argc, charxx argv)
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/1 Functions often declare "local variables" that exist only while

/1 the function is being executed. Here we define severa

/1 local variables including an integer array.

/1 Note the open-close square braces indicating

/1 an array variable. The size of the array (using this syntax) nust
/1 be known at conmpile time. The array will be accessed a few

/1 lines later.

int i =5; [// declare local variable i and initialize to

int j; /1 declare local varialbe j and | eave uninitialized

int k[10]; // k is an array of 10 integer values, uninitialized

int k2[ K2Length]; // k2 is an array of 20 integer values, uninitialized
double d = 1.5; /1 dis a single 8-byte floating point value

/1 Declare a variable of type nmyStruct.

/1l THis is referenced |ater.

myStruct nySt;

/1 Initialize the sub-variables in nySt

nySt.a = 1;

nySt.b ="'C; // Note the character constant with single quotes
mySt.c 2.0;

/1 Both C and C++ nmake extensive use of "for |oops".
/1 In this exanple, we initialize the k array to known val ues.
/1 W also use a local variable "i1" as the | oop variable, which
/1 has alifetine only within the loop. This is comopn and good practice.
/1 Finally note the use of the "++" operator, which in this case
/! essentially says to set variable il to il + 1.
for (int i1 =0; i1l < 10; i1l++4)
{ Il the open curly brace indicates the start of the code repeated
/1 by the for |oop
k[il] =1i1; // Note the array reference with square brackets
[l printf is one way to print things to the consol e wi ndow.
/1 In C++ we generally use a different way using "cout"
/1 discussed later in class.
printf("Initialized k[ %] to %\n", k[il], i1l);
}
/1 lllustrate another for loop iterating over k2; this loop is slightly
/1 different, but nuch better (Wy?)
for (int i2 =0; i2 < K2Length; i2++)
{ Il the open curly brace indicates the start of the code repeated
/1 by the for |oop
k2[i2] =i2;
printf("Initialized k2[%] to %\n", k2[i2], i2);

}
/1 Note the below line of code won't conple. Wy?
Iy =iz
/1 Illustrate "calling" a function, in this case func3. Note use of the
/1 "address of" operator "&'. The value of the first argunent to func3
/1l is not the value "j" but the address in nmenory of j.
func3(&, i);

printf("j is %\n", j); // What do you think is printed here
/1 Illustrate calling a function in an expression.
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}

i =i + func2(10, 20);
printf("i is %\n", i); // What do you think is printed here

/11l lustrate calling funcl even though funcl has not yet been
/1 1nplenented.

d = k2[1] + funcl(20, 10);

printf("dis %\n", d); // What do you think is printed here

/1 Since the "main" function is declared to return an integer

// we return 0. For main this is often omitted.

return O;

/1 Notice you can legally put nore code after a return statement
/1 but of course that code is never executed

printf("Should not be printed\n");

/1 Now provide the inplenentation of funcl
doubl e funcl(int argl, double arg2)

{
}

/1 just return the quotient
return argl / arg2;
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